УДК 621.311

Термообработка угольного слоя СВЧ-энергией: численное исследование в условиях теплосброса радиацией и конвекцией

В.А. Карелин, В.В. Саломатов

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: vad2hen@mail.ru, salomatov.vv@mail.ru

Добываемый с поверхности или из недр земли уголь крайне редко пригоден для непосредственного использования и требует подготовки, основанной на физических и/или химических методах удаления определенных компонентов для повышения качества угля до требуемого уровня. Высокая влажность приводит к снижению энергоэффективности работы котла, поэтому процесс сушки топлива является необходимым этапом углеподготовки, а снижение затрат энергии на удаление влаги — актуальной задачей. Один из способов понижения влажности состоит в обработке угля микроволновым излучением. По сравнению с другими способами микроволновая сушка обладает следующими особенностями и важными преимуществами: 1) объёмный нагрев; 2) селективный нагрев (в высушенных областях отсутствует поглощение энергии); 3) низкая тепловая инерционность. Однако данный способ требует высоких энергозатрат и возникает необходимость поиска энергоэффективных режимов обработки. В настоящей работе построена модель сушки, с помощью метода конечных элементов найден оптимальный режим сушки слоя на примере бурого угля Таловского месторождения и определены энергозатраты.

Ключевые слова: CBЧ-излучение, электромагнитный нагрев, сушка, теплоизлучение, конвекция, уголь, энергозатраты.

Введение

Нагрев и сушка влажных материалов является актуальной задачей в промышленной, пищевой, строительной отраслях. Масштабы использования сушки особенно значительны в угольной энергетике, так как на тепловые электрические станции и котельные, как правило, поступает влажное топливо, которое для сжигания необходимо подсушивать (по российским требованиям до конечной влажности в 10 %) [1-4]. Дальнейшее повышение эффективности угольных ТЭС и выполнение ужесточенных экологических норм стимулирует разработку новых технологий термообработки энергетических углей. Большие возможности предоставляет способ обработки угля с участием СВЧ-энергии [5-9]. К преимуществам СВЧ-обработки можно отнести низкую инерционность; избирательный характер нагрева — в уже высушенных областях энергия не расходуется, так как вода является одним из наиболее эффективных с точки зрения поглощения СВЧ-энергии компонентов; высокую скорость процесса, обусловленную тем, что, в отличие от конвективной сушки, нагрев начинается внутри слоя диэлектрического материала, а не на поверхности. Также для определенных материалов возникают дополнительные преимущества, в частности, при СВЧ-сушке угля происходит удаление азота и снижение содержания

© Карелин В.А., Саломатов В.В., 2022

серы [10]. Особо важно отметить, что энергозатраты на испарение при традиционных видах сушки составляют до 3,0 кВт·ч/кг, а при СВЧ-сушке они снижаются до 1,6–1,8 кВт·ч/кг. Время традиционной сушки составляет от 8 до 20 часов, а в условиях СВЧ-сушки при прочих равных условиях оно уменьшается до 4 часов [11]. Кроме улучшения экологических и экономических факторов, применение СВЧ-энергии в процессе сушки угольного топлива повышает взрывобезопасность, снижает металлоемкость сушильных агрегатов. Таким образом, использование микроволнового излучения для сушки угля отвечает задачам инновационного развития твердотопливной энергетики [12–15].

Дальнейшее изучение проблемы СВЧ-сушки требует разработки математических подходов с целью получения расчетных данных, с помощью которых должны обеспечиваться экологичность, экономичность, энергоэффективность, безопасность и другие качественные стороны технологии СВЧ-сушки. Широкому тиражированию СВЧ-технологий в угольной энергетике, к которым в мире на сегодня проявляется повышенный интерес, мешает главным образом слабая разработка научных основ взаимосвязанных, достаточно сложных электрофизических и теплофизических процессов. Использовать в полной мере преимущества микроволнового воздействия на качественную термоподготовку угля и его сушку возможно лишь при наличии, во-первых, современных математических моделей и средств их реализации, во-вторых, банка экспериментальных данных воздействия СВЧ на влажный уголь. Как указывают результаты анализов патентов и опубликованных статей, применение подверженных СВЧ-излучению низкосортных углей обеспечивает улучшение работы угольных ТЭС в следующих направлениях: повышение общей эффективности, снижение эксплуатационных затрат, расширение возможностей одновременного использования разных марок углей, оздоровление окружающей среды [16].

В указанных выше работах стоит отметить подходы, связанные с моделированием источника тепла. Один из подходов заключается в решении уравнений Максвелла, а истоковый член выводится из электрического поля. Второй метод связан с законом Бугера. Он заключается в расчете объемного источника тепла исходя из глубины проникновения микроволн в диэлектрик. Этот метод не требует расчета электрического поля внутри нагретых материалов, что определяет простоту расчетов. В целом следует отметить, что для задач, близких к одномерным, второй подход является наиболее оптимальным, так как обеспечивает высокую точность и существенно снижает вычислительные затраты.

Весьма важным моментом при моделировании является учет изменяющихся в ходе СВЧ-обработки теплофизических и электрофизических свойств. Как правило, указанные параметры принимаются постоянными, что безусловно влияет на точность расчетов. Также используется подход, основанный на вычислении средних значений данных свойств в зависимости от содержания фаз (пар, вода, твердый скелет), что в целом позволяет учитывать влияние влажности на свойства образца. Однако для наиболее точных расчетов необходимо проведение измерений этих свойств в зависимости от влажности и образца, что было сделано авторами в работах [17, 18].

Модель тепло- и массопереноса при СВЧ-сушке угля

Образец угля представляет собой пористый материал, включающий твердый скелет, жидкую воду и газ, состоящий из пара и воздуха. Схематически образец угля изображен на рис. 1.

Пористость угля задается отношением общего объема пор к объему всего тела:

$$\varphi = \frac{\Delta V_{\text{пор}}}{\Delta V} = \frac{\Delta V_{\text{B}} + \Delta V_{\text{газа}}}{\Delta V}.$$
 (1)

Рис. 1. Элементарный объем угля.

Было сделано предположение о том, что скелет твердого тела в процессе СВЧ-сушки не меняется и, следовательно, пористость остается постоянной. Скорости газообразной и жидкой фаз на поверхности угля можно описать с использованием закона Дарси:

$$v_{\text{пов},i} = -\frac{k_i k_{r,i}}{\mu_i} \nabla P, \qquad (2)$$

здесь индекс і обозначает жидкую или газо-

образную фазу. Давление, используемое в формуле (2), можно представить в виде суммы парциального давления пара и воздуха:

$$P = p_{\pi a p} + p_{BO3}.$$

Внутри угольного слоя, в зависимости от объема каждой из фаз, скорости можно представить в виде

$$v_i = -\frac{1}{S_i \varphi} \cdot \frac{k_i k_{r,i}}{\mu_i} \nabla P,$$

здесь S_i в соответствии со значением индекса является водонасыщенностью или газонасыщенностью и представляет собой отношение объема, занимаемого фазой i, к объему всей поры.

Для жидкой фазы необходимо учитывать влияние капиллярного давления, поэтому эффективное давления для воды запишется в виде

$$p_{\rm B} = P - p_{\rm капил}.$$

Тогда скорость жидкости внутри пор, с учетом поправки на давление, будет определяться как

$$v_{\rm B} = -\frac{1}{S_{\rm B}\varphi} \cdot \frac{k_{\rm B}k_{r,\rm B}}{\mu_{\rm B}} \nabla P + \frac{1}{S_{\rm B}\varphi} \cdot \frac{k_{\rm B}k_{r,\rm B}}{\mu_{\rm B}} \cdot \frac{\partial p_{\rm Kafinj}}{\partial S_{\rm B}} \nabla S_{\rm B}.$$

Введя коэффициент капиллярной диффузии и концентрацию воды

$$\begin{split} D_{\rm k} = & -\frac{k_{\rm B}k_{r,\rm B}}{\varphi\mu_{\rm B}} \cdot \frac{\partial p_{\rm kafihm}}{\partial S_{\rm B}}, \\ & c_{\rm B} = \rho_{\rm B}\varphi S_{\rm B}, \end{split}$$

получим окончательное выражение для скорости жидкой воды в виде

$$v_{\rm B} = -\frac{1}{S_{\rm B}\varphi} \cdot \frac{k_{\rm B}k_{r,\rm B}}{\mu_{\rm B}} \nabla P - \frac{D_{\rm K}}{c_{\rm B}} \nabla c_{\rm B}.$$

Для записи закона сохранения массы каждой из фаз необходимо учесть поток вещества фазы и фазовые переходы. Тогда получим три соотношения:

— для воды:
$$\frac{\partial c_{\rm B}}{\partial t} + \nabla (v_{\rm B}c_{\rm B}) = -I;$$

— для газа: $\frac{\partial c_{\rm r}}{\partial t} + \nabla (v_{\rm r}c_{\rm r}) = I;$

для пара, где необходимо учесть также эффект бинарной диффузии:

$$\frac{\partial c_{\Pi}}{\partial t} + \nabla \left(v_{\Gamma} c_{\Pi} \right) = \nabla \left(S_{\Gamma} \varphi \frac{C^2}{\rho_{\Gamma}} M_{BO3} M_{\Pi} D_{\Gamma} \nabla x_{\Pi} \right) + I,$$

здесь $c_{\Pi} = \omega_{\Pi}c_{\Gamma}$, $c_{BO3} = \omega_{BO3}c_{\Gamma}$, $\omega_{BO3} = 1 - \omega_{\Pi}$.

На рис. 2 представлена схема СВЧ-сушки слоя угля. Как было описано ранее, при СВЧ-сушке внутри слоя угля возникает объемный источник энергии q_V , который наравне с конвекцией (за счет движущихся фаз), кондуктивностью и фазовым переходом необходимо учитывать при записи закона сохранения энергии:

$$\left[\sum_{i=\mathrm{T},\mathrm{B},\mathrm{II},\mathrm{BO3}} \left(c_{i}c_{p,i}\right)\right] \frac{\partial T}{\partial t} + c_{i}v_{i}\nabla \left[\sum_{i=\mathrm{B},\mathrm{II},\mathrm{BO3}} \left(c_{p,i}T\right)\right] = \nabla \left(k_{\mathrm{3}\varphi}\nabla T\right) - \lambda I + q_{V}\left(x,t\right).$$

Поглощенная мощность может быть представлена в виде закона Бугера с учетом изменяющейся мнимой части диэлектрической проницаемости и коэффициента поглощения в экспоненте по мере изменения температуры и влажности в заданной точке:

$$q_V(x,t) = \frac{1}{2}\omega\varepsilon_0\varepsilon''(x,t)|E_0|^2 e^{-k(x,t)x}$$

При этом диссипация энергии магнитного поля из-за низкой магнитной проницаемости здесь не учитывается.

Эффективная теплопроводность может быть рассчитана как средняя по всем фазам угля. Для рассматриваемого вида угля данная зависимость, а также зависимость ряда электрофизических и теплофизических свойств, была получена авторами экспериментально в работах [17, 18]. Так, изменение фазы описывается соотношением

$$I = K \frac{M_V}{RT} \left(p_{\Pi, \text{равн}} - p_n \right).$$

В соответствии с рис. 2 были выбраны следующие граничные условия: — давление на поверхности равно давлению окружающей среды:

Рис. 2. Схема электромагнитной сушки влажного плоского слоя угля.

$$P|_{S} = P_{\text{o.c.}};$$

поток воды и пара на поверхности задается с помощью испарения:

$$\begin{split} j_{\mathbf{n},\mathbf{B}} \Big|_{S} &= h_{\mathrm{T}} \varphi S_{\mathrm{B}} \left(\rho_{\mathrm{II}} - \rho_{\mathrm{II,o.c.}} \right), \\ j_{\mathbf{n},\mathrm{II}} \Big|_{S} &= h_{\mathrm{T}} \varphi S_{\mathrm{T}} \left(\rho_{\mathrm{II}} - \rho_{\mathrm{II,o.c.}} \right); \end{split}$$

 поток тепла с поверхности задается с помощью конвекции, радиации, испарения воды на поверхности и удаления воды в виде пара:

$$\begin{aligned} q_{\mathrm{n}}\big|_{S} &= h\big(T - T_{\mathrm{o.c.}}\big) + \sigma\big(T^{4} - T^{4}_{\mathrm{o.c.}}\big) - h_{\mathrm{T}}\varphi S_{\mathrm{B}}\big(\rho_{\mathrm{fI}} - \rho_{\mathrm{II,o.c.}}\big)\lambda - \\ &- h_{\mathrm{T}}\varphi \big(S_{\mathrm{B}} + S_{\mathrm{T}}\big)\big(\rho_{\mathrm{fI}} - \rho_{\mathrm{II,o.c.}}\big)c_{\mathrm{p,II}}T. \end{aligned}$$

Расчет методом конечных элементов

При проведении численного моделирования использовался метод конечных элементов по неявной схеме, важными этапами которого является разбиение исходной области на части, которые образуют расчетную сетку, и перевод дифференциальных уравнений задачи в систему обыкновенных дифференциальных уравнений, решаемых для каждого узла сетки. Размер элементов сетки подбирался из исследований на сеточную сходимость и считался приемлемым при достижении отличия получаемых решений не более 0,1 %.

При моделировании использовалась двумерная геометрия, что обуславливалось равномерностью потока СВЧ-излучения. Размеры слоя задавались следующими: 0,2 — высота, 0,4 м — ширина. При этом в качестве элементов сетки использовались треугольники в количестве 3150 (см. рис. 3).

Результаты

Результаты расчетов представлены на рис. 4-6. Был выбран момент времени t = 100 с после начала СВЧ-обработки. На рисунках показано соответственно распределение температуры, влажности и скорости сушки по слою.

В результате применения закона Бугера потери энергии электромагнитной волны внутри угольного слоя снижаются по мере увеличения глубины, графически это изображено на рис. 7.

Рис. 3. Расчетная сетка.

Рис. 5. Распределение влажности по угольному слою в момент времени t = 100 с.

Рис. 6. Распределение скорости сушки по угольному слою в момент времени *t* = 100 с.

Из приведенных результатов видно, что температура достигает максимума вблизи поверхности, на которую падает СВЧ-излучение. Это обеспечивает высокую скорость выхода влаги. Кроме того, в уже высушенных областях энергия не расходуется из-за низкой мнимой части диэлектрической проницаемости, что положи-

тельно сказывается на эффективности процесса. Следует отметить, что полученные распределения близки к одномерным, а это в частных случаях малой глубины слоя (большого значения ширины) позволяет использовать дополнительные упрощения.

В представленной работе также была исследована зависимость времени сушки (до достижения конечной влажности 5 % и менее) от напряженности электрического поля, которое напрямую определяет энергозатраты. Результаты показаны на рис. 8. Здесь можно отметить следующие моменты. При увеличении напряженности электрического поля от 3500 В/м и выше температура по слою угля способна достигать 200 °C, что может привести к нежелательным переходам и при этом не позволяет достигнуть значительного сни-

жения времени протекания процесса, сильно увеличивая энергозатраты. С другой стороны, снижение напряженности поля от 1500 В/м и ниже приводит к резкому снижению эффективности сушки и увеличению времени процесса. Анализ энергозатрат показал, что наиболее эффективным будет

Рис. 7. Распределение поглощенной микроволновой мощности по угольному слою в момент времени *t* = 100 с.

Рис. 8. Зависимость времени сушки от напряженности электрического поля.

использование напряженности, соответствующей значению 2000-2200 В/м, что приводит к энергозатратам около 2,1-2,2 кВт·ч/кг. По сравнению с менее удачными режимами это позволяет получить увеличение эффективности до 15 %.

Авторами также были проведены сравнения расчетов предложенной модели с экспериментальным исследованием СВЧ-сушки рассматриваемого вида угля [19], а также с данными работы по комбинированному микроволновому нагреву пористых тел [20]. При подстановке соответствующих значений свойств материала и геометрии образца температурные распределения и временное изменение влажности показали отличие до 12 % и 9 % соответственно, что свидетельствует о высокой точности.

Выводы

В настоящей работе рассматривался плоский слой бурого угля Таловского месторождения под воздействием СВЧ-излучения. Авторами построена и решена численно модель нагрева и сушки слоя, учитывающая такие явления, как конвективный и радиационный потоки с поверхности, поток пара и жидкости, фазовые переходы и ряд других процессов. Определены температурные распределения, изменение влажности, скорость сушки и ряд других параметров процесса, на основе которых найдена оптимальная мощность, необходимая для процесса сушки, которая соответствует энергозатратам 2,1–2,2 кВт[•]ч/кг.

Список литературы

- Коновалов Н.П. Технология деструкции бурых углей методом нагрева энергией сверхвысоких частот. Иркутск: Изд-во ИрГТУ, 2000. 92 с.
- Hong Y.-d., Lin B.-q., Li H., Dai H.-m., Zhu C.-j., Yao H. Three-dimensional simulation of microwave heating coal sample with varying parameters // Applied Thermal Engng. 2016. Vol. 93. P. 1145–1154.
- 3. Lin B., Li H., Chen Z., Zheng C., Hong Y., Wang Z. Sensitivity analysis on the microwave heating of coal: a coupled electromagnetic and heat transfer model // Applied Thermal Engng. 2017. Vol. 126. P. 949–962.
- Meda V., Orsat V., Raghavan V. Microwave heating and the dielectric properties of foods. Woodhead Publishing Series in Food Sci. Technology and Nutrition. 2017. P. 23–43.
- Song Z., Jing C., Yao L., Zhao X., Wang W., Mao Y., Ma C. Microwave drying performance of single-particle coal slime and energy consumption analyses // Fuel Proc. Technology. 2016. Vol. 143. P. 69–78.
- 6. Mushtaq F., Mat R., Farid N.A. Fuel production from microwave assisted pyrolysis of coal with carbon surfaces // Energy Conversion and Management. 2016. Vol. 110. P. 142–153.
- Song Z., Yao L., Jing C., Zhao X., Wang W., Ma C. Drying behavior of lignite under microwave heating // Drying Technology. Accepted author version posted online: 2016, Published online: 2017. P. 433–443.
- Mishra R.R., Sharma A.K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing // Composites Part A: Applied Sci. and Manufacturing. 2016. Vol. 81. P. 78–97.
- Liu H.-P., Chen T.-P., Li Y., Song Z.-Y., Wang S.-W., Wu S.-H. Temperature rise characteristics of Zhun Dong coal during microwave pyrolysis // Fuel Processing Technology. 2016. Vol. 148. P. 317–323.
- Хайдурова А.А., Федчишин В.В., Коновалов Н.П. Микроволновая сушка бурых углей и повышение их технологических характеристик. Изв. ВУЗов. Проблемы энершетики. Казань: Изд-во КГЭУ. 2010. С. 31–35.

- Patent USA WO 2007/115267A2. Methods and systems for enhancing solid fuel properties / Weinberg J.L., Ginther N.E., Aten J.A., Wand R.T., Drozd J.M.
- Feng Y, Hu T., Wu M., Shangguan J., Fan H., Mi J. Effect of microwave irradiation on the preparation of iron oxide/arenaceous clay sorbent for hot coal gas desulfurization // Fuel Proc. Technology. 2016. Vol. 148. P. 35–42.
- Li H., Lin B., Yang W., Zheng C., Hong Y., Gao Y., Liu T., Wu S. Experimental study on the petrophysical variation of different rank coals with microwave treatment // Intern. J. Coal Geology. 2016. Vol. 154–155. P. 82–91.
- 14. Thue P.S., dos Reis G.S., Lima E.C., Joseph M. Sieliechi G.L. DottoAlfred G.N. Wamba S.L.P., Dias Pavan F.A. Activated carbon obtained from sapelli wood sawdust by microwave heating for o-cresol adsorption. Research on Chemical Intermediates. February. 2017. Vol. 43, Iss. 2. P. 1063–1087.
- Hong Y.-d., Lin B.-q., Zhu, C.-j., Li H. Effect of microwave irradiation on petrophysical characterization of coals // Applied Thermal Engng. 2016. Vol. 102. P. 1109–1125.
- Sun J., Wang W., Yue Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies // Open Access. Materials. 2016. Vol. 9, No. 4. P. 231–256.
- Karelin V. A., Zavorin A.S., Salomatov VI.V., Tabakaev R.B., Salomatov V.V. Investigation of the elemental and technical composition and thermophysical properties of coal samples from the Talovsky deposit of Siberia // IOP Conf. Series. J. Physics: Conf. Series. 2018. Vol. 1128. P. 012101-1–012101-6.
- Karelin V. A., Salomatov VI.V., Chernousov Y.D. Investigation of electrophysical properties of a control coal samples from Talovsky deposit in Siberia // J. Physics: Conference Series (JPCS). 2018. Vol. 1105. P. 012103-1– 012103-6.
- Salomatov VI.V., Karelin V.A. Laboratory setup for microwave drying of brown moisture carbon // J. Physics: Conf. Series, 2020. Vol. 1677, Iss. 1. P. 012107-1–012107-5.
- Rakesh V., Datta A.K., Walton J.H., McCarthy K.L., McCarthy M.J. Microwave combination heating: coupled electromagnetics- multiphase porous media modeling and MRI experimentation // AIChe J. 2011. Vol. 58, Iss. 4. P. 1262–1278.

Статья поступила в редакцию 30 апреля 2021 г., после доработки — 13 сентября 2021 г., принята к публикации 14 декабря 2021 г.