2011. Том 52, № 1

Январь – февраль

C. 223 – 227

КРАТКИЕ СООБЩЕНИЯ

УДК 548.736:546.27:535.37

КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА 2,2-ДИФТОР-4-(9Н-ФЛУОРЕН-2-ИЛ)-6-МЕТИЛ-1,3,2-ДИОКСАБОРИНА

© 2011 Б.В. Буквецкий*, Е.В. Федоренко, А.Г. Мирочник

Институт химии Дальневосточного отделения РАН

Статья поступила 28 марта 2010 г.

Определена кристаллическая структура 2,2-дифтор-4-(9Н-флуорен-2-ил)-6-метил-1,3,2диоксаборина (C₁₃H₉COCHCOCH₃BF₂) (1). Проведено сопоставление структурных и спектрально-люминесцентных характеристик 1 и его электронного аналога — 2,2-дифтор-4-(4-фенилфенил)-6-метил-1,3,2-диоксаборина (C₆H₅C₆H₄COCHCOCH₃BF₂).

Ключевые слова: β-дикетонаты дифторида бора, 2,2-дифтор-4-(9H-флуорен-2ил)-6-метил-1,3,2-диоксаборин, кристаллическая структура, люминесценция.

Влияние стерического фактора на спектральные свойства давно привлекает внимание исследователей [1,2]. Для β -дикетонатов дифторида бора, имеющих в своем составе сложные α -заместители, влияние стерического фактора подразумевает под собой несколько аспектов: 1) возможность вращения α -заместителя в растворе и газовой фазе; 2) способность к образованию эксимеров и эксиплексов в концентрированных растворах; 3) особенности кристаллического строения.

В настоящей работе проведено сравнительное исследование спектральных свойств и кристаллического строения двух представителей класса ярко люминесцирующих соединений β-дикетонатов дифторида бора [3,4], имеющих одинаковую π-систему: 2,2-дифтор-4-(9Hфлуорен-2-ил)-6-метил-1,3,2-диоксаборина (1), атомная структура кристаллов которого представляется в работе, и 2,2-дифтор-4-(4-фенилфенил)-6-метил-1,3,2-диоксаборина (C₆H₅C₆H₄COCHCOCH₃BF₂) (2) (схема 1), структура кристаллов которого описана в работе [5].

Экспериментальная часть. Соединение 1 получали методом двойного ацилирования флуорена (схема 2). Раствор 41,5 г флуорена в 150 мл уксусного ангидрида при интенсивном перемешивании насыщали газообразным трехфтористым бором, поддерживая температуру реакционной смеси ниже 60 °C. Цвет реакционной смеси становился желтым, затем коричневым, после чего смесь быстро закристаллизовывалась. Осадок промывали на фильтре сначала уксусной кислотой, затем водой. Перекристаллизацию проводили из тетрагидрофурана и хлористого метилена. Выход 40,2 г (54,0 %), T_{nn} 260 °C.

^{*} E-mail: gev@ich.dvo.ru

Соединение 2 синтезировали аналогично 1 по методике, приведенной в работе [6].

Спектры люминесценции при 300 К регистрировались на спектрометрах СДЛ-1 ($\lambda_{B036} = 365$ нм); Shimadzu-RF5301. Кинетику затухания люминесценции измеряли на лазерном пикосекундном спектрофлуориметре FluoTime 200 (PicoQuant).

Полное рентгеноструктурное исследование проведено в системе SMART-1000 ССД фирмы Bruker при температуре 293(2) К. Сбор экспериментальных данных с кристаллов проведен тремя группами по 906 кадров при значениях углов $\phi = 0, 90$ и 180°, ω -сканированием с шагом $0,2^{\circ}$ и экспозицией по 20 с на каждый кадр. Редактирование данных, уточнение параметров элементарной ячейки и пересчет интегральных интенсивностей в структурные амплитуды проведены по программам [7]. Структура определена прямым методом с последующим уточнением позиционных и тепловых параметров в анизотропном приближении для всех неводородных атомов по программам [8]. Положения атомов водорода хорошо определялись на синтезах электронной плотности, однако принципиальной новизны не внесли, и для дальнейшей работы использовались позиции Н, рассчитанные и уточненные по модели "наездника". Кристаллографическая информация депонирована в Кембриджский банк структурных данных под номером ССDС 751758, откуда может быть получена по запросу на следующем интернет-сайте: www.ccdc.cam.ac.uk/data request/cif. Основные кристаллографические параметры исследуемых образцов, характеристики рентгеновского дифракционного эксперимента и детали уточнения модели структуры методом наименьших квадратов приведены в табл. 1, межатомные расстояния — в табл. 2. Строение молекулы 1 и расположение соседних молекул в стопке приведены на рис. 1 и 2 соответственно.

Результаты и их обсуждение. Основу структуры кристаллов исследуемого соединения составляют обособленные молекулы 1 (см. рис. 1). Кристаллографически независимая молекула, размноженная ближайшим центром симметрии и трансляцией в направлении [100], выстраивает бесконечные в направлении кристаллографической оси a стопки параллельно ориентированных молекул. Размноженная плоскостью скользящего отражения c такая стопка параллельна исходной, а плоскости молекул в ней ориентированы относительно исходных под углом 46,13(0,02)°. Таким образом, в 1 имеет место паркетно-стопочная упаковка молекул (см. рис. 2).

В молекуле 1 связи С—О и С—С хелатного кольца попарно выровнены, длины связей соответствуют полуторным связям (см. табл. 2), что указывает на сильное π-сопряжение в хелатном кольце и позволяет рассматривать его как квазиароматическое. В отличие от молекулы со-

единения 2, где плоскости первого и второго фенильных колец находятся под углом 23,85° [5], а плоскости второго фенильного и хелатного колец — под углом 9,09°, молекула 1 является плоской. Метиленовый мостик, соединяющий фенильные кольца в молекуле 1 (см. рис. 1), приводит к усилению π — π -взаимодействия между ними по сравнению с 2. С точки зрения строения молекулы это проявляется в уменьшении длины связи С—С между фенильными кольцами.

Рис. 1. Молекулярное строение соединения 1

225

Параметр	Значение						
Эмпирическая формула	$C_{17}H_{15}BF_2O_2$						
Молекулярная масса	298,08						
Длина волны, Å	0,71073						
Пространственная группа	P2(1)/c						
<i>a, b, c,</i> Å	7,728(1), 13,627(2), 13,364 (2)						
β, град.	94,438(4)						
$V, Å^3, Z$	1403,1(4), 4						
$ρ_{\rm выч}, r/cm^3$	1,411						
μ , mm ⁻¹	0,108						
F(000)	616						
Размеры кристалла, мм	$0,18 \times 0,10 \times 0,05$						
Область сбора данных по θ , град.	2,14—21,71						
Интервалы индексов отражений	$-8 \le h \le 8, -14 \le k \le 14, -13 \le l \le 13$						
Измерено отражений	7504						
Независимых отражений	1644 [R(int) = 0,0323]						
Комплектность, %	99,5						
Метод уточнения	МНК по F^2						
S	1,069						
R -факторы по $I > 2\sigma(I)$	$R1 = 0,0364, \ wR2 = 0,0782$						
<i>R</i> -факторы по всем отражениям	R1 = 0,0605, wR2 = 0,0937						
Коэффициент экстинкции	0,0005(8)						
Остаточная электронная плотность (max/min), e/Å ⁻³	0,210 / -0,130						

Кристаллографические данные, характеристики дифракционного эксперимента и параметры уточнения структуры соединения 1

В молекуле 2 для фенильных колец, находящихся под углом друг другу, длина связи между ними составляет 1,488(2) Å, а связь C(7)—C(10) между фенильными кольцами, лежащими в одной плоскости — 1,474(4) Å. Молекулы 1 и 2 имеют одинаковую π -систему (являются электронными аналогами) (см. схему 1), но усиление сопряжения между фенильными кольцами и невозможность вращения фенильных колец относительно связи C(7)—C(10) в молекуле 1 приводит к понижению энергии ВЗМО и НСМО и, как следствие, к батохромному сдвигу спектров поглощения (рис. 3) и люминесценции разбавленных растворов 1 относительно 2 (рис. 4). При повышении концентрации растворов 1 и 2 до $C = 10^{-3}$ моль/л (насыщенный раствор 1 и 2

Таблица 2

Связь	d	Связь	d	Связь	d	Связь	d
B(1) - F(1)	1,365(4)	C(4) - C(3)	1,464(4)	C(8) - C(9)	1,385(3)	C(10)-C(11)	1,390(4)
B(1) - F(2)	1,363(4)	C(4)—C(5)	1,392(3)	C(8)—C(7)	1,396(3)	C(15)—C(14)	1,372(4)
B(1)—O(1)	1,470(4)	C(4)—C(9)	1,394(3)	C(8)—C(16)	1,498(3)	C(15)—C(16)	1,518(4)
B(1)—O(2)	1,470(4)	C(2)—C(1)	1,369(4)	C(7)—C(10)	1,474(4)	C(13)—C(14)	1,370(4)
O(1)—C(1)	1,295(3)	C(6)—C(7)	1,371(3)	C(1)—C(17)	1,487(4)	C(13)—C(12)	1,378(4)
O(2)—C(3)	1,303(3)	C(6)—C(5)	1,382(4)	C(10)—C(15)	1,387(4)	C(11)—C(12)	1,389(4)
C(3)—C(2)	1,373(3)						

Длины связей d (Å) соединения 1

Рис. 2. Стопочный фрагмент в кристалле 1. На вставке показаны типы перекрывания молекул

в дихлорметане) происходит батохромное смещение спектра люминесценции, и кинетика затухания люминесценции становится двухэкспоненциальной, что характерно для образования эксимеров [9]. Время жизни люминесценции одиночных молекул 1 составляет 1,8 нс, эксимеров — 2,8 нс.

Стопочный мотив соединения 1 представлен на рис. 2. В стопке наблюдаются два типа перекрывания (типы перекрывания показаны на вставке рис. 2), межплоскостные расстояния в обоих случаях

3,52 Å. В случае I (см. рис. 2) перекрывание π -систем соседних молекул практически отсутствует, поэтому из набора стекинг-взаимодействий реализуется взаимодействие С-Н... В случае II (см. рис. 2) наблюдаются и π — π -, и С—H... π -взаимодействия, что в совокупности с межплоскостным расстоянием 3.52 Å способствуют формированию предэксимерных мест в кристаллах 1. Основные условия формирования эксимеров (фотовозбужденных димеров) в кристаллах: расстояние между соседними молекулами 3,4—3,6 Å, компланарное расположение и перекрывание π -систем соседних молекул [10]. Как и в случае других компланарных β -дикетонатов дифторида бора, имеющих эффективное *п*—*п*-перекрывание соседних молекул в кристаллах [11-13], люминесценция кристаллов 1 является эксимерной. Действительно, эксимерная флуоресценция обнаружена уже в растворах при $C = 10^{-3}$ моль/л, спектр люминесценции батохромно смещен относительно спектра разбавленного раствора (разница между максимумами 100 нм) (см. рис. 4), время жизни эксимерной флуоресценции в насыщенном растворе и в кристалле (2,8 и 2,6 нс соответственно). Батохромное смещение флуоресценции кристаллов 1 относительно 2 (см. рис. 4), вероятно, обусловлено более эффективным перекрыванием π-систем компланарных (в отличие от 2) соседних молекул 1 в кристалле, что приводит к понижению энергии эксимера, и совместно с понижением энергии ВЗМО и НСМО отдельных молекул 1 относительно 2 приводит к батохромному смещению максимума спектра люминесценции кристаллов 1 относительно 2.

Рис. 3. Спектры поглощения в дихлорметане для соединений 1 и 2

Рис. 4. Спектры люминесценции: 1 и 2 для растворов соединений 1 и 2 в дихлорметане с $C = 10^{-4}$ моль/л соответственно; 3 и 4 — с $C = 10^{-3}$ моль/л; 5 и 6 — для кристаллов 1 и 2 соответственно

Таким образом, РСА исследование показало, что введение метиленового мостика между фенильными кольцами при переходе от дифенильного α -заместителя β -дикетонатого цикла к флуореновому приводит к выравниванию молекулы хелата дифторида бора и, как следствие, к: 1) понижению энергии ВЗМО и НСМО 1 по сравнению с 2 и батохромному сдвигу спектров поглощения и люминесценции одиночных молекул; 2) более эффективному перекрыванию π -систем близлежащих молекул 1 в возбужденном состоянии (образованию эксимеров) в кристалле, что совместно с понижением энергии ВЗМО и НСМО 1 приводит к батохромному смещению максимума спектра люминесценции кристаллов 1 относительно 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Haucke G., Czerney P., Ilge H.-D. et al. // J. Mol. Struct. 1990. 219. P. 411.
- 2. *Аверьянов Е.М.* Стерические эффекты заместителей и мезоморфизм. Новосибирск: Изд-во СО РАН, 2004.
- 3. Gerasova A.O., Mykola P. et al. // Dyes Pigments. 2008. 79, N 3. P. 252.
- 4. Maticha J.D., Hale J.M., Ohir S. et al. // Chemphyschem. 2010. 11, N 1. P. 130.
- 5. *Буквецкий Б.В., Федоренко Е.В., Мирочник А.Г. //* Журн. структур. химии. 2010. **51**, N 4. С. 812 815.
- 6. Реутов В.А., Гухман Е.В. // Журн. общ. химии. 1999. 69, № 10. С. 1672.
- 7. *Bruker* (1998), SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.
- 8. *Sheldrick G.M.* (1998), SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.
- 9. Gordon M., Ware W.R. (Ed.) The exciplex. New York, San Francisco, London: Academic Press Inc., 1975.
- 10. Барашков Н.Н., Сахно Т.В., Нурмухаметов Р.Н., Хахель О.А. // Успехи химии. 1993. **62**, № 6. С. 579.
- 11. Gorlitz G., Hartmann H., Kossanyi J. et al. // Ber. Bunsenges. Phys. Chem. 1998. 102, N 10. P. 1449 1458.
- 12. Mirochnik A.G., Fedorenko E.V., Kaidalova T.A. et al. // J. Lumines. 2008. 128, N 11. P. 1799.
- 13. Fedorenko E.V., Bukvetskii B.V., Mirochnik A.G. et al. // J. Lumines. 2010. 130, N 5. P. 756.