УДК 550.42 DOI: 10.15372/KhUR2022387 EDN: BJEEKR

Геохимия дренажного стока горнопромышленных объектов Орловского танталового месторождения (Забайкальский край)

В. А. АБРАМОВА, Л. В. ЗАМАНА

Институт природных ресурсов, экологии и криологии СО РАН, Чита (Россия)

E-mail: vera_abramova79@mail.ru

(Поступила 20.04.21; после доработки 22.03.22)

Аннотация

Представлены результаты гидрогеохимических исследований дренажных вод горнопромышленных объектов (отвалы, карьеры, хвостохранилище) Орловского танталового месторождения (Забайкальский край). Установлено, что дренажные воды из-под отвалов вскрышных пород и из шпуровых скважин характеризуются кислыми и слабокислыми реакциями среды и высокой минерализацией (до 4232 мг/л). По химическому составу эти воды преимущественно сульфатные с аномально высокими концентрациями алюминия, фтора, халько- и сидерофильных элементов. Воды хвостохранилища отличаются нейтральными и слабощелочными реакциями среды, повышенным содержанием вольфрама и мышьяка. Согласно термодинамическим расчетам основных форм миграции элементов в дренажных водах показано, что для большинства металлов характерно преобладание простых катионных форм, вторыми по значимости являются сульфатные и фторидные комплексы. Определено, что средние значения концентраций Mn, Al, Be, Zn, Fe, Li, Co, Ni, Cu, W, F^- и SO²⁻₄ существенно превышают нормативы предельно допустимых концентраций для водных объектов рыбохозяйственного, хозяйственно-питьевого и культурно-бытового водопользования, что связано как с составом руд и вмещающих пород данного месторождения, так и с техногенной деятельностью.

Ключевые слова: рудные месторождения, дренажный сток, кислые воды, формы миграции, техногенные ландшафты

введение

Проблеме негативного воздействия дренажных вод рудных месторождений на окружающую среду в последние десятилетия уделяется значительное внимание. Основной интерес связан с экологическими проблемами, вызванными деятельностью как работающих горнодобывающих предприятий, так и выведенных из эксплуатации рудников. Гипергенные процессы, происходящие в складируемых после отработки месторождений отходах горнорудной промышленности – отвалах вскрышных и вмещающих пород, карьерах, хвостохранилищах – способствуют формированию дренажных вод с высокими концентрациями металлов и других токсичных элементов [1-8]. Их вынос дренажными стоками с отвалов и хвостохранилищ приводит к активной водной миграции на большие расстояния и образованию техногенных гидрогеохимических аномалий, существенно отличающихся от природных по своим физико-химическим показателям [9-14]. Для предотвращения и минимизации негативных последствий активно продолжают развиваться комплексные геохимические и геофизические методы изучения химического состава природных вод и их трансформации в горнодобывающих районах, в частности, механизмов и форм миграции химических элементов в дренажном стоке [15-19], прогнозной оценки дренажных потоков из отвальных пород и характера их распространения [20-22], а также методы создания искусственных геохимических барьеров в целях очистки загрязненных вод и концентрирования полезных компонентов [23-27].

Цель настоящего исследования — изучение физико-химических характеристик дренажных вод горнопромышленных объектов Орловского танталового месторождения, а также выявление особенностей водной миграции химических компонентов в этих водах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объект исследования

Орловское танталовое месторождение находится в Агинском районе Забайкальского края в 180 км к юго-востоку от г. Читы. Месторождение локализовано в приводораздельной части среднегорного массива в лесостепной зоне. Климат территории резко континентальный, со средней годовой суммой атмосферных осадков около 350 мм и распространением многолетней мерзлоты островного типа.

По металлогеническому районированию Орловское месторождение относится к Центральной металлогенической зоне редкометалльно-оловянно-вольфрамового рудного пояса Восточного Забайкалья, выделенного С. С. Смирновым [28]. В структурно-тектоническом плане оно находится в Средне-Ононском брахисинклинории Агинской структурно-формационной зоны палеозоя. Возраст редкометалльных гранитов, с которыми генетически связаны танталоносные граниты кукульбейского интрузивного комплекса, – верхнеюрский (J₃). Месторождение приурочено к апикальной части Хуху-Челотуйского штока гранитоидов в западной части Хангилайского гранитного массива [28]. Площадь выхода Хуху-Челотуйского штока на дневную поверхность составляет 1.7 км². Рудоносными являются амазонит-альбитовые граниты с Li, Ta-Nb оруденением в приконтактовой зоне с вмещающими интрузию песчано-сланцевыми породами триаса. Промышленная часть рудной зоны прослежена по простиранию на 800 м, по падению - на 200-500 м, мощность ее 36-85 м, с глубиной и удалением от контакта содержание тантала уменьшается и в граните исчезает [29].

Минералы рудной зоны представлены альбитом (Na(AlSi₃O₈)), танталит-колумбитом ((Fe,Mn)(Nb,Ta)₂O₆), микролитом (NaCaTa₂O₆F), амазонитом ((K,Na)AlSi₃O₈), кварцем (SiO₂), топазом $(Al_2(SiO_4)(F,OH)_2)$, вольфрамитом $((Fe,Mn)WO_4)$, монацитом $((Ce,La,Nd,Th)(PO_4))$, флюоритом (CaF_2) , пиритом (FeS_2) , сфалеритом (ZnS), цирконом $(ZrSiO_4)$, оксидами железа и марганца $(FeO_2, Fe_3O_4, Fe_2O_3, MnO_2)$ [29]. Тантал связан с микролита $(72-80 \text{ мас. }\% \text{ Ta}_2O_5)$ находится в пределах 40-280 г/т, танталита-колумбита – 165-777 г/т. Среднее содержание Ta_2O_5 по месторождению составляет 0.14 мас. % [30].

Добыча танталового сырья на Орловском месторождении началась в 1962 г. открытым (карьерным) способом и длилась около сорока лет (рис. 1) [30]. Орловский горно-обогатительный комбинат (ГОК), построенный для отработки и обогащения редкометалльных руд (рис. 2, *a*), одновременно отрабатывал два месторождения -Орловское танталовое и расположенное рядом Спокойнинское вольфрамовое (действующее в настоящее время) (см. рис. 1). Сброс хвостов обогащения вольфрамовых и танталовых руд производился в одно хвостохранилище (см. рис. 2, б). Поэтому распределение химических элементов, происходящих из руд Орловского (тантал, ниобий, литий, бериллий) и Спокойнинского (вольфрам, литий, бериллий, ниобий) месторождений, неизвестно [31]. В настоящее время Орловский рудник законсервирован. На территории, прилегающей к руднику, кроме хвостохранилища находится заброшенный карьер (см. рис. 2, в) и отвалы пустых пород (см. рис. 2, г, д). Недалеко от них располагаются горнорудные поселки Новоорловск и Орловский (см. рис. 1). Рекультивация нарушенных территорий не проводилась. Хвостохранилище Орловского ГОКа продолжает заполняться пульпой переработки руд Спокойнинского вольфрамового месторождения, главными рудными минералами которого являются вольфрамит, берилл, бисмутит, касситерит и танталониобаты. Следует отметить, что в районе Спокойнинского месторождения развиты преимущественно околонейтральные и слабощелочные воды с аномальными концентрациями железа – до 4.63, марганца – 5.70, вольфрама – 1.54 и урана – 1.86 мг/л. Более детальная характеристика гидрогеохимического поля Спокойнинского месторождения приведена в [14].

По нашим данным, площадь хвостохранилища Орловского ГОКа в настоящее время составляет около 0.049 км², глубина его водоема в центральной зоне достигает 3.6 м, прозрачность – 0.6 м. В сухие и ветреные периоды с сухой обезвоженной части хвостохранилища наблюдается миграция вещества (песка) в форме

Рис. 1. Схема гидрогеохимического опробования горнопромышленных объектов Орловского месторождения. Номера проб 1-24 соответствуют шифрам, представленным в табл. 1 и 2.

пыли на прилегающую территорию и близлежащие поселки.

Подсчитано, что за период с 1983 по 2001 гг. в хвостохранилище Орловского ГОКа накоплено 8180 тыс. т переработанной рудной массы, содержащей различное количество химических элементов, т: лития — 1497, тантала — 164, ниобия — 368; бериллия — 786, скандия — 1153, вольфрама — 5186 [31]. По данным [30], в недрах Орловского месторождения осталось 28 млн т руды.

Методы исследования

Гидрогеохимическое опробование техногеннонарушенных участков на исследуемой территории выполнено с 2015 по 2021 гг. (см. рис. 1). За данный период в ходе экспедиционных исследований было отобрано 24 пробы воды. Объектами опробования послужили дренажные стоки из-под отвалов, пруд-отстойник хвостохранилища и шпуровые скважины, пробуренные для производства взрывных работ в период разработки Орловского месторождения.

Пробы воды отбирали в новые полиэтиленовые бутылки емкостью 1.5 л. На точках отбора проб измеряли температуру воды (T, °C), ее кислотность (pH) и окислительно-восстановительный потенциал (Eh). Для атомно-абсорбционного анализа пробы воды фильтровали через бумажный фильтр с диаметром пор 2-3 мкм в пластиковые стаканы объемом 100 мл и консервировали концентрированной азотной кислотой (квалификация "ос. ч.") до рН 2. Для анализа методом масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS) пробы воды, также предварительно отфильтрованные через мембранный фильтр с диаметром пор 0.45 мкм, отбирали в пластиковые пробирки (15 мл) и консервировали аналогичным образом.

Химико-аналитические исследования проб воды на макрокомпоненты и некоторые микроэлементы проведены по нормативным методикам в аттестованной лаборатории геоэкологии и

Рис. 2. Горнопромышленные объекты Орловского месторождения (внешний вид): *a* – обогатительная фабрика; б – хвостохранилище; *в* – карьер; *г*, *д* – отвалы; *е* – шпуровые скважины.

гидрогеохимии Института природных ресурсов, экологии и криологии СО РАН (Чита). Анализ методом ICP-MS выполнен в аналитическом центре Института геохимии им. А. П. Виноградова СО РАН (Иркутск).

Формы миграции химических элементов, а также степень насыщения дренажных вод по отношению к минералам рассчитаны с исполь-

зованием программного комплекса MINTEQ (версия 3.0) [32].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты химико-аналитического исследования проб воды представлены в табл. 1 и 2. Некоторые из них были опубликованы нами ра-

ТАБЛИЦА 1

Физико-химические параметры и состав дренажных вод горнопромышленных объектов Орловского месторождения по результатам атомно-абсорбционного анализа, м1/л

Параметр	Дрен	ажны	й сток	OTBAJ	OB											XBOC	roxpa	нилин	e II	TVDOBE	Ie CKBa	жины	
4	Номе	odu da	бы																				
		2	3	4	5	6	7	∞	9	10	11	12	13	14	15	16	17	18 19) 20	21	22	23	24
	Шиф	odn qo	бы																				
	06-15-1	OF-15-5	05-17-2	0P-17-3	₽-71-90	0P-17-5	9-71-90	7-71-90	0-11-дО	01-71-40	0P-18-1	OP-18-2	I-12-90	2-12-90	05-21-5	OF-15-3	0-12-4	OP-21-3	1-91-40	OF-16-2	8-71-90	₽-12-90	0P-21-6
T, °C	1.9	0.9	2	16.8	12.2	7.6	21	1.5	0.2	0.1	2.4	0.7	10.5	9.1	1.1	21	23.4	24 17	7.6 4.7	3.4	7.4	7.9	5.6
$_{ m pH}$	3.89	4.42	4.20	6.41	3.50	4.45	4.87	3.85	4.23	4.57	3.73	3.84	5.60	5.77	4.50	7.96	7.18	7.85 7.	80 4.0	6 3.5	0 3.7	1 4.30	4.92
Eh, MB	421	231	360	313	575	474	455	494	360	318	527	419	06	105	270	98	-87	1	72 520	3 465	5 44	0 262	257
ΠΟ, мг $\rm O_2/J$	1.54	7.93	1.28	10.2	2.56	1.68	1.52	1.56	3.92	4.6	I	I	46.3	30.6	17.6	6.16	7.49	21.8 2.	75 0.2	5 1.5	7 1.0	6 5.25	9.88
Содержание, мг/л:																							
co ₃	I	I	I	14.7	I	I	I	I	I	I	I	I	I	I	I	2.64	9.02	7.04 4.	49 –	Ι	Ι	Ι	I
HCO_{3}^{-}	Ι	Ι	I	20.7	I	I	I	I	I	I	I	I	I	Ι	I	162	226	214 16	- 99	Ι	Ι	Ι	Ι
${ m SO}_4^{2-5}$	1828	2808	1704	111	2832	568	279	785	1214	2124	2967	574	54	39	100	54.5	160	59.7 94	L2 12	55 248	8 20	6 363	326
Cl-	1.23	5.52	1.09	0.92	1.32	1.05	1.24	0.92	1.32	3.05	2.28	1.65	3.65	5.22	2.34	13.2	10.6	26.3 9.	83 4.1	1.7	4 1.3	2.08	4.43
- H	151	239	266	3.01	218	41.6	40.6	135	90.9	252	190	56.1	1.13	0.60	5.74	3.15	2.18	0.56 2.	51 10	1 .4 25	37	72.2	19
NO_2^{-}	I	I	0.012	0.74	0.013	0.009	0.013	0.018	0.018	0.011	0.014	0.016	<0.003	<0.003	< 0.003	I		- 0.	20 -	0.0	24 0.2	<0.0	03 <0.003
NO_3^-	16.7	56.5	22	0.72	2.2	3.54	6.06	10.1	24.6	56.3	21	2.15	1.46	1.56	1.63	2.25	0.84	16.3 9.	82 6.4	9 2.7	1 5.4	. 0.80	0.96
NH_4^+	I	I	12.5	0.64	4.75	0.32	1.32	4.5	1.2	5.5	I	0.50	0.96	1.30	0.82	I	· I	- 0	49 1.6	1 1.4	3 1.6	0.46	0.20
Ca^{2+}	553	802	234	28.3	142	109	29.8	160	332	366	301	40.8	11.2	11.5	21.8	31.3	49.8	32.0 4(.6 25	l 56.	3 39	.8 84.9	114
Mg^{2+}	215	339	115	6.65	162	29.2	21.7	18.7	54.3	171	166	25.9	2.42	2.74	5.70	13.2	36.8	12.2 9.	34 30.	3 7.6	1 6.6	61.8	21.8
Na^+	6.3	20.9	12.5	5.25	15	6.44	3.78	10.7	11.5	26.8	13.3	7.42	2.78	2.93	11.4	28.8	28.1	24.3 34	ł.9 12.	9 5.5	5 5.1	5 21.5	9.96
K^+	9.61	18.2	7.21	6.16	0.57	5.60	4.92	7.25	11.7	15.4	2.56	2.25	3.20	2.86	2.69	14.2	19.6	7.45 15	5.5 2.6	8 2.7	8 1.8	1 2.67	4.65
Σ ионов	2764	4232	2614	187	3885	830	433	1286	1847	3293	4095	802	06	85	152	321	533	406 38	33 16	357	7 34	8 628	504
Si	24.1	22.8	55.2	6.35	44	12.3	1.43	35.8	16.3	18.5	23.1	11.2	5.73	8.75	6.75	2.51	8.33	7.42 2.	74 32.	7 10.	5 15	.1 6.96	5.83
$\mathrm{P}_{\mathrm{obm}}$	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.11	0.15	0.05	0.08	0.14).63 0.	0.0 0.0	6 0.0	6 0.0	5 0.09	0.07
Примечан	ия. 1. I	- OL	терман	ганат	ная оки	CJIREMO	сть. 2.	Прочеј	эк обоз	начает	orcyre	ствие д	цанных.										

ГЕОХИМИЯ ДРЕНАЖНЫХ ВОД ОРЛОВСКОГО МЕСТОРОЖДЕНИЯ

2	
4	
Ц	
ų	
E	
rn	
7	
2	

Содержание элементов в дренажных водах по результатам анализа методом ICP-MS, мкг/л

Louis and T	L T																		TTT				
ттараметр	Aper	ажны	1 CTOK 01	BauloB											۲ 	BUCTUX	ранилит	 		o areao	КВАЖИНЕ		
	Home	ep npo6	, Idi																				
		2	co	4	5	9	7	8	6	10	11	12 1	13 1	4 1.	5 16	17	18	19	20	21	22	23	24
	Шиф	þp rīpoć)bI																				
	OF-15-1	OF-15-5	2-71-90	6-11-30	₽-71-90	g-71-90	9-71-90	7-71-90	6-71-90	01-71-90	1-81-40	7-81-40	05-21-2	9-16-90	OF-15-3	06-15-4	0E-15-6	0P-21-3	1-91-40	OP-16-2	8-71-90	₽-12-40	0F-21-6
Li	1068	2470	841	30	3740	420	370	870	920	1170	1429	417 1	10.1 1	8.9 3	6.5 11	3 71	26	79.1	723	159	220	351	111
Be	89	166	88.0	0.98	150	27.3	21.9	75.8	61.0	176	150	283 0).31 0	.34 2.	24 0.2	21 0.1	3 0.03	0.03	62	13.9	20.7	29.9	3.16
Al	191	251	187	1.83	535	52.1	34.4	105	71.2	238	84.8	68 1	0 60'1	.70 5.	.0 16	17 0.6	3 0.04	0.08	82.5	19.6	27.5	91	18.9
Cr	0.54	0.52	0.47	0.06	7.46	0.3	0.24	0.47	0.26	0.15	1.01	0.46 0	0.46 0	.88 0.	47 0.3	34 0.4	15 0.21	0.10	2.1	0.38	0.33	0.45	0.41
Mn	66.2	15.4	38.2	1.52	110	12.9	10.1	27.1	54.4	113	59.3	21.8 0	0.70 0	.48 1.	38 0.1	17 5.7	70 0.03	0.64	26.2	5.06	4.50	17.7	1.11
Fe	1.54	11.4	0.26	0.31	35.4	0.29	0.22	6.90	5.64	60.9	1.83	2.82 0	0.31 0	.36 0.	1.0 77	18 4.6	3 0.05	0.03	60.8	6.97	4.26	0.24	0.12
Co	533	638	327	5.56	670	39.6	66.9	82.7	190	220	407	132 2	2.12 2	.55 9.	59 0.5	34 6.8	0.4	0.55	210	31	28.0	37	1.14
Ni	307	267	279	3.9	98.2	50.1	30.8	49.5	78.1	200	170	23.7 2	2.50 4	.81 4.	61 2.1	1 29	1.3	3.18	120	18	17.8	39.5	32.4
Cu	295	725	238	3.7	293	6.23	36.5	281	73.2	273	258	44.9 4	t.09 6	19 1	2.3 2.t	3 8.2	3.5	1.42	1366	221	194	1.09	1.37
Zn	4.70	11.1	2.72	0.07	9.48	0.98	0.56	10.5	2.87	2.79	6.18	1.86 (0.005 0.	.03 0.	15 0.0	0.0	10.01	0.01	28.4	9.47	10.7	2.18	0.54
As	0.5	5.3	0.52	1.72	0.84	0.4	2.9	1.84	1.73	2.81	0.8 (0.76 1	1.92 4	.51 0.	64 18	809	6 11.9	6.39	0.49	0.96	0.9	0.82	0.52
Sr	1400	2310	779	149	675	454	106	479	918	762	423	242 6	30.8 7	4.1 5	8.3 32	78 78	3 688	252	480	115	104	339	206
Nb	0.02	0.4	< 0.005	< 0.005	0.02	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005 (0.01 0	0 100	.03 0.	02 0.4	48 0.5	(<u>9</u> 0.00	4 0.07	0.01	0.004	0.01	0.01	0.01
Mo	2.5	6.1	1.41	0.26	2.8	0.33	0.34	0.59	1.34	5.94	2.18 (0.46 0	0.14 0	.10 0.	08 29	20	2.07	43.7	0.6	0.34	0.16	0.98	1.29
Ag	0.01	0.03	0.01	0.02	0.01	<0.005	<0.005	0.01	0.02	0.02	0.04	0.01 0	0.01 0	.01 0.	01 0.(J5 0.C	14 0.01	0.02	0.14	0.10	0.04	0.0	0.0
Cd	29	35	29.6	1.08	30.8	4.13	3.2	70.2	11.3	23.9	37.5	5.19 0).13 0	.17 0.	48 0.5	34 1.5	6 0.31	0.36	271	52	61.8	5.18	1.18
Sn	0.03	0.07	0.03	0.01	0.04	0.01	0.01	0.02	0.01	0.01	<0.02	0.02 0	0.01 0	.02 0.	01 0.(0.0	90.03	0.04	0.03	0.03	0.05	0.01	0.02
\mathbf{Sb}	0.11	0.63	0.08	2.47	0.91	0.34	0.06	0.06	0.09	0.54	0.06	0.03 0	0.10 0	.17 0.	06 0.4	34 0.4	i6 0.81	0.73	0.001	0.06	0.17	0.05	0.11
Та	0.13	0.24	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.24	0.05 <	<0.001 0	.01 0.	01 0.0	.0 O.C	12 0.00	3 0.02	0.24	0.03	<0.001	0.01	0.0
Μ	0.24	1.87	0.22	0.15	0.99	0.07	0.1	0.64	0.37	0.41	0.68	0.18 0	0.01 0	.08 0.	04 15	44 70	8 6.2	454	0.45	0.10	0.15	0.21	4.92
Pb	1.3	2.3	0.99	0.04	1.13	0.35	0.27	27.9	1.15	1.01	3.0	0.6 0).28 0	.46 0.	35 2.1	1 0.8	0.6	0.80	61	39	26.7	0.49	0.41
U	15	114	16.2	0.07	65.3	0.03	1.97	116	14.0	79.3	48.3	13.5 0).22 1	.29 1.	17 71	42	9 1.5	115	390	66	102	0.40	0.13

 $\Pi pume^{\eta}$ ине. Жирным шрифтом указано содержание элемента в мг/л.

нее в [33]. Анализ гидрогеохимических данных показал, что для большинства проб, отобранных из дренажных стоков из-под отвалов и из шпуровых скважин, отмечены кислые (рН 3.50-4.92) и слабокислые (рН 5.60-6.41) реакции воды (см. табл. 1). Воды из пруда-отстойника хвостохранилища нейтральные и слабощелочные, рН варьирует в пределах 7.18-7.96. Разные значения рН водных сред в значительной степени контролируются присутствием сульфидных и карбонатных минералов в рудных телах. Кислому и слабокислому составу вод месторождения способствует сопутствующая сульфидная минерализация при низком потенциале нейтрализации руд и вмещающих пород. Нейтральные и слабощелочные реакции воды хвостохранилища обусловлены восстановительными свойствами подземных вод, циркулирующих в толще песков хвостохранилища, о чем свидетельствуют отрицательные значения Eh (до -87 мВ) в пробах. Высокие значения Eh (от 231 до 575 мВ) характерны для большинства кислых и слабокислых проб воды.

Минерализация исследованных вод по результатам опробования изменялась от 85 до 4232 мг/л (см. табл. 1). Варьирование минерализации происходило преимущественно за счет изменения в воде содержания аниона $SO_4^{2^-}$, а также катионов Ca²⁺ и Mg²⁺. Наиболее минерализованные воды (4.23 и 4.10 г/л) зафиксированы в дренажном стоке из-под отвалов (пробы OP-15-5 и OP-18-1 соответственно). По сравнению с предыдущими полевыми сезонами в 2021 г. в подотвальных водах отмечено снижение величины минерализации и содержания сульфатов. Для нейтральных и слабощелочных вод прудаотстойника и дренажа хвостохранилища в анионном составе характерно преобладание HCO₃⁻, а главными катионами являются Ca²⁺, Mg²⁺, Na⁺ (см. табл. 1). Значения минерализации в водах хвостохранилища и из шпуровых скважин (за исключением пробы OP-16-1) за весь период наблюдений изменялись незначительно.

По химическому составу дренажные воды из-под отвалов характеризуются преимущественно сульфатным, а также фторидно-сульфатным и гидрокарбонатно-сульфатным анионным составом. В катионном составе исследованных вод преобладают Mg-Ca, реже Ca-Mg, Mg-Na-Ca и Ca. Воды пруда-отстойника и дренажа хвостохранилища сульфатно-гидрокарбонатные с Mg-Na-Ca, Na-Ca, Ca-Mg и Ca катионным составом. Воды шпуровых скважин сульфатные и фторидно-сульфатные с Ca, Ca-Mg и Mg-Ca составом катионов.

В макрокомпонентном составе кислых дренажных вод Орловского месторождения, кроме высоких концентраций $\mathrm{SO}_4^{2^-},\ \mathrm{Ca}^{2^+}$ и $\mathrm{Mg}^{2^+},$ отмечена повышенная концентрация ионов F⁻, что объясняется активной миграцией последних в виде устойчивых комплексных соединений с алюминием, вынос которого обусловлен сернокислотным выщелачиванием вмещающих алюмосиликатных пород [34]. Согласно нашим термодинамическим расчетам, в кислых водах преобладает комплекс AlF₂⁺ (12-70 %), следующими по значимости являются комплексы AlF²⁺ (12-41 %) и AlF_3^0 (0.2–66 %), что хорошо согласуется с расчетными данными по дренажным водам вольфрамовых месторождений Восточного Забайкалья [16, 34]. Наглядно формы миграции алюминия с фтором представлены на рис. 3. По

Рис. 3. Формы миграции алюминия в диапазоне измеренных значений рН.

Рис. 4. Содержание алюминия и фтора в водах горнопромышленных объектов Орловского месторождения.

результатам исследований выявлено, что изменения содержаний алюминия и фтора в дренажных водах носят симбатный характер (рис. 4).

Значительный рост содержаний нитратной и аммонийной форм азота в дренажном стоке изпод отвалов в некоторых пробах (см. табл. 1), очевидно, связан с наличием остаточных аммонийно-нитратных взрывчатых веществ в горной массе отвалов после проведения буровзрывных работ. Похожая ситуация наблюдается и на других законсервированных и действующих горнорудных объектах Восточного Забайкалья, дренажный сток которых также содержит аномальный уровень соединений азота [35].

Концентрации металлов в кислых дренажных водах горнопромышленных объектов исследуемой территории также являются аномально высокими (см. табл. 2). Так, концентрации металлов в подотвальных водах и водах из буровых шпуров в карьере существенно выше, чем в воде хвостохранилища, и по ряду элементов достигают миллиграммовых значений (Al, Mn, Zn, Sr, Li). Также повышены концентрации Fe, Co, Cu, Cd, Ni, Pb и др. В водах пруда-отстойника и дренажа хвостохранилища отмечены повышенные концентрации Mn, Fe, Sr, As и W (см. табл. 2).

Термодинамические расчеты по определению форм миграции элементов в дренажных водах Орловского месторождения показали, что для большинства металлов характерно преобладание простых катионных форм, вторыми по значимости являются сульфатные и фторидные комплексы. По расчетным данным, простые катионные формы наиболее характерны для миграции Fe(II) (<63 %), Mn (66-90 %), Cu (60-82 %), Cd (56-87 %), Co (55-83 %), Ni (55-87 %), Sr (55-91 %), Zn (48-88 %), Pb (39-64 %) в разном количественном соотношении в кислых, слабокислых, нейтральных и слабощелочных средах.

Миграция в виде нейтральных, а также положительно и отрицательно заряженных сульфатных комплексов в разных долевых соотношениях отмечена для железа(II) в форме $FeSO_4^0(aq)$ (5–35 %); марганца – $MnSO_4^0(aq)$ (3–30 %); меди – $CuSO_4^0(aq)$ (0.1–37 %); кобальта – $CoSO_4^0(aq)$ (4–45 %); стронция – $SrSO_4^0$ (5–45 %); железа(III) – $FeSO_4^+$ (0.3–51 %) и $Fe(SO_4)_2^-$ (0.1–4 %); алюминия – $AlSO_4^+$ (1–37 %) и $Al(SO_4)_2^-$ (0.3–11 %); цинка – $ZnSO_4^0(aq)$ (3–37 %) и $Zn(SO_4)_2^{2-}$ (0.1–9 %); свинца – $PbSO_4^0$ (0.4–59 %) и $Pb(SO_4)_2^{2-}$ (0.1–9 %); никеля – $NiSO_4^0$ (3–45 %) и $Ni(SO_4)_2^{2-}$ (0.2–14 %).

В широком интервале значений pH водной среды в комплексе с гидроксид-ионом осуществляется перенос значительной доли железа(III) в виде $\operatorname{Fe(OH)}_2^+(0.5-100~\%)$ и $\operatorname{FeOH}^{2+}(0.3-40~\%)$, а также алюминия в виде $\operatorname{Al(OH)}_4^-(6-97~\%)$ в нейтральных и слабощелочных водах. Доля гидроксидных комплексов для других металлов не превышает 5 %.

Увеличение доли фторидных комплексов в дренажных водах происходит благодаря образованию соединений фтора с алюминием, как упоминалось выше.

Миграция металлов в комплексе с гидрокарбонатом отмечена по пробам воды хвостохранилища, в наибольшем количестве для свинца и никеля – PbHCO₃⁺ (0.5–12 %) и NiHCO₃⁺ (0.1– 18 %) соответственно. Для других металлов доля гидрокарбонатных комплексов незначительна и составляет не более 1–5 %. Миграция в виде карбонатных комплексов увеличивается по мере роста pH водной среды и характерна для марганца – $MnCO_3^0$ (aq) (0.1–24 %); меди – $CuCO_3^0$ (aq) (12–90 %); кадмия – $CdCO_3^0$ (aq) (0.06–12 %).

По результатам расчетов в небольших количествах возможно образование хорошо растворимых соединений нитрат-иона (NO_3^-) с ведущими катионами дренажных вод – $CaNO_3^+$ и KNO_3^0 (aq), а также соединения с Mn, Cu, Zn, Pb, Co, Ni, Cd и Sr в пределах значений от 0.1 до 0.23 %. Соединения в комплексе с нитрит-ионом (NO_2^-) отмечены для Cu, Cd и Pb (0.02–0.07 %).

Миграция мышьяка в кислых дренажных водах Орловского месторождения, окислительный потенциал которых достигает высоких значений (Eh > 400 мВ), согласно расчетным данным осуществляется преимущественно в форме $H_2AsO_4^-$ (до 98 %) и $H_3AsO_4^0$ (до 5 %). В околонейтральной среде и слабощелочной среде с Eh > 200 мВ As мигрирует в виде $H_2AsO_4^-$ (до 25 %) и $HAsO_4^{2-}$ (до 75 %).

Вольфрам в нейтральных и щелочных водах Орловского месторождения может мигрировать преимущественно в виде устойчивого в широком диапазоне окислительно-восстановительных условий аниона $WO_4^{2^-}$ (67–98 %). В кислых и слабокислых водах вольфрам существует в форме двух комплексов $WO_4^{2^-}$ (94–36 %) и HWO_4^- (6–64 %).

Термодинамические расчеты индексов насыщения дренажного стока Орловского месторождения показали, что воды могут быть насыщены по отношению к различным глинистым минералам группы каолинита и монтмориллонита, сульфатных минералов типа алунита (KAl₃(SO₄)₂(OH)₆), барита (BaSO₄) и сульфата олова (SnSO₄), причем количественное содержание последнего превалирует. Из гидроксидных минералов алюминия отмечено насыщение по отношению к диаспору (AlO(OH)), бемиту (AlO(OH)) и гиббситу (Al(OH),), а по гидроксидам железа – к гетиту (FeO(OH)) и лепидокрокиту (FeO(OH)). Образование лепидокрокита происходит в слабощелочной среде и связано с медленным окислением Fe²⁺, тогда как гетит возникает в широком диапазоне значений рН растворов. Насыщение по карбонатам относительно кальцита (CaCO₂) и доломита (CaMg(CO₂)₂) отмечено в слабощелочной среде. Из класса оксидов вероятно осаждение в виде вторичной минеральной фазы гематита (Fe_2O_3), магнетита (Fe_3O_4), рутила (TiO_2) и сервантита (Sb_2O_4). Практически постоянно воды насыщены по кварцу (SiO_2) и халцедону. Кварц, как правило, образуется позднее халцедона, являясь продуктом его перекристаллизации.

Для оценки эколого-геохимического состояния дренажных вод горнопромышленных объектов Орловского месторождения проведено сравнение средних значений концентраций некоторых компонентов, характеризующихся аномальными содержаниями, с предельно допустимыми концентрациями (ПДК) веществ для водных объектов рыбохозяйственного (рис. 5, а) [36], хозяйственнопитьевого и культурно-бытового водопользования (см. рис. 5, б) [37]. Полученные результаты, представленные в табл. 3, свидетельствуют об их существенном превышении над нормативами. Так, превышение для Mn составляет до 3370 и 337 раз для вод рыбохозяйственного и хозяйственно-питьевого значения; Al - до 2625 и 525 раз; F⁻ – до 1700 и 71 раз; Ве – до 167 и 250 раз; Со – до 27 и 2.7 раз; Ni – до 17 и 8.5 раз; Fe – до 8.3 и 2.8 раз; Li – до 7.4 и 20 раз; SO₄^{2–} – до 10.8 и 2.15 раз; Cd – до 4 и 20 раз соответственно. Для Zn, Cu и W превышение ПДК для водных объектов рыбохозяйственного значения составляет до 262, 50 и 3.8 раз соответственно (см. табл. 3). Некоторые из этих компонентов относятся ко II или I классам опасности и поэтому могут оказывать прямое токсическое воздействие на водные экосистемы и ландшафты.

ЗАКЛЮЧЕНИЕ

Анализ проведенных гидрогеохимических исследований по водам дренажного стока горнопромышленных объектов Орловского танталового месторождения показал, что его воды можно отнести к двум типам: первый представлен высокоминерализованными кислыми сульфатными с аномально высокими концентрациями алюминия, фтора, халько- и сидерофильных элементов (подотвальные воды и из шпуровых скважин); второй - нейтральными и слабощелочными с повышенным содержанием вольфрама и мышьяка (воды хвостохранилища). Определение форм нахождения металлов в кислых дренажных водах показало, что их миграция осуществляется преимущественно в простой ионной форме (Fe²⁺, Fe³⁺, Mn²⁺, Al³⁺, Cu²⁺, Cd²⁺, Co²⁺, Ni²⁺, Zn²⁺, Sr²⁺, Pb²⁺ и т. д.), а также в виде сульфатных и фторидных комплексов. Особен-

Рис. 5. Соотношение предельно допустимых концентраций (ПДК) и средних содержаний компонентов в дренажных водах горнопромышленных объектов Орловского месторождения для вод рыбохозяйственного (*a*) и хозяйственнопитьевого значения (б). Римскими цифрами I–IV обозначены классы опасности.

ностью кислых вод является обогащенность их фтором, связанным в алюмофторидные комплексы, что способствует усилению его миграции, а также накоплению до значимых содержаний при определении ионно-солевого состава воды. Подвижность многих металлов в нейтральных и слабощелочных водах хвостохранилища затруднена, тогда как по мере роста кислотности создается благоприятная гидрогеохимическая обстановка для миграции в виде анионов вольфрама и мышьяка. Значительное превышение уровня ПДК в дренажных водах определено для средних значений аномально высоких по содержанию компонентов – марганца, алюминия, бериллия, кобальта, никеля, железа, лития, цинка, меди, вольфрама, сульфат- и фторидионов и др. В этой связи необходимо проведение на подобных территориях как бывших, так

Среднее содержание некоторых компонентов в дренажных водах в сравнении с нормировочными значениями предельно допустимых концентраций (ПДК) для водных объектов

ТАБЛИЦА З

Параметр	Среднее	ПДК для водных	объектов	Класс опасности для	объектов
	содержание в дренажных водах, мг/л	рыбо- хозяйственных, мг/дм ³ [36]	хозяйственно- питьевых, мг/л [37]	рыбо- хозяйственных [36]	хозяйственно- питьевых [37]
SO_4^{2-}	1077	100	500	-	IV
\mathbf{F}^{-}	85	0.05	1.2	III	II
Li	0.59	0.08	0.03	IV	II
Be	0.05	0.0003	0.0002	II	I
Al	105	0.04	0.2	IV	III
Mn	33.7	0.01	0.1	IV	III
Fe	0.83	0.1	0.3	IV	IV
Co	0.27	0.01	0.1	III	III
Ni	0.17	0.01	0.02	III	III
Cu	0.15	0.001	1.0	III	III
Zn	2.62	0.01	5	III	III
Cd	0.02	0.005	0.001	II	II
W	0.003	0.0008	0.05	III	II

и действующих рудников специальных мероприятий, способствующих очистке загрязненных вод, а также информирования населения близлежащих поселков о негативных последствиях в случае использования вод хвостохранилища.

Исследования выполнены в рамках государственного задания ИПРЭК СО РАН № 121032200070-2 "Геоэкология водных экосистем Забайкалья в условиях современного климата и техногенеза, основные подходы к рациональному использованию вод и их биологических ресурсов".

СПИСОК ЛИТЕРАТУРЫ

- 1 Калинников В. Т., Макаров В. Н., Мазухина С. И., Макаров Д. В., Маслобоев В. А. Исследование гипергенных процессов в хвостах обогащения сульфидных медно-никелевых руд // Химия уст. разв. 2005. Т. 13, № 4. С. 515–519.
- 2 Бортникова С. Б., Гаськова О. Л., Бессонова Е. П. Геохимия техногенных систем. Новосибирск: Академическое изд-во "Гео", 2006. 169 с.
- 3 Удачин В. Н., Вильямсон Б., Руджи К., Лоншакова Г. Ф., Аминов Г. Г., Удачина Л. Г. Химический состав и механизмы формирования кислых рудничных вод Южного Урала // Вода: Химия и экология. 2011. № 10 (40). С. 3–8.
- 4 Замана Л. В. Геохимия кислых дренажных вод золоторудных месторождений Восточного Забайкалья // Вода: Химия и экология. 2013. № 8 (62). С. 92–97.
- 5 Nordstrom D. K., Blowes D. V., Ptacek C. J. Hydrogeochemistry and microbiology of main drainage: An update // Appl. Geochem. 2015. Vol. 57. P. 3–16.
- 6 Грязнов О. И., Елохина С. Н. Геоэкологические проблемы горнопромышленного техногенеза на Урале // Изв. Уральского гос. горного ун-та. 2017. № 2 (46). С. 28-33.

- 7 Tomiyama S., Igarashi T., Tabelin C. B., Tangviroon P., Ii H. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study // Journal of Contaminant Hydrology. 2019. Vol. 225. Art. 103502.
- 8 Мазухина С. И., Маслобоев В. А., Макаров Д. В. Термодинамическое моделирование гипергенных процессов в хвостах обогащения медно-никелевых руд в условиях различных температур и режимов увлажнения // Химия уст. разв. 2021. Т. 29, № 1. С. 69-79.
- 9 Макаров А. Б., Талалай А. Г. Техногенно-минеральные месторождения и их экологическая роль // Литосфера. 2012. № 1. С. 172–176.
- 10 Dold B. Evolution of acid mine drainage formation in sulphidic mine tailings // Minerals. 2014. Vol. 4, No. 3. P. 621-641.
- 11 Дорошкевич С. Г., Смирнова О. К., Штарева А. В. Оценка загрязненности территории, дренируемой рудничными водами сульфидно-вольфрамового месторождения (Западное Забайкалье) // Экология и промышленность России. 2017. Т. 21, № 6. С. 54–57.
- 12 Замана Л. В., Чечель Л. П., Абрамова В. А. Гидрогеохимия зоны техногенеза рудных месторождений Восточного Забайкалья // Тез. докл. III Всерос. конф. "Геологическая эволюция взаимодействия воды с горными породами", Чита, 20-25 августа 2018 г. С. 39-46.
- 13 Зверева В. П. Оценка воздействия техногенных вод Кавалеровского и Дальнегорского горнорудных районов на гидросферу Приморского края // Экологическая химия. 2019. Т. 28, № 4. С. 199–210.
- 14 Чечель Л. П. Формирование гидрогеохимических полей вольфрамовых месторождений Восточного Забайкалья под влиянием природных и антропогенных факторов: Дис. ... канд. геол.-минерал. наук. Томск, 2021. 180 с.
- 15 Крайнов С. Р., Рыженко Б. Н., Швец В. М. Геохимия подземных вод. Теоретические, прикладные и экологические аспекты. М.: ЦентрЛитНефтеГаз, 2012. 672 с.
- 16 Замана Л. В., Чечель Л. П. Геохимия дренажных вод горнорудных объектов вольфрамового месторождения Бом-

Горхон (Забайкалье) // Химия уст. разв. 2014. Т. 22, № 3. С. 267–273.

- 17 Корнеева Т. В., Юркевич Н. В., Аминов П. Г. Геохимические особенности миграционных потоков в зоне влияния горнопромышленного техногенеза (г. Медногорск) // Изв. Томского политехн. ун-та. Инжиниринг георесурсов. 2017. Т. 328, № 2. С. 85-94.
- 18 Корнеева Т. В., Юркевич Н. В., Саева О. П. Геохимическое моделирование поведения тяжелых металлов в техногенных системах // Изв. Томского политехн. ун-та. Инжиниринг георесурсов. 2018. Т. 329, № 3. С. 89–101.
- 19 Алексеев В. А. Причины образования кислых дренажных вод в отвалах сульфидсодержащих пород // Геохимия. 2022. Т. 67, № 1. С. 69–83.
- 20 Еделев А. В. Прогнозная оценка состава дренажных вод, взаимодействующих с сульфидсодержащим веществом // Геология и геофизика. 2013. Т. 54, № 1. С. 144–157.
- 21 Оленченко В. В., Кучер Д. О., Бортникова С. Б., Гаськова О. Л., Еделев А. В., Гора М. П. Вертикальное и латеральное распространение высокоминерализованных растворов кислого дренажа по данным электротомографии и гидрогеохимии (Урской отвал, Салаир) // Геология и геофизика. 2016. Т. 57, № 4. С. 782–795.
- 22 Бортникова С. Б., Силантьева Н. В., Запольский А. Н., Юркевич Н. В., Саева О. П., Шевко А. Я., Шуваева О. В., Еделев А. В. Оценка кислотообразующего/кислотонейтрализующего потенциалов отвальных пород и подвижности потенциально токсичных элементов Раздолинского рудного узла (Красноярский край) // Изв. Томского политехн. ун-та. Инжиниринг георесурсов. 2018. Т. 329, № 2. С. 55–72.
- 23 Алексеенко В. А. Геоэкология. Экологическая геохимия: учебник. Ростов н/Д.: Феникс, 2017. 685 с.
- 24 Гаськова О. Л., Кабанник В. Г. Экспериментальное изучение сорбции тяжелых металлов природными глинами с целью очистки дренажных вод // Химия уст. разв. 2009. Т. 17, № 4. С. 359-369.
- 25 Макаров Д. В., Мазухина С. И., Нестерова А. А., Нестеров Д. П., Меньшиков Ю. П., Зоренко И. В., Маслобоев В. А. Моделирование взаимодействия искусственных геохимических барьеров с раствором сульфата никеля // Химия уст. разв. 2009. Т. 17, № 3. С. 283–288.
- 26 Дампилова Б. В., Смирнова О. К., Плюснин А. М. Исследование нейтрализации кислых отходов обогащения сульфидно-вольфрамовых руд при их вторичной переработке // Экология и промышленность России. 2015. Т. 19, № 2. С. 56–59.
- 27 Чечель Л. П. Эколого-геохимические последствия отработки вольфрамовых и молибденовых месторождений Восточного Забайкалья // Изв. Томского политехн. ун-та. Инжиниринг георесурсов. 2017. Т. 328, № 6. С. 52–63.

- 28 Гребенников А. М. Орловское танталовое месторождение / Месторождения Забайкалья. Под ред. Н. П. Лаверова (в 2 кн.). Том. I, кн. 2. М.: Геоинформмарк, 1995. С. 96–107.
- 29 Чечеткин В. С., Трубачев А. И. Минеральные ресурсы Забайкальского края. Чита: ЗабГУ, 2013. 231 с.
- 30 Геологические исследования и горнопромышленный комплекс Забайкалья: История, современное состояние, проблемы, перспективы развития. К 300-летию основания Приказа рудокопных дел / Г. А. Юргенсон, В. С. Ечеткин, В. М. Асосков, и др. Новосибирск: Наука. Сибирская издательская фирма РАН, 1999. 574 с.
- 31 Юргенсон Г. А. Отходы горного производства как источники редких металлов в Забайкальском крае // Материалы Междунар. науч.-практ. конф. "Байкал – ворота в Азию", Улан-Удэ, 3-6 июня 2021. С. 135–138.
- 32 Felmy A. R., Girvin D. C., Jenne E. A. MINTEQ: A computer program for calculating aqueous geochemical equilibria. Washington: U. S. Environmental Protection Agency, 1984. 98 p.
- 33 Абрамова В. А., Замана Л. В. Гидрогеохимия горнопромышленных объектов Орловского танталового месторождения (Восточное Забайкалье) // Материалы годичной сессии Научного совета РАН по проблемам геоэкологии, инженерной геологии и гидрогеологии "Сергеевские чтения", Пермь, 2–4 апреля 2019. С. 236–241.
- 34 Замана Л. В., Букаты М. Б. Формы миграции фтора в кислых дренажных водах вольфрамовых месторождений Восточного Забайкалья // Доклады академии наук. 2004. Т. 396, № 2. С. 235-238.
- 35 Замана Л. В., Абрамова В. А., Хвостова Т. Е., Чечель Л. П. Соединения азота в водах зоны техногенеза рудных месторождений Восточного Забайкалья // Горный журнал. 2020. № 3. С. 79-83.
- 36 Приказ Министерства сельского хозяйства РФ от 13 декабря 2016 г. № 552 "Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения" (с изменениями и дополнениями от 12 октября 2018 г., 10 марта 2020 г.) [Электронный ресурс]. Режим доступа: https://base.garant.ru/ 71586774/ (дата обращения: 19.01.2022).
- 37 Постановление Главного государственного санитарного врача РФ от 28 января 2021 г. № 2 "Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»" [Электронный ресурс]. Режим доступа: https://base.garant.ru/400274954/ (дата обращения: 19.01.2022).

332