2010. Tom 51, № 2

Март – апрель

C. 231 - 236

УДК 541.66;547.32

ПРОГНОЗИРОВАНИЕ ЭНТАЛЬПИИ ИСПАРЕНИЯ НА ОСНОВЕ МОДИФИЦИРОВАННЫХ ИНДЕКСОВ РАНДИЧА. III. КАРБОНОВЫЕ КИСЛОТЫ

© 2010 Е.Л. Красных*

ГОУВПО Самарский государственный технический университет

Статья поступила 20 апреля 2009 г.

Проведен расчет энтальпии испарения моно- и дикарбоновых кислот различного строения при нормальных условиях с использованием модифицированного метода Рандича и энергии водородных связей. Полученные результаты показали хорошую сходимость экспериментальных и расчетных данных.

Ключевые слова: энтальпия испарения, топологический индекс, индекс связанности, карбоновые кислоты, энергия водородных связей, QSPR-методы.

Карбоновые кислоты широко используются в химической промышленности как основа для получения пластификаторов, синтетических моторных масел, парфюмерно-косметических веществ. Однако, несмотря на широкий спектр использования кислот, данных об их термодинамических свойствах, в частности об энтальпии испарения, крайне мало и относятся они в основном к кислотам линейного строения. К тому же эти данные плохо согласуются между собой. Поэтому целью работы явился критический анализ имеющихся экспериментальных данных и разработка метода прогнозирования энтальпии испарения карбоновых кислот при нормальных условиях.

МЕТОДИКА РАСЧЕТА

При расчетах энтальпии испарения за основу было принято уравнение, полученное в работе [1]:

$$\Delta H_{\rm v}$$
, 298 K = 1,6883 · $^{0-3}\chi$ + 2,0781, (1)

где ${}^{0-3}\chi$ — суммарный индекс ${}^{0-3}\chi = {}^0\chi + \frac{{}^1\chi}{2} + \frac{{}^2\chi}{3} + \frac{{}^3\chi}{4}; \ {}^0\chi = \sum_1^n 1/\ln(\delta_i)$ — индекс связанности

нулевого порядка; $^{1}\chi = \sum_{1}^{m} 1/\ln(\delta_{i}\delta_{j})$ — индекс связанности первого порядка;

$$^2\chi = \sum_{i=1}^{p} 1/\ln(\delta_i\delta_j\delta_k)$$
 — индекс связанности второго порядка; $^3\chi = \sum_{i=1}^{r} 1/\ln(\delta_i\delta_j\delta_k\delta_l)$ — индекс

связанности третьего порядка; δ — кодовые числа (дескрипторы). Для углеродных атомов значения дескрипторов были взяты из работы [1] и приведены в табл. 1.

В качестве дескриптора кислотной составляющей взята карбоксильная группа (—СООН). Значение дескриптора (см. табл. 1) получено обработкой суммарных индексов кислот и их экспериментальных значений методом наименьших квадратов [1]. В качестве тренировочного набора взяты предварительно проанализированные данные по линейным кислотам C_2 — C_8 [2—6].

_

^{*} E-mail: kinterm@samgtu.ru

232 Е.Л. КРАСНЫХ

Таблица 1 Дескрипторы для различных типов углеродных атомов и гидроксильной группы

Тип атома	—СН ₃	—СН ₂ —	—CH—	_c_	-c OH
Значение дескриптора	1,4773	1,6201	2,3685	7,5949	1,0422

Анализ данных основывался на том, что энтальпия испарения линейно зависит от количества углеродных атомов в гомологическом ряду однотипного строения [7,8]. Было получено следующее уравнение (N— число атомов углерода в кислоте):

$$\Delta H_{\rm v}$$
, 298 K = 4,5073 · N + 41,307) $(r^2 = 0,9945)$, (2)

которое показало, что значения энтальпии испарения, приведенные в [4] для гексановой кислоты и в работах [3, 4, 6] для октановой кислоты, являются некорректными, и, как следствие, они были исключены из обработки. Полученные результаты расчета по уравнениям (1) и (2) приведены в табл. 2 и показывают хорошую сходимость расчетных данных с экспериментальными, причем точность прогнозирования не уступает значениям, полученным методами Марреро [9] и Дюкро [10].

Таблица 2 Экспериментальные данные по энтальпии испарения и результаты расчета для тренировочного набора карбоновых кислот

Кислота	Лит.	Δ <i>H</i> _v , 298 K эксп., кДж/моль	$^{0-3}\chi^{ m HB}$	ΔH_{v} , 298 К ур-ние (1), кДж/моль	$\Delta\Delta H_{ m v},$ КДЖ/МОЛЬ	ΔH_{v} , 298 К ур-ние (2), кДж/моль	$\Delta\Delta H_{ m v},$ КДЖ/МОЛЬ	ΔH_{v} , 298 К Марреро [9], кДж/моль	$\Delta\Delta H_{ m v},$ kДж/моль	Δ <i>H</i> _v , 298 К Дюкро [10], кДж/моль	$\Delta\Delta H_{ m v},$ КДЖ/МОЛЬ
Этановая	2	51,5±1,5	8,54	49,2	2,3	50,3	1,2	48,3	3,2	53,3	-1,8
	3	50,3±0,5	8,54	49,2	1,1	50,3	0,0	48,3	2,0	53,3	-3,0
Пропановая	2	55,0±2,0	11,38	53,9	1,1	54,8	0,2	55,0	0,0	56,3	-1,3
	3	54,4±0,5	11,38	53,9	0,5	54,8	-0,4	55,0	-0,6	56,3	-1,9
Бутановая	3	58,2±0,3	14,35	59,0	-0,8	59,3	-1,1	59,9	-1,7	61,3	-3,1
Пентановая	3	63,0±0,5	17,30	63,9	-0,9	63,8	-0.8	64,8	-1,8	66,3	-3,3
	4	64,2±2,0	17,30	63,9	0,3	63,8	0,4	64,8	-0,6	66,3	-2,1
	5	63,5±0,3	17,30	63,9	-0,4	63,8	-0,3	64,8	-1,3	66,3	-2,8
Гексановая	4	74,1±1,0	20,25	68,9	5,2	68,4	5,7	69,7	4,4	71,3	2,8
	3	69,2±0,7	20,25	68,9	0,3	68,4	0,8	69,7	-0,5	71,3	-2,1
Гептановая	3	72,9±0,8	23,20	73,9	-1,0	72,9	0,0	74,6	-1,7	76,2	-3,3
	4	72,5±1,0	23,20	73,9	-1,4	72,9	-0,4	74,6	-2,1	76,2	-3,7
Октановая	3	81,0±0,6	26,15	78,9	2,1	77,4	3,6	79,5	1,5	81,2	-0.2
	4	82,9±0,6	26,15	78,9	4,0	77,4	5,5	79,5	3,4	81,2	1,7
	6	91,9	26,15	78,9	13,0	77,4	14,5	79,5	12,4	81,2	10,7
	5	77,9±0,4	26,15		-1,0	77,4	0,5	79,5	-1,6	81,2	-3,3
S			1,1		0,6		1,6		2,7		
$ \Delta _{\max}$				2,3		1,2	,	3,2		3,7	,

 Π р и м е ч а н и е. $\Delta\Delta H_{\rm v}$ — отклонение расчетного значения энтальпии испарения от экспериментального; s — среднеквадратичное отклонение; $|\Delta|_{\rm max}$ — максимальное по модулю отклонение результатов расчета от экспериментальных данных, кДж/моль. Курсивом выделены данные, не вошедшие в обработку.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Монокарбоновые кислоты. Как известно, в жидкой фазе монокарбоновые кислоты существуют в виде димеров за счет образования двух водородных связей [11]:

$$H_3C$$
 CH_3 ,

где $r_{\rm OH}$ — длина связи кислород—водород в молекуле; r_1 — длина связи кислород—водород между молекулами (длина водородной связи).

Выполненный расчет энергии димеризации кислот и некоторых геометрических параметров (WinGamess [12], DFT метод, базис B3LYP/6-311++G(d,p)), представленный в табл. 3, показал, что значение суммарной длины связей H—O--H составляет 2,67—2,69 Å, что соответствует литературным данным [13]. Среднее значение энергии димеризации составило 65,0±0,9 кДж/моль, что в пределах погрешности соответствует имеющимся литературным данным [12—14]. Следовательно, энергия одной водородной связи ($\Delta H^{\rm HB}$) не зависит от строения кислоты и составляет 32,5±0,9 кДж/моль.

Однако исследования показывают, что в газовой фазе кислоты существуют как в виде димеров, так и мономеров, причем доля димеров при нормальных условиях составляет практически 100 % [14]. Таким образом, считая, что кислоты в газовой фазе находятся в виде димеров, экспериментально определенное значение энтальпии испарения можно выразить уравнением:

$$2\Delta_f H_g^0 + 2\Delta H^{\rm HB} - (2\Delta_f H_l^0 + 2\Delta H^{\rm HB}) = 2(\Delta_f H_g^0 - \Delta_f H_l^0) = 2\Delta_v H_{298}^0, \tag{3}$$

где $\Delta_f H_g^0$ — энтальпия образования мономера кислоты в газовой фазе; $\Delta_f H_l^0$ — энтальпия

образования мономера кислоты в жидкой фазе; $\Delta_{\rm v}H_{298}^0$ — энтальпия испарения мономера кислоты. То есть экспериментальное значение энтальпии испарения включает в себя энтальпию испарения двух молекул кислоты, а энергия водородных связей не оказывает на нее никакого влияния. Следовательно, в дескриптор (—СООН) нет необходимости вносить поправки на водородные связи, как это было сделано в работе [15], и уравнение (1) остается без изменений.

Корректность предлагаемого подхода была проверена на тестовом наборе, представленном в табл. 4, куда вошли имеющиеся в литературе данные по энтальпии испарения монокарбоновых кислот, не вошедших в тренировочный набор.

В первую очередь обращает на себя внимание значительное расхождение расчетных и экспериментальных данных для 3-метилбутановой кислоты [16] и для 2,2-диметилпропановой кислоты [4]. Первое из них явно занижено, поскольку значение энтальпии испарения составляет 46,9±0,2 кДж/моль, что меньше даже энтальпии испарения этановой кислоты (50,3±

Таблица 3 Результаты квантово-химических расчетов некоторых геометрических параметров и энергии димеризации ряда карбоновых кислот

Кислота	$r_{ m OH}$	r_1	E^{D}	Кислота	$r_{ m OH}$	r_1	E^{D}
Метановая [2]	0,97	1,701	63,01	2-Метилпропановая	0,99985	1,67678	66,24
Этановая	0,99813	1,68424	65,51	2,2-Диметилпропановая	0,99827	1,68086	65,59
Пропановая	0,99771	1,68567	64,89	Пропандионовая	0,99773	1,68816	65,94
Бутановая [2]	0,99700	1,68900	64,68				

 Π р и м е ч а н и е. $r_{\rm OH}$ — длина связи кислород—водород в молекуле кислоты, Å; $r_{\rm I}$ — длина связи кислород—водород между молекулами (длина водородной связи), Å; $E^{\rm D}$ — энергия димеризации, кДж/моль.

234 Е.Л. КРАСНЫХ

Таблица 4 Экспериментальные данные по энтальпии испарения и результаты расчета для тестового набора карбоновых кислот

Кислота	Лит.	Δ <i>H</i> _v , 298 K эксп., кДж/моль	0–3χ ^{HB}	Δ <i>H</i> _v , 298 K расч., кДж/моль	$\Delta \Delta H_{ m v},$ кДж/моль	Δ <i>H</i> _v , 298 K Марреро [9], кДж/моль	$\Delta \Delta H_{ m v},$ кДж/моль	Δ <i>H</i> _v , 298 K Дюкро [10], кДж/моль	$\Delta\Delta H_{ m v},$ кДж/моль
2-Метилпропа-	3	55,5±0,3	13,34	57,0	-1,5	54,6	0,9	59,5	-4,0
новая	5	54,8±0,2	13,34	57,0	-2,2	54,6	0,2	59,5	-4,7
	4	56,7±2,0	13,34	57,0	-0,3	54,6	2,1	59,5	-2,8
2-Метилбутановая	3	62±0,4	35,78	62,5	-0,5	59,6	2,4	64,4	-2,4
3-Метилбутановая	4	59,6±1,0	35,57	62,1	-2,5	62,7	-3,1	65,0	-5,4
	3	61,2±0,3	35,57	62,1	-0,9	62,7	-1,5	65,0	-3,8
	16	46,9±0,2	35,57	62,1	-15,2	62,7	-15,8	65,0	-18,1
	4	60,7±0,2	35,57	62,1	-1,4	62,7	-2,0	65,0	-4,3
2,2-Диметилпропа-	4	78,4±2,0	33,92	59,5	18,9	56,0	22,4		_
новая	17	59,4±0,3	33,92	59,5	-0,1	56,0	3,4		_
	3	59,7±0,6	33,92	59,5	0,2	56,0	3,7	_	_
(\pm) 2-Этилгекса-	18	76,3±0,9	44,42	77,2	-0,9	74,3	2,0	79,4	-3,1
новая	3	75,6±0,4	44,42	77,2	-1,6	74,3	1,3	79,4	-3,8
2,2-Диметилбута- новая	19	65,7±0,4	36,90	64,5	1,2	62,5	3,2	_	_
3,3-Диметилбута- новая	3	64,0±0,6	37,23	65,0	-1,0	65,5	-1,5	67,6	-3,6
Нонановая	3	82,4±0,4	48,37	83,9	-1,5	84,4	-2,0	86,2	-3,8
Декановая	6	101,8	51,32	88,8	13,0	89,3	12,5	91,2	10,6
	3	89,4±2,4	51,32	88,8	0,6	89,3	0,1	91,2	-1,8
Тридекановая	3	103,3±2,7	60,17	103,8	-0,5	104,1	-0,8	106,1	-2,8
Пентадекановая	3	112,8±4,6	66,08	113,8	-1,0	113,9	-1,1	116,1	-3,3
Нонадекановая	3	131,1±5,7	77,88	133,7	-2,6	133,5	-2,4	136,0	-4,9
S			1,3			2,	1	3,8	
$ \Delta _{max}$				2,6		3,	7	5	,4

 Π р и м е ч а н и е. $\Delta\Delta H_{\rm v}$ — отклонение расчетного значения энтальпии испарения от экспериментального; s — среднеквадратичное отклонение; $|\Delta|_{\rm max}$ — максимальное по модулю отклонение результатов расчета от экспериментальных данных, к Π ж/моль.

 ± 0.5 кДж/моль), а второе явно завышено (78,4 ± 2.0 кДж/моль), поскольку превышает значение пентановой кислоты (64,2 ± 2.0 кДж/моль). Таким образом, эти значения, значительно отклоняющиеся не только от расчетных, но и от значений, полученных другими авторами, следует считать некорректными.

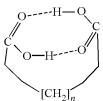
Также систематически отклоняются от расчетных и экспериментальных данных других авторов результаты, представленные в работе [6]. Вероятнее всего, ошибка связана с методом получения энтальпии испарения, поскольку он основан на давлении пара вещества только при одной температуре (298,15 K). Остальные экспериментальные и расчетные данные достаточно хорошо согласуются друг с другом, и отклонение расчетных данных от экспериментальных в большинстве случаев не превышает погрешности эксперимента.

Результаты расчета показывают значительно лучшую прогностическую способность предлагаемого метода по сравнению с методами Марреро [9] и Дюкро [10] (см. табл. 4). Так, среднеквадратичное отклонение (s) составляет 1,8 против 4,6 для метода Марреро и 14,1 для метода Дюкро, максимальное отклонение составляет соответственно 2,6 кДж/моль против 3,7 кДж/моль и 5,4 кДж/моль. Следует также отметить, что метод Дюкро дает систематически заниженные значения энтальпии испарения на величину порядка 3—4 кДж/моль.

Дикарбоновые кислоты. Результаты расчета энтальпии испарения дикарбоновых кислот, выполненные по уравнению (1), представлены в табл. 5 вместе с имеющимися экспериментальными данными. Сразу обращает на себя внимание значительное отклонение литературных данных друг от друга, причем их можно разделить на две группы: данные, в пределах погрешности совпадающие с расчетными величинами, и данные, превышающие расчетные величины в среднем на 37 кДж/моль, что практически эквивалентно энергии одной водородной связи. В первом случае можно говорить о том, что испарение дикарбоновых кислот аналогично испарению монокарбоновых и происходит без изменения числа водородных связей, а во втором — испарение происходит с разрывом одной водородной связи. Какой же вариант предпочтительнее?

В работе [20] показано, что в твердой фазе дикарбоновые кислоты реализуются в линейном виде за счет образования четырех водородных связей для каждой молекулы:

$$---$$
0 $---$ H $-$ 0 $--$


Таблица 5 Экспериментальные данные по энтальпиям испарения и результаты расчета для дикарбоновых кислот

		1	1 ,	-	•
Кислота	Лит.	Δ <i>H</i> _v , 298 K эксп., кДж/моль	$^{0-3}\chi^{\mathrm{HB}}$	Δ <i>H</i> _v , 298 K расч., кДж/моль	$\Delta \Delta H_{ m v}$, кДж/моль
Пропандионовая	22	122,1±24,8	52,94	91,5	30,6
	23	92±15	52,94	91,5	0,5
Бутандионовая	21	94,4±3,6	55,84	96,4	-2,0
	22	104,3±21,1	56,08	96,4	7,9
	23	138±11	56,32	96,4	41,6
Пентандионовая	21	103,3	58,76	101,3	2,0
	23	91±7	58,76	101,3	-10,3
	24	106,1±23,2	58,76	101,3	4,8
	25	103±8	58,76	101,3	1,7
	21	103,3	58,76	101,3	2,0
Гександионовая	21	105,2±2,2	61,71	106,3	-1,1
	24	135±13	61,71	106,3	28,7
	22	113,2±21,8	61,71	106,3	6,9
	23	154±6	61,71	106,3	47,7
Гептандионовая	24	149±10	64,66	111,2	37,8
	23	147±11	64,66	111,2	35,8
	21	118,1	64,66	111,2	6,9
Октандионовая	23	184±12	67,61	116,2	67,8
	21	116,6	67,61	116,2	0,4
Нонандионовая	23	153±24	70,56	121,2	31,8
	21	119,7	70,56	121,2	-1,5
Декандионовая	21	124,8±3	73,51	126,2	-1,4

236 Е.Л. КРАСНЫХ

С другой стороны, в газовой фазе молекула, предположительно, реализуется в виде цикла с об-

разованием двух внутримолекулярных водородных связей [21]. Таким образом, если предположить, что в жидкой фазе молекулы кислоты реализуются в линейном виде, то превышение экспериментальных значений энтальпии испарения над расчетными составляло бы 65 кДж/моль (четыре водородных связи разрываются и две образуются). Если молекулы кислоты в жидкой фазе реализуются в виде цикла, то экспериментальные данные должны совпадать с расчетными. Также по аналогии с монокарбоновыми кислотами в жидкой фазе теоретически возможно образование димера дикарбоновой кислоты с четырьмя водородными связями, что при испарении ведет к разрыву двух водородных связей. То есть в любом из вариантов переход из жидкой фазы в газовую сопровождается либо изменением числа водородных связей (на две связи), либо число связей остается неизменным. Предложить вариант перехода из жидкой фазы в газовую с разрывом только одной водородной связи не представляется возможным. Следовательно, испарение дикарбоновых кислот, вероятнее все-

го, происходит без изменения числа водородных связей, и их энтальпия испарения может быть рассчитана аналогично монокарбоновым кислотам, т.е. с использованием уравнения (1).

В работе описан анализ имеющихся литературных данных по энтальпии испарения однои двухосновных кислот различного строения и представлен QSPR-метод прогнозирования энтальпии испарения одно- и двухосновных кислот при 298,15 К на основе модифицированного метода Рандича. Проведено сравнение предложенного метода с методами Марреро и Дюкро, которое показало, что предлагаемый метод дает лучшие результаты с меньшей погрешностью и может быть использован при прогнозировании энтальпии испарения карбоновых кислот различного строения.

Работа выполнена в рамках ФЦП НК-149П "Научные и научно-педагогические кадры инновационной России (2009—2013 гг.)".

СПИСОК ЛИТЕРАТУРЫ

- 1. Красных Е.Л. // Журн. структур. химии. 2008. 49, № 6. С. 1026.
- 2. Konicek J., Wadso I. // Acta Chem. Scand. 1970. 24. P. 2612.
- 3. Verevkin S.P. // J. Chem. Eng. Data. 2000. 45. P. 953.
- 4. Kruif C.G., Oonk H.A.J. // J. Chem. Thermodyn. 1979. N 11. P. 287.
- 5. Ambrose D., Ghiassee N.B. // Ibid. 1987. 19. P. 505.
- 6. Cappa C.D., Lovejoy E.R., Ravishankara A.R. // J. Phys. Chem. A. 2008. 112. P. 3959.
- 7. Verevkin S.P., Krasnykh E.L., Vasiltsova T.V., Heintz A. // J. Chem. Eng. Data. 2003. 48. P. 591.
- 8. Липп С.В., Красных Е.Л., Леванова С.В. // Журн. физ. химии. 2008. 82, № 12. С. 2250.
- 9. *Marrero J., Gani R.* // Fluid Phase Equil. 2001. P. 183.
- 10. *Ducros M., Gruson J.F., Sannier H.* // Thermochim. Acta. 1980. **36**. P. 39.
- 11. Hintze P.E., Aloisio S., Vaida V. // Chem. Phys. Lett. 2001. 343. P. 159.
- 12. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. 14. P. 1347.
- 13. Gilli P., Pretto L., Bertolasi V., Gilli G. // Acc. Chem. Res. 2009. 42, N 1. P. 33.
- 14. Vawdrey A.C., Oscarson J.L., Rowley R.L., Wilding W.V. // Fluid Phase Equil. 2004. P. 222.
- 15. Красных Е.Л. // Журн. структур. химии. 2009. 50, № 3. С. 557.
- 16. McDougall L.A., Kilpatrick J.E. // J. Chem. Phys. 1965. 42. P. 2307.
- 17. Steele W.V., Chirico R.D., Cowell A.B. et al. // J. Chem. Eng. Data. 2002. 47 (4). P. 700.
- 18. Steele W.V., Chirico R.D., Knipmeyer S.E., Nguyen A. // Ibid. 1997. **42**. P. 1021. 19. Steele W.V., Chirico R.D., Knipmeyer S.E., Nguyen A. // Ibid. 2002. **47**. P. 648.
- 20. Wojcik M.J. // J. Mol. Struct. 2005. P. 225.
- 21. Roux M.V., Temprado M., Chickos J.S. // J. Chem. Thermodyn. 2005. 37. P. 941.
- 22. Riipinen I., Koponen I.K., Frank G.P. et al. // J. Phys. Chem. A. 2007. 111. P. 12995.
- 23. Bilde M., Svenningsson B., Mnster J., Rosenrn T. // Environ. Sci. Technol. 2003. 37. P. 1371.
- 24. *Saleha R., Walkerb J., Khlystova A.* // Aerosol Science. 2008. **39**. P. 876.
- 25. Steele W.V., Chirico R.D., Cowell A.B. et al. // J. Chem. Eng. Data. 2002. 47. P. 725.