2009. Том 50, № 3

Май – июнь

C. 527 – 531

УДК 547.854

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ ЭТИЛ-4-(5-БРОМ-2-ГИДРОКСИФЕНИЛ)-6-МЕТИЛ-2-ОКСО-1,2,3,4-ТЕТРАГИДРОПИРИМИДИН-5-КАРБОКСИЛАТА И ЭТИЛ-1-МЕТИЛ-15-ОКСО-2-ОКСА-14,16-ДИАЗАТЕТРАЦИКЛО [11.3.1.0^{3.12}.0^{6.11}]ГЕПТАДЕКА-3,5,7,9,11-ПЕНТАЕН-17-КАРБОКСИЛАТА

© 2009 М.М. Курбанова¹*, А.В. Курбанов¹, Р.К. Аскеров¹, М.А. Аллахвердиев¹, В.Н. Хрусталев², А.М. Магеррамов¹

¹Бакинский государственный университет, Азербайджан ²Институт элементоорганических соединений им. А.Н. Несмеянова, Москва

Статья поступила 23 июля 2008 г.

Методом РСА определены кристаллические структуры этил-4-(5-бром-2-гидроксифенил)-6-метил-2-оксо-1,2,3,4-тетрагидропиримидин-5-карбоксилата и этил-1-метил-15-оксо-2окса-14,16-диазатетрацикло[11.3.1.0^{3.12}.0^{6.11}]гептадека-3,5,7,9,11-пентаен-17-карбоксилата и выявлены конформационные особенности их структур.

Ключевые слова: рентгеноструктурный анализ, кристаллическая структура, этил-4-(5-бром-2-гидроксифенил)-6-метил-2-оксо-1,2,3,4-тетрагидропиримидин-5-карбоксилат, этил-1-метил-15-оксо-2-окса-14,16-диазатетрацикло[11.3.1.0^{3.12}.0^{6.11}]гептадека-3,5,7,9,11пентаен-17-карбоксилат.

Как известно, 3,4-дигидропиримидиноны являются блокаторами кальциевых каналов, и введение их 1975 г. в медицину стало очень важным шагом для лечения сердечно-сосудистых заболеваний, таких как гипертония и сердечная аритмия [1].

С целью изучения влияния гидроксильной группы в 4-арильном радикале на структурные параметры биологически активных дигидропиримидинонов нами были исследованы трехкомпонентные реакции карбамида, ацетоуксусного эфира с 5-бром-салициловым альдегидом и 2-гидрокси-1-нафтальдегидом в присутствии трихлоруксусной кислоты. Исследования в этом направлении привели к неожиданным результатам [2, 3]. В случае 5-бром-салицилового альдегида продуктом реакции стал этил-4-(5-бром-2-гидроксифенил)-6-метил-2-оксо-1,2,3,4-тетрагидропиримидин-5-карбоксилат (I).

Нами впервые было обнаружено [2,3], что единственным продуктом трехкомпонентной конденсации 2-гидрокси-1-нафтальдегида, ацетоуксусного эфира и карбамида в присутствии трихлоруксусной кислоты оказался этил-1-метил-15-оксо-2-окса-14,16-диазатетрацикло-[11.3.1.0^{3.12}.0^{6.11}]гептадека-3,5,7,9,11-пентаен-17-карбоксилат (**II**).

В настоящей работе нами проведен рентгеноструктурный анализ соединений I и II.

^{*} E-mail: mkurbanova72@mail.ru

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез соединений I и II описан в работах [2,3]. Кристаллы для РСА получены двукратной кристаллизацией соединений I и II из этанола.

Рентгеноструктурное исследование соединений **I** и **II** проведено на дифрактометре Bruker APEX II CCD (T = 100 K, λMoK_{α} -излучение, графитовый монохроматор, φ - и ω -сканирование, $2\theta_{max} = 56^{\circ}$).

Кристаллы I (C₁₄H₁₅BrN₂O₄, M_r = 355,19) желтые, $T_{пл}$ = 190 °C, размер 0,20×0,20×0,20 мм, моноклинные: a = 9,3207(2), b = 16,841(2), c = 10,0908(13) Å, $\beta = 116,678(1)^\circ$, V = 1415,3(3) Å³, пространственная группа $P2_1/n$, Z = 4, $d_c = 1,667$ г/см³, $\mu = 2,922$ мм⁻¹. Измерены интенсивности 12247 отражений (3383 независимых отражения, $R_{int} = 0,037$), для которых введена полуэмпирическая поправка на поглощение с помощью программы SADABS [4].

Кристаллы II (C₁₈H₁₈N₂O₄, M_r = 326,34) бесцветные, $T_{пл}$ = 212 °C, размер 0,30×0,30× ×0,30 мм, моноклинные: a = 10,2937(7), b = 16,8895(11), c = 9,6065(7) Å, $\beta = 112,2820(10)$ °, V = 1545,43(18) Å³, пространственная группа $P2_1/c$, Z = 4, $d_c = 1,403$ г/см³, $\mu = 0,100$ мм⁻¹. Измерены интенсивности 13480 отражений (3707 независимых отражений $R_{int} = 0,016$), для которых введена полуэмпирическая поправка на поглощение с помощью программы SADABS [5].

Структуры соединений I и II расшифрованы прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Атомы водорода гидрокси- и аминогрупп выявлены объективно в разностных Фурье-синтезах и уточнены в изотропном приближении с фиксированными позиционными и тепловыми параметрами ($U_{3KB}(H) =$ = 1,5 $U_{3KB}(O)$ и $U_{3KB}(H) = 1,2U_{3KB}(N)$). Координаты остальных атомов водорода рассчитаны из геометрических соображений и уточнены с фиксированными позиционными (модель "наездника") и тепловыми параметрами ($U_{3KB}(H) = 1,5U_{3KB}(C)$ для метильных групп и $U_{3KB}(H) = 1,2U_{3KB}(C)$ для всех остальных групп). Окончательные факторы расходимости равны $R_1 = 0,032$ для 3038 независимых отражений с $I > 2\sigma(I)$ и $wR_2 = 0,081$ для всех независимых отражений для соединения I и $R_1 = 0,035$ для 3472 независимых отражений с $I > 2\sigma(I)$ и $wR_2 = 0,093$ для всех независимых отражений в случае соединения II. Все расчеты проведены с помощью комплекса программ SHELXTL PLUS [5].

Структуры I и II депонированы в Кембриджский банк структурных данных (СССС 694407—694408).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Строение и кристаллическая упаковка соединения I показаны на рис. 1 и 2, длины связей и валентные углы приведены в табл. 1.

Молекула I содержит длинную цепь сопряженных связей

$$\begin{array}{c} N(3)H \\ 0(3) = C(13) - C(5) = C(6) - N(1) - C(2) = O(1) \\ H \\ H \end{array}$$

Из данных таблицы хорошо видно, что одинарные связи C(13)—C(5), C(6)—N(1), N(1)—C(2) и C(2)—N(3) укорочены, а двойные связи O(3)=C(5), C(5)=C(6) и C(2)=O(1) удлинены в сравнении со среднестатистическими значениями. Кроме того, атомы азота дигидропиримидинового цикла имеют плоскотригональную конфигурацию (суммы валентных углов при атомах N(1) и N(3) равны 359,8 и 355,5°), соответствующую sp^2 -гибридизованному

Рис. 1. Молекулярная структура соединения І

Рис. 2. Водородные связи и упаковка молекул соединения I в кристалле. Водородные связи показаны штриховыми линиями

состоянию. Легкое искажение плоской конфигурации для атома азота N(3) объясняется наличием в молекуле I слабой внутримолекулярной водородной связи N(3)—H...O(2) [N...O 2,841(2), H...O 2,38 Å, угол N—H...O 112°].

Благодаря описанному сопряжению тетрагидропиримидиновый цикл имеет конформацию уплощенной ванны (аналогичную конформации 1,4-дигидропиримидинового цикла) с выходом атомов C(4) и N(1) из плоскости остальных атомов цикла на –0,287 и –0,161 Å соответственно. Подобное строение имеет большинство соединений, родственных соединению I [6—13].

С фармакологической точки зрения наиболее важным аспектом соединения I является пространственное расположение функциональных групп при центральном пиримидиновом цикле. Как следствие сопряжения, карбоксильная группа расположена практически в плоскости C(5)C(6)C(2)N(3) пиримидинового цикла (торсионный угол O(3)—C(13)—C(5)—C(6) равен

Таблица 1

Связь	d		Связь		d	Связь		d		Связь	d
Br(1) - C(11)	1,904(2)		N(1) - C(2)		1,374(2)	C(5)—C(6)		1,3	56(3)	C(8) - C(9)	1,394(3)
O(1) - C(2)	1,245(2)		N(1) - C(6)		1,386(2)	C(5) - C(13)		1,4	/5(3)	C(9) - C(10)	1,381(3)
O(2) - C(8)	1,363(3)		C(2) - N(3)		1,337(2)	C(6) - C(16)		1,49	98(2)	C(10)-C(11)	1,384(3)
O(3)—C(13)	1,208(2)		N(3) - C(4)		1,471(2)	C(7) - C(12)		1,3	87(3)	C(11)-C(12)	1,390(3)
O(4)—C(13)	1,350(2)		C(4)-	-C(5)	1,510(2)	C(7)—C(8)		1,4	,405(2) C(14)-C(15)		1,495(3)
O(4)—C(14)	1,45	66(2) C(4)-C(7) 1,526(3)									
Угол	Угол		ω		Угол		ω		Угол		ω
C(13)—O(4)—C(14)		116,1	16,36(16)		C(10)—C(11)—Br(1)			5)	N(1)—C(6)—C(16)		113,39(16)
C(2) - N(1) - C(6)		122,	86(16)	C(12) - C(11) - Br(1)			118,80(15)		C(12)-C(7)-C(8)		118,65(17)
O(1) - C(2) - N(3)		123,45(17)		C(7)—C(12)—C(11)			120,19(18)		C(12)-C(7)-C(4)		122,54(16)
O(1) - C(2) - N(1)		120,61(16)		O(3)—C(13)—O(4)			122,82(18)		C(8)—C(7)—C(4)		118,77(17)
N(3) - C(2) - N(1)		115,9	93(17)	O(3)—C(13)—C(5)			126,40(18)		O(2)—C(8)—C(9)		122,53(17)
C(2) - N(3) - C(4)		125,	,74(16) O(4)		-C(13)-C(5)		110,77(16)		0(2)—	-C(8)—C(7)	117,08(17)
N(3) - C(4) - C(5)		109,4	,42(14) O(4)-		-C(14)-C(15)		109,94(1	8)	C(9)—C(8)—C(7)		120,39(19)
N(3)—C(4)—C(7)		110,	95(15) C(6)-		-C(5)-C(4)		119,92(1	7)	C(10)—C(9)—C(8)		120,44(18)
C(5)—C(4)—C(7) 112		113,4	45(16)	C(13)-	-C(5)-C(5)	(4)	118,37(16)		C(9)—	C(10)—C(11)	119,08(18)
C(6)—C(5)—C(13) 12		121,	70(16)	C(5)—C(6)—N(1		1)	119,70(17)		C(10)-	-C(11)-C(12)	121,23(19)
				C(5)-	-C(6)-C(1	16)	126,90(1	8)			

Основные межатомные расстояния d (Å) и валентные углы ω (град.) для соединения I

Рис. 3. Молекулярная структура соединения **II**

-6,0(3)°). Фенильный цикл занимает биологически активное аксиальное положение [14, 15] с углом по отношению к плоскости пиримидинового цикла 108,3°. Его угол разворота (торсионный угол N(3)— C(4)—C(7)—C(8) равен –60,1(2)°) определяется влиянием отмеченной выше внутримолекулярной водородной связи.

Соединение I хирально и имеет асимметричный центр при атоме углерода С(4). Кристалл этого соединения представляет рацемат (рис. 2).

В кристалле энантиомеры образуют центросимметричние димеры посредством водородных связей N(1)—H...O(1) (-x+2, -y+1, -z+1) [N...O 2,982(2), H...O 2,07 Å, угол N—H...O 174°]. Димеры связаны в бесконечные цепочки вдоль оси *с* посредством водородных связей O(2)—H...O(1) (-x+2, -y+1, -z+2) [O(2)...O(1) 2,704(2), H...O(1) 1,77 Å, угол O(2)— H...O(1) 173°].

О Строение и кристаллическая упаковка соединения **II** показаны на рис. 3 и 4, длины связей и валентные углы приведены в табл. 2.

Молекула II содержит полициклическую систему с жесткой геометрией. Положение нафтильного заместителя фиксировано в биоактивной конформации, т.е. практически перпендикулярно к плоскости пиримидинового цикла (угол между соответствующими плоскостями равен 79,5°), мостиковым атомом кислорода [14, 15]. При этом оба шестичленных цикла в образующемся бициклическом фрагменте принимают конформации уплощенных несимметричных полукресел (отклонения атомов C(13) и C(17) от плоскости остальных атомов пиримидинового цикла равны -0,298 и 0,527 Å; отклонения атомов C(1) и C(17) от плоскости остальных атомов пиранового цикла равны -0,235 и 0,609 Å). Вследствие отталкивающих стерических взаимодействий карбоксильный заместитель тетрагидропиримидинового цикла занимает аксиальное положение в *транс*-ориентации карбонильной группы к связи C(1)—C(17).

Атомы азота тетрагидропиримидинового цикла имеют плоско-тригональную конфигурацию (суммы валентных углов при атомах N(14) и N(16) равны 356,8 и 359,9° соответственно). Незначительное отклонение от планарности атома азота N(16) также объясняется образованием

жесткого бициклического каркаса при циклизации через атом кислорода.

Соединение II является диастереомером с тремя асимметричными центрами при атомах C(1), C(13) и C(17). Кристалл изученного соединения представляет рацемат с относительной конфигурацией хиральных атомов — $rac-1R^*$, $13R^*$, $17S^*$.

В кристалле энантиомеры образуют центросимметричные димеры посредством водородных связей N(16)—H...O(1)

Рис. 4. Водородные связи и упаковка молекул соединения **II** в кристалле. Водородные связи показаны штриховыми линиями

Таблица 2

Связь	d		Связь		d	Связь		d		Связь	d
C(1)—N(16)	1,4391(1	1) C(4	C(4)—C(5)		1,3629(15)	C(10)-	C(11)	1,4	4190(14)	C(15)—O(1)	1,2417(11)
C(1)—O(2)	1,4650(1	1) C(:	C(5)—C(6)		1,4209(15) C(11		-C(12)	1,4296(13)		C(15)—N(16)	1,3623(12)
C(1)—C(18)	1,5152(1	3) C(6	6)—C((7)	1,4151(14)	C(12)-	-C(13)	1,5	5094(12)	C(17)—C(19)	1,5211(12)
C(1)—C(17)	1,5299(1	2) C(6	6)—C((11)	1,4247(13)	C(13)-	-N(14)	1,4	4650(11)	C(19)—O(3)	1,2114(12)
O(2)—C(3)	1,3734(1	1) C(7	7)—C((8)	1,3671(17)	C(13)-	-C(17)	1,5	5344(12)	C(19)—O(4)	1,3228(11)
C(3)—C(12)	1,3761(1	3) C(8	8)—C((9)	1,4076(16)	N(14)-	-C(15)	1,3	3580(12)	O(4)—C(20)	1,4659(11)
C(3)—C(4)	1,4184(1	3) C(9	9)—C((10)	1,3758(14)					C(20)—C(21)	1,5116(14)
Угол	Угол		ω		Угол		ω		Угол		ω
N(16)—C(1)	N(16)—C(1)—O(2)		10,26(7)		C(10)—C(11)—C(118,12(9)		C(19)—C(17)—C(1)		119,03(8)
N(16)—C(1)	N(16) - C(1) - C(18)		10,24(7)		C(10)—C(11)—		122,82(9)	C(19)—C(17)—C(13		107,82(7)
O(2)—C(1)—	-C(1)-C(18)		02,50(7)		C(6)—C(11)—C(12		119,05(9)	C(7)—C	C(6) - C(5)	121,19(9)
N(16)—C(1)	C(1) - C(17) 1		09,78(7)		C(3)—C(12)—C		1) 119,21(C(7)—C	C(6) - C(11)	119,44(10)
O(2)—C(1)—	O(2) - C(1) - C(17)		06,75(7)		C(3)—C(12)—C() 118,66(C(5)—C	C(6) - C(11)	119,33(9)
C(18)—C(1)—C(17)		116,94	16,94(8) C(1		11)-C(12)-C(13)		122,12(8)		C(8)—C	C(7) - C(6)	121,07(10)
C(3) - O(2) - C(1)		117,82	7,82(7) N(1		14)-C(13)-C(12)		112,55(7)		C(7)—C	C(8)—C(9)	119,77(10)
O(2)—C(3)—	-C(12)	123,54	4(8)	N(1	4)—C(13)—	-C(17)	106,68(7)	C(10)—	C(9)—C(8)	120,72(11)
O(2)—C(3)—C(4) 1		114,57	4,57(8) C(1		2)—C(13)—C(17)		109,34(7)	C(1)—C	C(17) - C(13)	106,13(7)
C(12)—C(3)—C(4) 1		121,86	,86(9) C(1		5)—N(14)—C(13)		120,79(8) O(3)—C		C(19)—O(4)	124,32(9)
C(5)—C(4)—C(3) 1		119,46	9,46(9) O(1)-C(15)-N(14)		121,61(8) O(3)—C		C(19) - C(17)	120,10(8)
C(4) - C(5) - C(6)		121,06	21,06(9) O(1)—C(15)—N(16)		121,35(8)	O(4)—C	C(19) - C(17)	115,58(8)
C(9)—C(10)—C(11)		120,83	120,83(10)		N(14)—C(15)—N(5) 117,03(C(19)—	O(4)—C(20)	116,65(8)
				C(1	5)—N(16)—	-C(1)	125,90(8)	O(4)—C	C(20) - C(21)	110,86(8)

Основные межатомные расстояния d (Å) и валентные углы (0) (град.) для соединения II

(-*x*+1, -*y*+1, -*z*+1) [N...O 2,856(1), H...O 1,95 Å, угол N—H...O 179°]. Димеры образуют трехмерную упаковку посредством водородных связей N(14)—H...O(3) (*x*, -*y*+0,5, *z*-0,5) [N...O 2,895(1), H...O 2,02 Å, угол N—H...O 165°].

СПИСОК ЛИТЕРАТУРЫ

- 1. Kappe C.O., Fabian W.H.F., Semones M.A. // Tetrahedron. 1997. 53. P. 2803.
- 2. Курбанова М.М. //Азерб. хим. журн. 2008. № 3. С. 195.
- 3. Магеррамов А.М., Курбанова М.М. и др. // ЖПХ. 2006. 79, № 5. С. 796.
- 4. *Sheldrick G.M.* SADABS, v. 2.03, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2003.
- 5. Sheldrick G.M. SHELXTL, v. 6.12, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 2001.
- 6. Shang Z.-H., Shang Q. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2007. 63. P. o2280.
- 7. Tu S., Fang F., Miao C. et al. // Tetrahedron Lett. 2003. 44. P. 6153.
- 8. Yang B.-J., Li J.-J., Li Z.-H. et al. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2006. 62. P. 01431.
- 9. Kappe C.O., Fabian W.M.F., Semones M.A. // Tetrahedron. 1997. 53. P. 2803.
- 10. Rovnyak G.C., Kimball S.D., Beyer B. et al. // J. Med. Chem. 1995. 38. P. 119.
- 11. Cheng Q.-F., Xu X.-Y., Bao J.-Y. et al. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2007. 63. P. o2391.
- 12. Biacquiere J.M., Sicora O., Vogels C.M. et al. // Canad. J. Chem. 2005. 83. P. 2052.
- 13. Li M., Guo W.-S., Wen L.-R. et al. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2005. 61. P. o531.
- 14. Cheng Q.-F., Xu X.-Y., Shi P.-F., Hu X.-L. // Ibid. 2007. 63. P. 0468.
- 15. Goldmann S., Stoltefuss J. // Angew. Chem. 1991. 103. S. 1587.