2012. Том 53, № 4

Июль – август

C. 771 – 777

УДК 541.6:547.442.3'546.831/2

Посвящается юбилею академика Ф.А. Кузнецова

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ КОМПЛЕКСОВ ГАФНИЯ(IV) И ЦИРКОНИЯ(IV) С β-ДИКЕТОНАМИ

К.В. Жерикова, Н.Б. Морозова

Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, e-mail: ksenia@niic.nsc.ru

Статья поступила 9 ноября 2011 г.

Разработаны методы синтеза ряда 7- и 8-координированных производных Hf(IV) и Zr(IV) с β -дикетонатными лигандами (R¹—CO—CH—CO—R²). Проведено масс-спектрометрическое, ИК спектроскопическое и кристаллохимическое исследование полученных комплексов. Все структуры молекулярные. Расстояния М—О лежат в интервале 2,09—2,28 Å. В кристаллах молекулы связаны только ван-дер-ваальсовыми взаимодействиями. Показано, что ряд хелатов гафния(IV) и циркония(IV) с идентичными лигандами являются изоструктурными соединениями, а введение CF₃- или *трет*-бутильных групп в концевые заместители лиганда или замена одного лиганда на хлор не влияет значительным образом на основные геометрические характеристики лигандов комплексов.

Ключевые слова: гафний(IV), цирконий(IV), β-дикетонаты, масс-спектрометрия, ИК спектроскопия, рентгеноструктурный анализ.

В ИНХ СО РАН под руководством академика Федора Андреевича Кузнецова длительное время ведутся работы по разработке процессов получения тонких пленок на основе HfO₂ в качестве альтернативного подзатворного диэлектрика для замены SiO₂ в транзисторах интегральных схем нового поколения. Актуальность работ была продиктована требованиями научнотехнического прогресса, развитие которого неразрывно связано с необходимостью усовершенствования вычислительной техники. Так, одним из вариантов увеличения быстродействия микросхем является уменьшение размеров полевых транзисторов. Однако при уменьшении толщины слоя SiO₂, используемого в структурах МДП (металл—диэлектрик—полупроводник), до одного нанометра резко возрастают туннельные токи утечки, что диктует необходимость его замены в следующем поколении приборов на диэлектрики с коэффициентом диэлектрической проницаемости в диапазоне 15—30. Высокая диэлектрическая проницаемость (~23), ширина запрещенной зоны (5,8 эВ), а также термодинамическая совместимость с кремнием — все это явилось предпосылками для рассмотрения тонких (≤10 нм) пленок на основе диоксида гафния в качестве наиболее перспективного альтернативного диэлектрика в приборах наноэлектроники, гига- и терабитных (10⁹—10¹² бит/кристалл) микросхемах памяти нового поколения [1—3]. В ИНХ СО РАН был разработан процесс получения пленок диоксида гафния методом химического осаждения из газовой фазы (MOCVD) с использованием летучих прекурсоров [4-8]. Результаты экспериментов были отмечены Российской академией наук как важнейший итог 2004 г. и опубликованы в "Отчете о деятельности Российской академии наук", Москва, стр. 49.

В качестве исходного соединения использовали дипивалоилметанат гафния — представитель ряда β-дикетонатных комплексов металлов, которые благодаря ряду практически важных свойств, таких как простота получения при относительно высоких выходах, термическая стабильность, достаточно высокое давление пара при относительно низких температурах, неток-

[©] Жерикова К.В., Морозова Н.Б., 2012

сичность, возможность длительного хранения, находят широкое применение в процессах получения тонких оксидных пленок методом MOCVD. Однако, несмотря на значительные успехи в области создания материалов с высокой диэлектрической проницаемостью, остается много нерешенных вопросов, связанных, в первую очередь, с отсутствием необходимой физикохимической информации о структурных и термических параметрах исходных соединений. Для летучих производных гафния(IV) такая информация крайне ограничена. Комплексное изучение β-дикетонатов гафния(IV) совокупностью методов (PCA, термогравиметрия, калориметрия, тензиметрия, масс-спектрометрия) способствует детальному пониманию процессов термических превращений в конденсированном и газообразном состояниях и нахождению общих закономерностей изменения свойств соединений [9—11]. Кроме того, для выяснения влияния природы металла и лиганда на свойства комплексов представляет интерес сравнение физико-химических характеристик ряда β-дикетонатных производных "двойника" гафния– циркония(IV).

Данная работа посвящена части такого комплексного исследования — изучению структурных особенностей β-дикетонатных производных гафния(IV) и циркония(IV).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения Hf(IV) и Zr(IV), представленные в табл. 1, были получены по модифицированным методикам, которые подробно описаны в [12—17]. Идентификацию полученных соединений проводили по данным элементного анализа, ИК спектроскопии, масс-спектрометрии и РФА.

Масс-спектры электронного удара образцов регистрировали на масс-спектрометрах МИ-1201 и МХ-1301 с энергией ионизирующих электронов 35 и 60 эВ соответственно. Для испарения образцов использовали систему прямого ввода проб. Интервал температуры источника составил 25—130 °С. Предельная разрешающая способность прибора МИ-1201 в диапазоне массовых чисел 1200 а.е.м. составила не менее 1000 на уровне 10 % высоты пика, МХ-1301 в диапазоне массовых чисел 5000 а.е.м. — не менее 80 000 на уровне 10 % высоты пика.

ИК спектры β -дикетонатов гафния(IV) в области 400—4000 см⁻¹ зарегистрированы на приборе Scimitar FTS 2000 (разрешение прибора 1 см⁻¹). Образцы запрессовывали в таблетки KBr.

Монокристаллы, пригодные для рентгеноструктурного анализа (РСА), были выращены медленной сублимацией в токе гелия. РСА комплексов проведен по стандартной методике на автоматическом четырехкружном дифрактометре Bruker-Nonius X8 Арех, оснащенном двухкоординатным ССD-детектором, при температуре 150—298 К с использованием молибденового излучения ($\lambda = 0,71073$ Å) и графитового монохроматора. Интенсивности отражений измерены методом φ -сканирования узких (0,5°) фреймов. Поглощение учтено полуэмпирически по программе SADABS [18]. Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELXTL [19]. Детали экспериментов и уточнения подробно описаны в [12—16]. Дифрактограммы изученных соединений полностью проиндицированы по результатам исследования монокристаллов.

Таблица 1

Обозначение	Название	\mathbb{R}^1	R ²
Hf(acac) ₄	Ацетилацетонат Hf(IV)	CH ₃	CH ₃
M(dpm) ₄	Дипивалоилметанат Hf(IV)/Zr(IV)	$C(CH_3)_3$	$C(CH_3)_3$
M(tfac) ₄	Трифторацетилацетонат Hf(IV)/Zr(IV)	CH ₃	CF ₃
M(ptac) ₄	Пивалоилтрифторацетонат Hf(IV)/Zr(IV)	$C(CH_3)_3$	CF ₃
M(hfac) ₄	Гексафторацетилацетонат Hf(IV)/Zr(IV)	CF ₃	CF ₃
Hf(dpm) ₃ Cl	Хлоро- <i>трис-</i> (дипивалоилметанато)Нf(IV)	$C(CH_3)_3$	$C(CH_3)_3$
M ₂ (OH) ₂ (hfac) ₆	Ди-µ-гидроксо- <i>гексакис</i> -(гексафторацетилацетонато)Hf(IV)/Zr(IV)	CF ₃	CF ₃

Соединения Hf(IV) и Zr(IV) (M) с β-дикетонами (R¹—CO—CH₂—CO—R²)

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Масс-спектрометрическое исследование [20] показало, что все хелаты являются моноядерными соединениями в газовой фазе. Исключение составляют комплексы с гексафторацетилацетоном. Сублимированный продукт синтеза комплекса гафния(IV) с гексафторацетилацетоном [13] представляет собой смесь моно- (Hf(hfac)₄) и биядерного (Hf₂(OH)₂(hfac)₆) соединений. Об этом свидетельствует наличие пиков, соответствующих молекулярным ионам — [Hf(hfac)₄]⁺ (1%) и [Hf₂O₂(hfac)₆]⁺ (1,3%). Изучение масс-спектра постоявшего на воздухе (порядка трех месяцев) комплекса циркония(IV) с гексафторацетилацетоном показало, что полученный при синтезе моноядерный хелат циркония(IV) состава Zr(hfac)₄ гидролизуется с образованием биядерного соединения — [Zr₂OL₆]⁺ (20%). Полученные данные отличаются от литературных [21] и свидетельствуют об образовании не моно- (M(OH)(hfac)₃) [21], а биядерных соединений вследствие гидролиза. Обнаружить пик молекулярного иона в масс-спектре биядерного соединения циркония(IV) не удалось, что связано с возможной диссоциацией иона под действием электронного удара. Однако в совокупности с ИК спектроскопическими данными, представленными ниже, можно предположить, что состав биядерного соединения циркония аналогичен соответствующему комплексу гафния(IV) — Zr₂(OH)₂(hfac)₆.

ИК спектрометрическое исследование. В ИК спектре комплекса гафния(IV) с гексафторацетилацетоном появляются нехарактерные для других β -дикетонатов гафния(IV) интенсивные полосы поглощения при 3654 и 867 см⁻¹ (рис. 1), которые можно отнести к валентным колебаниям групп О—Н и Нf—О соответственно. В ИК спектре свежевозогнанного комплекса гексафторацетилацетоната циркония(IV) такие полосы отсутствуют [22, с. 146]. Однако по истечении порядка трех месяцев после синтеза аналогичные пики при 3643 и 836 см⁻¹ обнаруживаются и в ИК спектре комплекса циркония(IV) с гексафторацетилацетоном (см. рис. 1). Подобное появление полос в ИК спектрах данных соединений авторы [21] связывают с постепенным гидролизом комплексов на воздухе, при котором образуются соединения типа M(OH)(hfac)₃.

Исследование кристаллической структуры. Основные кристаллохимические характеристики комплексов, полученные нами, а также представленные в литературе, приведены в табл. 2.

Все структуры относятся к молекулярному типу. Атом металла в *тетракис*- β -дикетонатных комплексах имеет восьмерную координацию, образованную в моноядерных соединениях восемью атомами кислорода, принадлежащими четырем β -дикетонатным лигандам (рис. 2, *a*), в биядерном — шестью атомами кислорода трех бидентатно координированных лигандов гексафторацетилацетона и двумя атомами кислорода OH-групп. Расстояние Hf...Hf в дискретных центросимметричных биядерных молекулах комплекса гафния(IV) с гексафторацетилацетоном составляет 3,533 Å (см. рис. 2, *б*). В моноядерных тетракомплексах координационный полиэдр атома металла представляет собой квадратную антипризму (см. рис. 2, *г*), в которой расстояния О...О оснований и ребер отличаются незначительно. В соединении Hf(dpm)₃Cl атом гафния имеет семерную координацию (см. рис. 2, *в*), образованную шестью атомами кислорода трех лигандов дипивалоилметана и одним атомом хлора, среднее значение связей Hf—Cl_{cp} составля-

ет 2,452 Å. Полученные геометрические характеристики лигандов в Hf(dpm)₃Cl близки геометрическим характеристикам лигандов тетракис-βдикетонатных хелатов. Расстояния М—О во всех соединениях лежат в узком интервале 2,09—2,28 Å.

Несмотря на то что структуры всех исследованных соединений молекулярные, можно выделить более плотно упакованные псевдослои

Рис. 1. ИК спектры комплексов гафния(IV) (а) и циркония(IV) (спустя три месяца после синтеза) (б) с гексафторацетилацетоном

Таблица 2

	*	* *				/	
Хелат пр. гр.	<i>a, b, c,</i> Å	α, β, γ, град.	<i>d</i> _{выч} , г/см ³	Ζ	V/Z, Å ³	М—О, Å О—М—О _{ср} , град.	ММ, Å [лит. данные]
β -Hf(acac) ₄ C2/c	21,5493(4), 8,3672(1), 13,9905(3)	90, 116,555(1), 90	1,692	4	564,12	2,17—2,19 75,1	7,08×2; 8,37×2; 10,09—10,31×4
β -Zr(acac) ₄ C2/c	21,662(2), 8,360(1), 14,107(1)	90, 116,708(6), 90	1,419	4	570,50	2,18—2,2075,6	[28]
Hf(dpm) ₄ Pc	22,6606(5), 11,3990(4), 19,8513(7)	90, 106,458(1), 90	1,231	4	1229,41	2,10—2,22 76,4	10,07×2; 11,40×2; 12,39×2; 13,01—13,87×6
$Zr(dpm)_4$ Pc	22,537(3), 11,2268(10), 19,644(2)	90, 105,915(3), 90	1,150	4	1194,94	2,11—2,28 74,1	9,96×2; 11,23×2; 12,30—13,70×8
$Hf(dpm)_4$ P2/c	22,545(6), 11,275(3), 19,763(5)	90, 106,550(7), 90	1,257	4	1204		[26]
$Zr(dpm)_4 (Zr1)$ P2/c	12,086(7), 19,33(4), 21,135(8)	97,71(10), 90,38(4), 105,79(18)	1,137	4	1204		[26]
$Zr(dpm)_4 (Zr2)$ P-1	22,545(6), 11,275(3), 19,763(5)	90, 106,550(7), 90	1,164	4	1175		[26]
Hf(tfac) ₄ P-1	8,1039(12), 11,4499(14), 15,790(2)	99,341(4), 103,175(4), 108,185(4)	2,003	2	655,72	2,15—2,19 75,4	8,10×2; 8,20×1; 8,27×1; 11,17—11,18×4
$Zr(tfac)_4$ C2/c	21,5063(15), 7,9511(5), 16,0510(10)	90, 113,736(4), 90	1,860	4	628,13	2,17—2,21 75,4	7,95×2; 8,03×2; 11,12—11,47×2
Hf(ptac) ₄ Cc	19,913(3), 11,8764(18), 16,530(3)	90, 95,538(2), 90	1,637	4	972,70	2,14—2,19 75,2	9,00×2; 11,59—11,88×6
$Zr(ptac)_4$ Cc	19,9842(6), 11,8417(3), 16,4831(5)	90, 95,288(1), 90	1,491	4	971,02	2,16—2,19 74,7	8,97×2; 11.62—11.84×8
$Hf_2(OH)_2(hfac)_6$ $P2_1/c$	12,957(3), 16,687(3), 12,398(3)	90, 108,97, 90	2,137	2	1267,55	2,12—2,23 74.8	10,39×4; 12,40×2; 12 96×2
α -Zr(hfac) ₄ P2 ₁ /n	11,974(4), 20,451(6), 13,140(3)	90, 104,49(1), 90	1,960	4	778,9	2,14—2,22 75,9	[23]
β -Zr(hfac) ₄ $P2_1/c$	15,3533(13), 20,2613(15), 19,6984(17)	90, 95,828(2), 90	2,004	8	762,00	2,14—2,22 76,2	8,40×1; 9,03×2; 10,16—11,70×7
Hf(dpm) ₃ Cl <i>P</i> -1	10,638(1), 10,670(1), 19,440(2)	74,970(3), 75,672(3), 61,725(2)	1,366	2	928,27	2,09—2,18 76,4	9,24×1; 10,51×1; 10,64—10,93×6
$Hf(dpm)_3Cl$ $P2_1/m$	10,5328(14), 17,9618(11), 10,8268(14)	90, 117,31(1), 90	1,375	2	910,05	2,11—2,12 76,7	[24]
$Zr(dpm)_{3}Cl$ $P2_{1}/m$	10,6883(6), 18,270(2), 10,9819(7)	90, 117,706(5), 90	1,183	2	949,25	2,11—2,14 76,4	[25]

Основные кристаллохимические характеристики β*-дикетонатов гафния*(IV) и циркония(IV)

вдоль различных основных направлений (рис. 3). Расстояния между центрами молекул меняются в зависимости от природы и разветвленности лиганда (от 7 до 13 Å) и возрастают в следующем ряду (см. табл. 2):

 $Hf(acac)_4 \approx M(tfac)_4 < Zr(hfac)_4 \approx M(ptac)_4 < M(dpm)_4 < Hf_2(OH)_2(hfac)_6.$

Рис. 2. Структуры молекул комплексов $Hf(ptac)_4(a), Hf_2(OH)_2(hfac)_6(\delta), Hf(dpm)_3Cl(6)$ и координационный полиэдр гафния(IV) в тетракомплексах (*г*)

Рис. 3. Упаковка молекул в структуре комплекса Hf(ptac)₄ перпендикулярно оси Z

В работе [23] также описана структура комплекса Zr(hfac)₄, кристаллизующегося в моноклинной сингонии с пространственной группой $P2_1/n$. В ячейке одна кристаллографически независимая молекула. Теоретические дифрактограммы, рассчитанные по монокристальным данным для этого соединения и комплекса Zr(hfac)₄, полученного нами [15], отличались, хотя синтезированный нами хелат также кристаллизуется в моноклинной сингонии с пространственной группой $P2_1/c$ и с параметрами элементарной ячейки, приведенными в табл. 2. В элементарной ячейке исследованного нами соединения [15] две кристаллографически независимые молекулы. Можно считать, что для комплекса Zr(hfac)₄ получены две модификации: исследованную ранее мы обозначили α [23], полученную нами — β [15]. В комплексе β -Zr(hfac)₄ связи Zr—O лежат в интервале 2,141—2,225 Å и их среднее значение — 2,176 Å совпадает со средним значением для исследованной ранее α -модификации — 2,175 Å, среднее значение хелатных валентных углов O—Zr—O в комплексе β -Zr(hfac)₄ больше такового в α -Zr(hfac)₄ на 0,3°.

В работах [24] и [25] описаны кристаллические структуры комплексов $Hf(dpm)_3Cl$ и $Zr(dpm)_3Cl$ соответственно. Оба комплекса принадлежат моноклинной сингонии с пространственной группой $P2_1/m$; значение связей Hf—Cl и Zr—Cl составляет 2,482(2) и 2,495(1) Å соответственно. Анализ представленных данных показал, что соединения изоструктурны. Однако теоретические дифрактограммы изоформульных единиц $Hf(dpm)_3Cl$, полученного нами [16] и описанного в литературе [24], а также $Zr(dpm)_3Cl$ [25], свидетельствуют об их отличии. Следует отметить, что кристаллы обоих соединений, описанных в [24, 25], получены перекристаллизацией из петролейного эфира, в то время как нами [16] кристаллы комплекса $Hf(dpm)_3Cl$ были выращены медленной сублимацией, что, вероятно, и объясняет различие в кристаллизации.

В работе [26] также опубликованы данные по синтезу и рентгеноструктурному исследованию дипивалоилметанатов гафния(IV) и циркония(IV), приведены кристаллохимические данные для двух полиморфных модификаций Zr(dpm)₄ (Zr1 и Zr2), первая из которых изоструктурна Hf(dpm)₄ и кристаллизуется в моноклинной сингонии (P2/c), а вторая — в триклинной (P-1). Однако, несмотря на значение R-фактора, равное 0,076 для Hf(dpm)₄, 0,083 для Zr(dpm)₄ (Zr1) и 0,082 для Zr(dpm)₄ (Zr2), в структурах, так же как у нас, сохраняется разупорядоченность углеродных атомов лигандов. Кристаллографические характеристики (см. табл. 2), интервалы длин связей (Hf—O 2,109—2,183 Å, Zr—O 2,127—2,197 Å) и расстояний между молекулами (Hf…Hf 10,02—13,79 Å, Zr…Zr 10,02—13,80 Å) для принадлежащих моноклинной сингонии M(dpm)₄ [26] имеют близкие с полученными нами значения (см. табл. 2).

В работе [27] описана кристаллическая структура комплекса β-Zr(acac)₄ (позже эта структура была уточнена В. Клеггом [28]) и приведены кристаллографические данные для изоструктурного ему соединения гафния(IV) β-модификации. Полученные нами [12] параметры элементарной ячейки для Hf(acac)₄ свидетельствуют о том, что исследуемый хелат является β-модификацией Hf(acac)₄. Изоструктурность соединений циркония(IV) и гафния(IV) сохраняется и для комплексов с пивалоилтрифторацетоном (см. табл. 2) [14, 15]. Для комплексов с трифторацетилацетоном наблюдается повышение симметрии при замене гафния на цирконий — триклинная сингония меняется на моноклинную [12, 15].

ЗАКЛЮЧЕНИЕ

В настоящей работе описан ряд β -дикетонатных 7- и 8-координированных производных гафния(IV) и циркония(IV). Сравнение рентгеноструктурных данных, полученных нами [12—17] и представленных в литературе [23—26, 28], показало, что практически все комплексы гафния(IV) и циркония(IV) с идентичными лигандами изоструктурны. В некоторых случаях наблюдается повышение симметрии при замене центрального атома с гафния на цирконий, а также варьировании условий кристаллизации — триклинная сингония меняется на моноклинную. Также показано, что введение CF₃- или *трет*-бутильных групп в концевые заместители лиганда или замена одного лиганда на хлор не влияет значительным образом на основные геомерические характеристики лигандов комплексов.

Авторы выражают благодарность к.ф.-м.н. Л.А. Шелудяковой и Н.И. Алферовой, к.х.н. П.П. Семянникову, к.х.н. И.А. Байдиной и к.х.н. Н.В. Куратьевой за проведенные ИК спектроскопическое, масс-спектрометрическое и рентгеноструктурное исследования соответственно.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cho M.-H., Roh Y.S., Whang C.N. et al. // Appl. Phys. Lett. 2002. 81, N 3. P. 472.
- 2. Renault O., Samour D., Damlencourt J.-F. et al. // Appl. Phys. Lett. 2002. 81, N 19. P. 3627.
- 3. Sha L., Puthenkovilakam R., Lin Y.-S., Chang J.P. // J. Vac. Sci. Technol. B. 2003. 21, N 6. P. 2420.
- 4. *Кузнецов* Ф.А., *Смирнова Т.П., Игуменов И.К. и др.* // Материалы электронной техники. 2007. № 4. С. 54.
- 5. Яковкина Л.В., Кичай В.Н., Смирнова Т.П. // Неорган. материалы. 2005. № 12. С. 1.
- 6. Smirnova T.P., Yakovkina L.V., Kitchai V.N. et al. // J. Phys. Chem. Solids. 2008. 69, N 2-3. P. 685.
- 7. Ayupov B., Zherikova K., Gelfond N., Morozova N. // Phys. Status Solidi A. 2009. 206, N 2. P. 281.
- 8. Smirnova T.P., Lebedev M.S., Morozova N.B. et al. // Chem. Vap. Deposition. 2010. 16. P. 185.
- 9. Sysoev S.V., Cheremisina T.N., Zelenina L.N. et al. // J. Therm. Anal. Calorim. 2010. 101, N 1. P. 41.
- 10. Morozova N.B., Zherikova K.V., Baidina I.A. et al. // J. Phys. Chem. Solids. 2008. 69, N 2-3. P. 673.
- 11. Zherikova K.V., Morozova N.B., Zelenina L.N. et al. // J. Therm. Anal. Calorim. 2008. 92, N 3. P. 729.
- 12. Жерикова К.В., Морозова Н.Б., Куратьева Н.В. и др. // Журн. структур. химии. 2005. **46**, № 6. С. 1081.
- 13. Жерикова К.В., Морозова Н.Б., Байдина И.А. и др. // Журн. структур. химии. 2006. 47, № 1. С. 87.
- 14. Жерикова К.В., Морозова Н.Б., Пересыпкина Е.В. и др. // Журн. структур. химии. 2006. **47**, № 3. С. 581.
- 15. Жерикова К.В., Морозова Н.Б., Куратьева Н.В. и др. // Журн. структур. химии. 2007. **48**, № 3. С. 539.
- 16. *Жерикова К.В., Байдина И.А., Морозова Н.Б. и др. //* Журн. структур. химии. 2008. **49**, № 6. С. 1137.
- Morozova N.B., Zherikova K.V., Baidina I.A. et al. In: Proc. 20-th International Conference on Coordination and Bioinorganic Chemistry / Eds. M. Melnik, J. Sima, M. Tatarko. – Bratislava, Slovakia: Slovak Technical University Press, 2005. – 7. – P. 246 – 253.
- 18. *Bruker* AXS Inc. (2004). APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
- 19. Sheldrick G.M. // Acta Crystallogr. 2008. A64, N1. P. 112 122.
- Zherikova K.V., Morozova N.B., Gelfond N.V. et al. In: Proc. 15-th International European Conference on Chemical Vapor Deposition (EUROCVD-15) / Eds. A. Devi, R. Fischer, H. Parala, M.D. Allendorf, M.L. Hitchman. – NJ, USA: Electrochemical Society, 2005. – 2005-09. – P. 675 – 682.
- 21. Chattoraj Sh.C., Lynch C.T., Mazdiyasni K.S. // Inorg. Chem. 1968. 7, N 12. P. 2501.
- 22. *Морозова Н.Б.* Синтез и физико-химические свойства β-дикетонатов Ru(III), Zr(IV), Fe(III), Y(III). Дис. ... канд. хим. наук. – Новосибирск: ИНХ СО РАН, 1996.
- 23. Calderazzo F., Englert U., Maichle-Mössmer C. et al. // Inorg. Chim. Acta. 1998. 270, N 1-2. P. 177.
- 24. Hubert-Pfalzgraf L.G., Touati N., Pasko S.V. et al. // Polyhedron. 2005. 24. P. 3066.
- 25. Jardin M., Gao Y., Guery J., Jacoboni C. // Acta Cryst., Sect. C. 1995. C51. P. 2230.
- 26. Spijksma G.I., Bouwmeester H.J.M., Blank D.H.A. et al. // Inorg. Chem. 2006. 45, N 13. P. 4938.
- 27. Allard B. // J. Inorg. Nucl. Chem. 1976. 38. P. 2109.
- 28. Clegg W. // Acta Crystallogr. 1987. C43. P. 789.