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Рассмотрена одна из возможных постановок обратной задачи идентификации вихревой
структуры по значениям векторов скорости течения в наборе точек и предложен алго-
ритмический метод ее решения. Подход основан на представлении вихревой структуры
в виде комбинации вихрей Рэнкина. При этом под идентификацией понимается опреде-
ление количества модельных вихрей, их интенсивностей, центров и радиусов. Метод со-
стоит в минимизации в пространстве параметров модельной системы целевого функцио-
нала, оценивающего близость известных и моделируемых векторов скорости. Алгоритм
включает следующие этапы: поиск начального приближения для вихревой структуры,
уточнение параметров модельных вихрей, коррекция полученной структуры. Для реше-
ния прямой задачи прогноза развития течения используется решение начально-краевой
задачи для уравнений Эйлера динамики идеальной жидкости спектрально-вихревым
методом. Приведены результаты тестовых расчетов с использованием предложенного
подхода. Показано, что во всех рассмотренных тестах модельная система достаточно
точно описывает топологию линий тока при идентификации, составлен прогноз на вре-
менах, соответствующих изменению топологии течений.
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Введение. Знание структуры вихревых течений необходимо при решении таких про-
блем, как оптимизация характеристик летательных аппаратов, технологических устано-
вок, прогнозирование перемещений воздушных и морских масс, формирование застойных
зон в трубах и каналах и др. Анализ конфигурации течения сводится к поиску вихревых
пятен, которые являются своего рода каркасом потока. Задачи идентификации структуры
течения являются особенно сложными, в случае если информация о течениях ограничена,
вследствие чего актуально развитие методов и алгоритмов на основе ограниченных дан-
ных. Это приводит к необходимости решения обратных задач, когда имеется информация
о поле скорости течения, а неизвестными являются структура потока и порождающие ее
вихри.

Анализ вихревых течений должен выходить за рамки визуального контроля и осно-
вываться на количественных критериях и корректных алгоритмах автоматического обна-
ружения вихрей. При использовании таких подходов необходимы идентификация вихре-
вой конфигурации, анализ ее структуры, отслеживание развития вихревого течения. На
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первом этапе определяются характеристики вихревой структуры в поле потока. В насто-
ящее время наиболее известными методами идентификации вихрей являются Q-, λ2-, ∆-
и λci-критерии [1–4], а также использование космических снимков высокого разрешения
в сочетании с экспертными оценками [5]. В последнее время для идентификации вихрей
применяются также нейронные сети и методы машинного обучения [6, 7]. Еще одним под-
ходом является использование топологических свойств потока во всей области течения

или в ее подобластях [8–10]. В [11–14] проведен сравнительный анализ некоторых ме-
тодов обнаружения вихрей. Для визуализации течений широко применяются различные
методы идентификации структуры течения [15]. Для использования указанных методов
необходима детальная информация о течениях, однако она не всегда доступна. На втором
этапе детально изучаются структура поля скорости вихревой конфигурации, его особые
точки, сепаратрисы и т. д., что позволяет применять методы теории динамических си-
стем [16, 17]. Для прогноза развития вихревой конфигурации в пространстве и времени
обычно используется численное решение нестационарных уравнений гидродинамики. Пря-
мые методы решения этих задач хорошо развиты. В результате вычислений определяется
динамика поля скорости и других характеристик течения, что позволяет анализировать
и прогнозировать структуру потока во времени [18–21].

Одной из возможных постановок обратной задачи идентификации вихревых структур

в случае ограниченной информации о течениях является восстановление их характери-
стик с помощью математических моделей. Известно, что даже сложные вихревые течения
жидкости достаточно точно описываются такими математическими моделями, как систе-
мы точечных вихрей и уравнения Эйлера динамики несжимаемой идеальной жидкости.
В работе [22] предложен метод идентификации, основанный на использовании малого на-
бора известных векторов скорости течения и математической модели системы точечных

вихрей на плоскости. В данном случае под идентификацией понимается вычисление коор-
динат точечных вихрей на плоскости и их интенсивностей. В работах [23, 24] этот подход
был развит, в частности экспериментально исследована область применимости метода
как для идентификации, так и для прогноза развития вихревой структуры. Алгоритм
идентификации эффективно сходится в том случае, когда вихревая структура состоит
из достаточно удаленных друг от друга вихрей при выборе опорных точек (с известным
вектором скорости течения) в областях, где линии тока течения и модельной системы то-
пологически эквивалентны. Однако установлено, что в ряде случаев метод неприменим.
Во многом это определяется дефектами модельной системы точечных вихрей. Основными
ее недостатками являются сингулярность модельного векторного поля в точечном вихре и,
как следствие, большое значение скорости в его окрестности. Это противоречит парамет-
рам течения в реальных плоских вихрях, в центре ядра которых скорость жидкости равна
нулю, а в его окрестности мала. Также в [23, 24] показано, что получаемые результаты
существенно зависят от исходной информации (количества и координат известных векто-
ров), что естественно при решении обратных задач, а также от начального приближения
для модельной системы.

Для того чтобы устранить указанные выше недостатки системы точечных вихрей,
можно использовать модели вихревой динамики, адекватно описывающие поле скорости
во всей области течения и динамические процессы. В данной работе для оценки положения
и интенсивностей вихрей в структуре плоского течения на основе информации о векторах

скорости течения в конечном наборе опорных точек используется приближение вихревой

структуры с помощью распределенных в пространстве вихрей Рэнкина. Для прогноза раз-
вития вихревой структуры используются нестационарные уравнения Эйлера и их числен-
ное решение. Предложен алгоритм построения начального приближения для параметров
модельной вихревой конфигурации на основе скользящего сканирования по пространству.
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1. Идентификация и прогноз вихревого течения. В настоящее время общепри-
нятое определение вихря отсутствует, поэтому задача идентификации вихревой структу-
ры допускает различные формулировки и не является математически корректной. Одним
из возможных подходов является описание плоского вихревого течения с использованием

таких характеристик, как количество вихрей, координаты их центров, а также оценка раз-
меров и интенсивности вихрей на основе доступной информации. Для поиска указанных
параметров вихревой структуры можно использовать различные математические модели

плоской вихревой динамики [25], т. е. применять обратные методы, в случае если известны
характеристики течения, а неизвестными являются количество вихрей и их параметры.
Одной из возможных постановок обратной задачи является восстановление характеристик

течения по векторам его поля скорости [22–24]. Такая постановка рассматривается в дан-
ной работе. Заметим, что решение подобных задач не только существенно затруднено, но
и может оказаться некорректным, при этом построенные решения могут быть не един-
ственными [26, 27].

1.1. Идентификация вихревой структуры по векторам скорости течения. Пусть в
некоторый момент времени t0 известны векторы скорости вихревого течения в наборе,
включающем N опорных точек, в некоторой области D ∈ R2:

U = {u(j) = (u
(j)
1 (x(j), y(j)), u

(j)
2 (x(j), y(j))), j = 1, . . . , N}. (1)

Здесь (x(j), y(j)) — координаты опорных точек; u(j) — вектор скорости течения в них. Тре-
буется определить интенсивности, размеры и координаты центров вихрей, формирующих
данное течение.

Для идентификации вихревой структуры (описания вихревой структуры в начальный
момент времени t = t0) по набору векторов (1) будем использовать конфигурацию, состо-
ящую из K вихрей Рэнкина [28], представляющих собой круглые вихри радиусом Ai с

постоянной завихренностью Wi внутри круга, вращающиеся как твердое тело с постоян-
ной угловой скоростью. Вихрь Рэнкина— наиболее простая математическая модель вихря,
являющаяся решением уравнений Эйлера и более приближенная к реальности, чем модель
точечного вихря. В частности, это решение лишено основного недостатка точечных вих-
рей — не имеет сингулярностей поля скорости. Вихри Рэнкина широко используются при
разработке численных методов решения задач вихревой динамики и при математическом

моделировании [25, 29, 30]. Распределение завихренности Ω(i) и функция тока Ψ(i) вихря

Рэнкина с центром в точке (xi, yi) ∈ D имеют вид

Ω(i)(xi, yi,Wi, Ai, x, y) =

{
0, r > Ai,

Wi, r 6 Ai;
(2)

Ψ(i)(xi, yi,Wi, Ai, x, y) =

{ −(Wi/2)A2
i ln r, r > Ai,

−(Wi/4)(r2 − A2
i (1− 2 ln (Ai))), r 6 Ai;

(3)

r =
√

(x− xi)2 + (y − yi)2.

Компоненты вектора скорости, порождаемого вихрем Рэнкина в точке с координатами
(x, y), выражаются через функцию тока (3) стандартным образом:

v
(i)
1 (xi, yi,Wi, Ai, x, y) = −∂Ψ(i)(xi, yi,Wi, Ai, x, y)

∂y
,

(4)

v
(i)
2 (xi, yi,Wi, Ai, x, y) =

∂Ψ(i)(xi, yi,Wi, Ai, x, y)

∂x
.
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В качестве модельного поля будем использовать поле скорости, определяемое конфи-
гурацией вихрей Рэнкина с множеством параметров

P = {K, (xi, yi,Wi, Ai, i = 1, . . . , K)} (5)

и распределением завихренности

ΩM (P ) =
K∑

i=1

Ω(i)(xi, yi,Wi, Ai, x, y). (6)

Компоненты вектора скорости

v(P, x, y) = (v1(P, x, y), v2(P, x, y)) =

=
( K∑

i=1

v
(i)
1 (xi, yi,Wi, Ai, x, y),

K∑
i=1

v
(i)
2 (xi, yi,Wi, Ai, x, y)

)
(7)

определяются выражениями (3), (4). Модельное поле скорости v(P, x, y) задано в любой
точке области течения и определяется параметрами P .

Под идентификацией вихревой структуры будем понимать поиск набора парамет-
ров P ∗, такого что поле скорости v(P ∗, x, y) описывает исходный набор векторов U . Рас-

смотрим набор векторов поля (7) в опорных точках (x(j), y(j)), j = 1, . . . , N , где известны
векторы скорости (1) вихревой структуры

V (P ) = {v(j) = (v
(j)
1 = v1(P, x

(j), y(j)), v
(j)
2 = v2(P, x

(j), y(j))), j = 1, . . . , N}. (8)

Если U ≡ V (P ∗), то естественно предположить, что модельная конфигурация (6), (7)
полностью описывает вихревое течение.

Для двух векторов проблемы сравнения не возникает: сравниваются величина угла
между ними и их длины. На основе этих величин заданы различные оценочные величины,
которые рассматривались во многих работах (см., например, [31]).При сравнении векторов
u, v будем использовать величины

d(u,v) =
‖u− v‖
‖u‖+ ‖v‖

, φ(u,v) =
1

2

(
1− (u,v)

‖u‖ ‖v‖

)
. (9)

Здесь d(u,v) — длина векторов; φ(u,v) — угол между ними. Обе величины принимают
значения в интервале [0, 1], равны нулю при u = v и единице при u = −v.

Для сравнения двух наборов векторов U и V (P ) в множестве опорных точек

{(x(j), y(j)), j = 1, . . . , N} будем использовать выражение

σ(U, V (P )) =
N∑

j=1

[cj(u
(j),v(j)) d(u(j),v(j)) + Cj(u

(j),v(j))φ(u(j),v(j))], (10)

где cj(u
(j),v(j)), Cj(u

(j),v(j)) — весовые коэффициенты, которые в работах [23, 24] пола-
гались положительными константами, причем cj = 1 − Cj . В данной работе в качестве
весовых коэффициентов используются положительные функции, учитывающие длины век-
торов v(j). В результате численных экспериментов эмпирически обнаружено, что сходи-
мость описанного ниже алгоритма улучшается при использовании функций

cj(u
(j),v(j)) =

3

4

∥∥∥v(j)

Um

∥∥∥1,8
, Cj(u

(j),v(j)) =
1

4

∥∥∥v(j)

Um

∥∥∥1,8
, Um = max

j=1,...,N
|u(j)‖. (11)

Такой выбор весовых коэффициентов позволяет увеличить вклад в оценку (10) векторов
с большей длиной.
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Если U ≡ V (P ), то очевидно, что σ(U, V (P )) = 0. В силу идеализации математиче-
ской модели и ограниченности информации о течении совпадение наборов векторов (1)
и (8) маловероятно. Будем считать, что чем меньше величина σ(U, V (P )), тем ближе два
набора векторов U и V (P ) и тем более точно модельное поле скорости описывает вихревую
конфигурацию. Иными словами, наборы векторов U и V (P ) близки в указанном смысле,
если (10) достигает минимума в пространстве параметров системы P .

В итоге идентификация вихревой структуры в предложенной постановке сводится к

поиску параметров конфигурации вихрей Рэнкина, минимизирующих (10):

P ∗ = min
P

σ(U, V (P )). (12)

Для численного поиска минимума (12) в данной работе используется комбинированный
алгоритм на основе методов Ньютона и градиентного спуска.

Если искомый набор параметров P ∗ найден, то структуру линий тока и векторы ско-
рости течения можно построить с помощью (3) при P = P ∗.

Предложенная постановка задачи идентификации вихревой структуры имеет недо-
статки, характерные для обратных задач математической физики. Она не является ма-
тематически корректной, не всегда разрешима, решение может быть не единственным,
результат может существенно зависеть от выбора и количества опорных точек, порож-
дающих набор U , и т. д. Например, очевидно, что для течений со сложной структурой
корректная идентификация при малых N невозможна. Анализ предложенного подхода за-
труднен, однако результаты работ [22–24] подтвердили эффективность использования ме-
тода для идентификации ряда течений с помощью систем точечных вихрей, имеющих
существенные недостатки, отсутствующие у конфигурации вихрей Рэнкина.

1.2. Прогноз развития вихревой структуры. Если минимизирующий (10) набор па-
раметров P ∗ найден, то возможны прогноз и анализ развития вихревой структуры. Для
этого будем решать нестационарную начально-краевую задачу для уравнений Эйлера иде-
альной несжимаемой жидкости. В обозначениях завихренности ω(t, x, y) и функции тока
ψ(t, x, y) эта задача имеет вид

ωt + ψyωx − ψxωy = 0; (13)

−(ψxx + ψyy) = ω. (14)

Здесь t — время; x, y — координаты; нижний индекс означает производную по соответ-
ствующей переменной. Функция тока ψ связана с полем скорости v = (v1, v2) равенствами
v1 = −ψy, v2 = ψx, поэтому ω = rot v = v2x − v1y = −∆ψ. Систему уравнений (13), (14)
можно рассматривать в различных областях при разных граничных условиях. В данной
работе рассматривается квадратная область D, включающая все опорные точки (1). На
границе D будем использовать условия непротекания ψ∂D = 0. В качестве начального

условия следует задать распределение завихренности полученной конфигурации вихрей

Рэнкина

ω(0, x, y) = ΩM (P ∗). (15)

Задача решается на интервале t ∈ [0, T ], где T — время прогноза.
2. Алгоритмы метода. Предлагаемый метод идентификации и прогноза вихревого

течения включает алгоритмы поиска значений параметров приближающей течение мо-
дельной вихревой структуры; построения начального приближения для алгоритма поиска
значений параметров; решения начально-краевой задачи для уравнений динамики жид-
кости. Ниже приведено описание этапов алгоритма. Исходной информацией для метода
является набор (1), т. е. координаты опорных точек (x(j), y(j)) и векторы u(j) поля скоро-
сти течения в них. Далее будем считать, что областью течения является прямоугольник
D = [0, a]× [0, b], включающий все опорные точки и векторы (1).
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2.1. Алгоритм IDVS (identification of vortex system (идентификация системы вихрей))
минимизации величины σ(U, V (P )). На данном этапе необходимо задать исходную инфор-
мацию. В частности, требуется указать набор Ũ опорных векторов вида (1), которым
может быть весь набор (1) или его подмножество, а также задать начальное приближение
параметров модельной конфигурации (6), (7): количество вихрей Рэнкина K и начальное

приближение

P (0) = {K (x
(0)
i , y

(0)
i ,W

(0)
i , A

(0)
i , i = 1, . . . , K)} (16)

для параметров модельного векторного поля (7). Кроме того, необходимо указать пара-
метры метода безусловной минимизации: начальный шаг h и точность ε метода, размер
шага δ для численного дифференцирования по параметрам модельной системы с помощью
конечных разностей, число шагов метода градиентного спускаM , максимальное число ша-
гов алгоритма Mmax, минимальный размер шага hmin. В качестве набора опорных точек
и векторов используется набор Ũ ⊆ U , который может совпадать с (1).

Алгоритм P ∗ = IDVS (Ũ , P (0), h, ε, δ,M,Mmax, hmin) поиска параметров модельной си-
стемы (12) включает следующие шаги:

1. Шаг метода поиска минимума:

P (m+1) =

{
P (m) − h∇σ(Ũ , V (P (m))), m 6 M,

P (m) − h[∇2σ(Ũ , V (P (m)))](−1)∇σ(Ũ , V (P (m))), m > M

(∇σ, ∇2σ — градиент и матрица Гессе выражения (10) по параметрам модельной конфи-
гурации P соответственно). Для вычисления производных используется аппроксимация
центральными разностями.

2. Проверка условия

‖∇σ(Ũ , V (P (m+1)))‖ < ε. (17)

Если условие (17) выполнено, то найдено приближение вихревой конфигурации P ∗ =

P (m+1) и работа алгоритма прекращается. В противном случае выполняется переход к сле-
дующему шагу алгоритма.

3. Проверка условия ‖∇σ(Ũ , V (P (m+1)))‖ < ‖∇σ(Ũ , V (P (m)))‖. При выполнении усло-
вия h = 1,01h, в противном случае h = 0,5h, P (m+1) = P (m).

4. Проверка условий m < Mmax и h > hmin при m = m + 1. При выполнении обоих
условий осуществляется переход к п. 1 алгоритма, в противном случае — “аварийное”
окончание работы.

Для достижения корректной сходимости алгоритма необходимо указать хорошее на-
чальное приближение P (0). Ниже описан алгоритм его построения. Результатом примене-
ния алгоритма IDVS являются параметры P ∗: {(x∗j , y∗j ),W ∗

j , A
∗
j , j = 1, . . . , K}, минимизи-

рующие величину (12), т. е. параметры модельного поля (7).
Приведем результаты применения алгоритма для исходной конфигурации, состоящей

из трех вихрей Рэнкина:

Ω(1)(0,25, 0,35, 3, 0,2, x, y), Ω(2)(1,2, 0,3, 2, 0,3, x, y), Ω(3)(0,75, 1,2, 2,5, 0,5, x, y).

Для набора U использовались 100 опорных векторов в узлах равномерной сетки в пря-

моугольнике D = [0, 1] × [0, 1]. Начальные приближения: координаты (x
(0)
i , y

(0)
i ) в D, ин-

тенсивности W
(0)
i ∈ [−3, 3], радиусы вихрей A

(0)
i ∈ [0,05, 0,20] задавались случайным об-

разом. Проведено несколько сотен расчетов, в том числе для поиска вида функций (11).
В 97 % случаев метод сходился к тестовой конфигурации. Одной из найденных численно
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конфигураций является следующая: x1 = 0,2499, y1 = 0,3500, W1 = 2,9295, A1 = 0,202 34;
x2 = 1,1999, y2 = 0,3000, W2 = 1,9999, A2 = 0,3000; x3 = 0,7500, y3 = 1,2000, W3 = 2,4991,
A4 = 0,2500. Таким образом, метод сошелся практически к значениям исходной конфигу-
рации, а имеющаяся погрешность может быть обусловлена используемым набором U .

2.2. Алгоритм INITAP (init approximation (начальное приближение)) построения на-
чального приближения для идентификации вихревой структуры. В работах [23, 24] ал-
горитм, описанный в подп. 2.1, применялся для поиска параметров системы точечных

вихрей, которые использовались для построения модельного векторного поля. В результа-
те исследования установлено, что сходимость метода существенно зависит от начального
приближения и наличия априорной оценки количества вихрей в структуре. Кроме того,
показано, что наилучшие результаты работы алгоритма получены при идентификации

одного вихря, причем даже при малом числе опорных векторов набора (1). С учетом это-
го ниже предложен алгоритм построения начального приближения для идентификации

вихревой структуры с использованием скользящего сканирования области течения D.
При построении применяется алгоритм IDVS (см. подп. 2.1) в прямоугольном скани-

рующем окне Ds для поиска в нем одного вихря (K = 1) с использованием опорных точек и
векторов, расположенных в Ds. Последовательно используются несколько размеров скани-
рующих окон, которые перемещаются в D с некоторым шагом hs. Найденные в результате
сходимости вихри генерируют их распределение в D. На основе этого распределения опре-
деляются количество вихрей во всей области течения и их оценочные характеристики.

Алгоритм P (0) = INITAP (U, lx, ly, {D(j)
s , j = 1, . . . , ks}, hs). Для построения началь-

ного приближения введем в D разбиение S: {S(j), j = 1, . . . , lx × ly} на прямоугольные
ячейки размером ha = a/lx, hb = b/ly, где lx, ly — число ячеек по осям координат. Каждой

ячейке S(j) с номером j поставим в соответствие счетчик попавших в нее вихрей N
(j)
S , их

суммарные интенсивностьW
(j)
S и радиус A

(j)
S . Определим несколько размеров прямоуголь-

ных сканирующих окон D
(j)
s = a

(j)
s × b

(j)
s , j = 1, . . . , ks, a

(j)
s < a/2, b

(j)
s < b/2. Алгоритм

INITAP включает задание параметров алгоритма IDVS. Далее для Ds = D
(j)
s , j = 1, . . . , ks

выполняются следующие шаги:
1. Задание начального положения окна Ds в левом нижнем углу D и величин

W̃ (0) = ws, Ã
(0) = As, определяющих начальное приближение значений интенсивности

и радиуса искомого вихря в Ds.
2. При Ds ∈ D выполнение следующих операций:

а) P̃ = IDVS (Ũ , P̃ (0), h, ε, δ,M,Mmax, hmin). Здесь Ũ : Ũ ∈ U и Ũ ∈ D(j)
s . Начальное при-

ближение P̃ (0): {K = 1, x̃(0), ỹ(0), W̃ (0), Ã(0)}, где (x̃(0), ỹ(0)) — координаты центра текущего

окна Ds;

б) если P̃ 6= ∅ и P̃ ∈ Ds, то N
(j)
S = N

(j)
S + 1, W

(j)
S = W

(j)
S + W̃ , A

(j)
S = A

(j)
S + Ã.

Здесь j — номер ячейки, содержащей найденный вихрь с координатами (x̃, ỹ); W̃ , Ã — его

интенсивность и радиус соответственно;
в) смещение сканирующего окна на шаг hs, ws = −ws. Возврат к шагу 2.
В результате реализации данных этапов алгоритма будет построено распределе-

ние NS : {N (j)
S , j = 1, . . . , lx × ly} найденных вихрей в D. В силу ограниченности ин-

формации о поле скорости в сканирующем окне Ds возможна сходимость алгоритма к

ложным вихрям. По-видимому, вероятность того, что в ячейке S(j) находится центр ис-

тинного идентифицируемого вихря, тем выше, чем больше N
(j)
S (количество вычислен-

ных вихрей с центром в ячейке с номером j). Зададим константу Nmin и далее будем

рассматривать ячейки только с N
(j)
S > Nmin. Затем определим изолированные “пятна”
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завихренности в полученном распределении Ñ : {N (j)
S > Nmin, j = 1, . . . , lx × ly}. “Пят-

ном” будем считать подмножество ячеек, граничащих c N
(j)
S > Nmin, которые окружены

ячейками с N
(j)
S 6 Nmin. В каждом “пятне” определим ячейку с максимальным значением

N
(im)
S . В результате будет получено начальное приближение P (0) к вихревой структуре ви-

да (16). Количество вихрей K(0) в P (0) определяется числом “пятен” в распределении Ñ .

Для каждого вихря с номером i = 1, . . . , K(0) приближения к координатам его центра

x
(0)
i , y

(0)
i определяются координатами центра ячейки с N

(im)
S , а значения завихренности и

радиуса — величинами W
(0)
i = W

(im)
S /N

(im)
S и A

(0)
i = A

(im)
S /N

(im)
S соответственно.

2.3. Алгоритм VID (vortex identification (идентификация вихря)) идентификации вих-
ревой структуры. Алгоритмы, представленные в подп. 2.1, 2.2, позволяют реализовать
многопроходный метод идентификации VID вихревой структуры, включающий следую-
щие шаги:

1. Задание количества проходов алгоритма Mn, m = 1. В начальный момент Ũ = U
(U — исходный набор векторов (1)), P ∗ = ∅. Задание параметров алгоритмов INITAP и

IDVS (см. подп. 2.1, 2.2).

2. P (0) = INITAP (Ũ , lx, ly, {D(j)
s , j = 1, . . . , ks}, hs).

3. P (m) = IDVS (Ũ , P (0) ∪ P ∗, h, ε, δ,M,Mmax, hmin).

4. P ∗ = P ∗ ∪ P (m).
5. Вычисление модельного векторного поля Ṽ = V (P ∗) (см. (4), (7), (8)).

6. Проверка условия m 6 Mn при m = m+ 1. Если m 6 Mn, то Ũ = Ũ −V и выполня-
ется переход к п. 2, в противном случае P ∗ — искомые параметры вихревой конфигурации.

Результатом успешной работы алгоритма являются параметры модельной системы

вихрей Рэнкина P ∗ вида (5)–(7). Ниже данный алгоритм применяется для идентификации
двух тестовых вихревых структур.

2.4. Алгоритм расчета динамики вихревой конфигурации. Если параметры модель-
ной вихревой структуры P ∗ вычислены, то прогноз развития течения можно проводить,
используя численное решение нестационарных двумерных задач динамики жидкости с на-
чальным распределением завихренности ΩM (P ∗) в области D вида (6). В данной работе
для этого используются уравнения Эйлера идеальной жидкости (13)–(15).

При решении задачи (13)–(15) применяется спектрально-вихревой метод, который для
замкнутых и проточных областей подробно описан в работах [18, 21, 32], а для перио-
дических граничных условий — в [33]. Алгоритм основан на следующих положениях: в
начальный момент времени в D задается множество маркированных частиц с координа-
тами (xi, yi), i = 1, . . . , Np и значением завихренности ωi в соответствии с (15), ωi пассивно

переносится частицей согласно (13); для каждого значения t с помощью кубических мно-
гочленов и метода наименьших квадратов строится кусочно-непрерывная аппроксимация

поля ω(t, x, y); функция тока определяется в виде ψ(x, y) ≈ ψ̂(x, y) =
m∑

i=1

ψi(t)φi(x, y), где

φi(x, y) — базисные функции; ψi(t) — коэффициенты, которые находятся аналитически как
решение уравнения (14) методом Галеркина; полученное приближение для функции тока
используется для расчета траекторий маркированных частиц как решения задачи Коши

вида ẋi = −∂ψ̂
∂y

(xi, yi), ẏi =
∂ψ̂

∂x
(xi, yi) методом Рунге — Кутты. Алгоритм может быть

эффективно распараллелен (см. [32]), что позволяет достаточно быстро прогнозировать
развитие вихревой структуры.
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Рис. 1. Исходное векторное поле и вычисленные вихри (точки) для тестовой
вихревой конфигурации t = 0 (а), а также распределение количества Ns полу-
ченных решений (12) (б) при скользящем сканировании области D

3. Пример идентификации и прогноза развития вихревой структуры. Рас-
смотрим квадратную область течения D = [a × a], a = 1,8 с условиями непротекания на
границе, заполненную жидкостью с начальным распределением завихренности (6) вида

ω(0, x, y) =

{
sin (2π(x− 0,4)/a) sin (2π(y − 0,4)/a), 0,4 6 x, y 6 a− 0,4,

0, x < 0,4, y > a− 0,4.
(18)

Распределение завихренности (18) принадлежит классу вихрей Тейлора — Грина.
В качестве тестового примера будем использовать решение задачи (13), (14), (18),

полученное спектрально-вихревым методом [18, 21, 32] на интервале t ∈ [0, 210].
3.1. Идентификация вихревой структуры. Идентификация вихревой структуры про-

водилась для двух моментов времени: t = 0 и t = 110. В качестве исходного набора U
(см. (1)) используются опорные точки, расположенные в узлах равномерной сетки раз-
мером 20 × 20 в области D, и векторы скорости в этих точках, определяемые решением
тестовой задачи. На рис. 1,a, 2,a представлен набор U для t = 0, на рис. 2,б — для t = 110.
В расчетах с использованием алгоритма VID Mn = 2.

При поиске начального приближения к вихревой структуре с помощью алгоритма

INITAP использовались сканирующие окна Ds с длинами сторон lx = ly = a/7, a/6, a/5,
a/4 и шагом смещения окна по координатам hs = lx/8. При построении распределения
вычисленных при сканировании NS вихрей (см. подп. 2.2) использовалось разбиение S на

25× 25 ячеек, т. е. рассматривались квадратные ячейки S(j) с длиной стороны a/25. При
построении NS вихрей на шаге 2a алгоритма INITAP использовались следующие входные

параметры алгоритма IDVS (см. подп. 2.1): P (0) = {U (j),K = 1, x
(j)
c , y

(j)
c , Ω(0) = 0,1×(−1)j ,

A(0) = 0,1}, где U (j) = U ∈ Ds; h = 0,005; ε = 0,0001; Mmax = 500; hmin = 10−9.
Для тестовой вихревой структуры при t = 0 (рис. 3,a) в результате применения алго-

ритма скользящего сканирования с указанными параметрами было найдено 568 решений
уравнения (12). На рис. 1,a точками показано распределение найденных решений. Видно,
что некоторые решения находятся на достаточно большом расстоянии от центров вихрей

тестовой вихревой конфигурации и могут быть интерпретированы как ложные. На рис. 1,б
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Рис. 2. Исходное векторное поле (серые стрелки) и модельные векторные поля
в результате первого (темно-серые стрелки) и второго (черные стрелки) прохо-
ждения алгоритма VID для тестовой вихревой структуры:
a — t = 0, б — t = 110; точки— центры найденных вихрей Рэнкина модельной системы

(темные — в результате первого прохождения алгоритма VID, светлые — в результате

второго прохождения)
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Рис. 3. Распределения завихренности в D для тестовой структуры при t = 0 (а–в)
и t = 110 (г–е):
a, г — тестовая структура, б, д — модельная структура после первого прохождения алго-
ритма VID, в, е — модельная структура после второго прохождения алгоритма VID
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Результаты первого прохождения алгоритма идентификации тестовой вихревой структуры

i x
(0)
i y

(0)
i Ω(0)

i A
(0)
i x∗i y∗i Ω∗

i A∗
i Ω∗

i xi yi Ωi

1 0,61 0,46 0,72 0,15 0,643 0,559 0,779 0,163 0,065 0,65 0,525 0,051
2 0,68 0,75 −0,79 0,09 0,646 0,781 −0,865 0,176 −0,084 0,65 0,775 −0,051
3 0,68 1,04 0,69 0,04 0,645 1,018 0,861 0,176 0,084 0,65 1,025 0,051
4 0,61 1,33 −0,74 0,16 0,644 1,241 −0,777 0,163 −0,065 0,65 1,275 −0,051
5 1,19 0,47 −0,73 0,16 1,156 0,559 −0,778 0,163 −0,065 1,15 0,525 −0,051
6 1,12 0,76 0,68 0,04 1,154 0,781 0,862 0,176 0,084 1,15 0,775 0,051
7 1,12 1,04 −0,82 0,11 1,154 1,019 −0,864 0,176 −0,084 1,15 1,025 −0,051
8 1,19 1,33 0,72 0,15 1,156 1,241 0,779 0,163 0,065 1,15 1,275 0,051

Прим е ч а н и е. i — номер вихря; x
(0)
i , y

(0)
i , Ω(0)

i , A
(0)
i — соответственно координаты центров,

интенсивности и радиусы вихрей Рэнкина, полученные в результате применения алгоритма INITAP;
x∗i , y∗i , Ω∗

i , A∗
i — координаты центров, интенсивности и радиусы вихрей Рэнкина, полученные в

результате первого прохождения алгоритма VID; xi, yi, Ωi — координаты центров завихренности

и интенсивности вихрей тестовой структуры.

приведено распределение количества найденных решений в области D.Максимальное чис-

ло вихрей N
(max)
S = maxj N

(j)
S , попавших в ячейку с номером j, равно 47. Сгущения ве-

личины NS имеют место в окрестности центров вихрей идентифицируемой структуры,

т. е. истинных вихрей. В качестве величины Nmin будем использовать величину N
(max)
S /8.

В результате отсева ложных вихрей установлено, что после первого прохождения m = 1
шага 2 алгоритма VID начальное приближение к тестовой вихревой структуре описыва-
ется восемью (K = 8) вихрями Рэнкина с характеристиками, приведенными в таблице
(графы 2–5).

На шаге 3 алгоритма VID модельная вихревая структура уточняется с помощью ал-
горитма IDVS с использованием полученного начального приближения P (0) = {K = 8,

(x
(0)
i , y

(0)
i ,W

(0)
i , A

(0)
i , i = 1, . . . , 8)} (значения параметров вихрей Рэнкина см. в таблице),

Ũ = U при указанных выше параметрах алгоритма. Результатом применения алгоритма
является конфигурация P ∗ из восьми вихрей Рэнкина с характеристиками, приведенными
в таблице (графы 6–10). На рис. 2,a эти вихри показаны темными точками, а модельное
векторное поле в опорных точках — темно-серыми стрелками. Центры (x∗i , y

∗
i ) модельных

вихрей и вихрей тестовой структуры (xi, yi) (графы 11–13 в таблице) оказались близки.
Различие их интенсивностей частично объясняется тем, что модельные вихри взаимно
перекрываются (рис. 3,б). Модельный V (P ∗) (см. (8)) и исходный U наборы векторов

качественно идентичны, несмотря на то что имеется их количественное различие (см.
рис. 2,a). Распределение завихренности модельной системы, состоящей из вычисленных
восьми вихрей Рэнкина, приведено на рис. 3,б.

При втором прохождении алгоритма VID в качестве исходных векторов используют-
ся векторы невязки полученных при первом прохождении модельного и тестового полей

скорости в опорных точках: Ũ = U − V (P ∗). Это позволяет уточнить модельную струк-
туру вихрей Рэнкина и уменьшить отклонение модельного векторного поля от набора U .
В результате второго прохождения алгоритма модельная вихревая структура была допол-
нена 12 вихрями Рэнкина (светлые точки на рис. 2,a), т. е. включает 20 вихрей. Интен-
сивность вихрей, найденных в результате второго прохождения алгоритма, меньше, чем
в результате первого прохождения. Распределение завихренности, определяемое модель-
ной системой, полученной в результате второго прохождения алгоритма VID, показано
на рис. 3,в. Уточненное модельное векторное поле в опорных точках (черные стрелки на
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Рис. 4. Распределения завихренности и линии тока в различные моменты времени:
а–г — тестовая структура, д–з — прогноз с начальными данными, определяемыми модельной
системой после первого прохождения алгоритма VID, и–м — прогноз после второго прохожде-
ния алгоритма VID; а, д, и — t = 0, б, е, к — t = 20, в, ж, л — t = 45, г, з, м — t = 100

рис. 2,a) менее существенно отличается от заданного набора U . Аналогичные вычисления
проводились для тестовой вихревой структуры при t = 110. Распределение завихренности
в D этой структуры приведено на рис. 3,г. Результат первого прохождения алгоритма
VID представлен на рис. 2,б. В этом случае в результате первого прохождения найдены
девять вихрей Рэнкина, после второго прохождения модельная конфигурация включает 16
вихрей Рэнкина. Второе прохождение алгоритма VID позволило существенно уменьшить

различие наборов V (P ∗) и U . Распределение завихренности, определяемое модельной си-
стемой, после первого прохождения алгоритма показано на рис. 3,д, а после второго — на

рис. 3,е. В этом случае некоторые вихри, построенные в результате второго прохождения
алгоритма, имеют интенсивность, сравнимую с интенсивностями вихрей после первого

применения алгоритма VID.

3.2. Прогноз развития вихревой структуры. Для прогноза развития вихревой струк-
туры использовалось решение задачи (13)–(15) спектрально-вихревым методом (см.
подп. 2.4) с начальными условиями, определяемыми построенной в результате иденти-
фикации вихревой структуры модельной системой вихрей Рэнкина. Рассматривались ре-
шения с начальными распределениями, которые были получены в результате первого и
второго прохождений алгоритма идентификации VID и сравнивались с решением тестовой
задачи (13), (14), (18).
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Рис. 5. Распределения завихренности и линии тока в различные моменты времени:
а–г — тестовая структура, д–з — прогноз с начальными данными, определяемыми модельной
системой после первого прохождения алгоритма VID, и–м — прогноз после второго прохожде-
ния алгоритма VID; а, д, и — t = 110, б, е, к — t = 130, в, ж, л — t = 155, г, з, м — t = 210

Результаты расчета для интервала t ∈ [0, 110] представлены на рис. 4. В этом случае
идентификация проводилась для набора U , порождаемого тестовой задачей при t = 0. На
рис. 2,a приведены опорные и модельные векторы после одного и двух прохождений ал-
горитма VID, на рис. 3,a–в — тестовое и модельные распределения завихренности. При
t = 0 структура линий тока течения для тестовой и модельных систем качественно подоб-
на, несмотря на то что распределения завихренности различаются (см. рис. 4). С ростом t
структура тестового течения (см. рис. 4,a) и структура течения для обоих начальных мо-
дельных распределений (см. рис. 4,б,в) завихренности качественно близки вплоть до зна-
чения t ≈ 45. С ростом t различие структуры тестового и прогнозных течений возрастает
и при t = 110 становится существенным. Заметим, что различие двух прогнозов является
незначительным, что объясняется малой интенсивностью вихрей Рэнкина, построенных
в результате второго применения алгоритма идентификации, и их слабым влиянием на
динамику.

При t = 110 с использованием тестовых векторов скорости в опорных точках прове-
дена еще одна идентификация вихревой структуры. На рис. 3,г,д приведены тестовое и
полученные модельные распределения завихренности, на рис. 2,б — опорные и модель-
ные векторы после одного и двух прохождений алгоритма идентификации. В процессе

идентификации были определены только интенсивные вихри. Тем не менее при t = 110
структура линий тока качественно описывается модельными системами (рис. 5). Линии
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тока уточненной в результате второго прохождения конфигурации вихрей Рэнкина более

точно описывают тестовую конфигурацию, чем линии тока конфигурации, построенной
после первого прохождения алгоритма VID. С увеличением времени это различие возрас-
тает, и при t = 155 все три структуры различны. На рис. 5,a–г, и–м видно, что при
t = 130 и t = 155 линии тока тестового нестационарного течения и течения, полученного
в результате уточненного прогноза, качественно подобны, а их изменения во времени на
интервале t ∈ [110, 150] идентичны.

Заключение. Предложен алгоритмический подход к решению обратной задачи иден-
тификации и прогноза развития плоского вихревого течения, в случае когда известны век-
торы скорости жидкости в конечном наборе опорных точек. В качестве математической
модели для описания вихревой структуры использовались вихри Рэнкина.

Идея метода идентификации состоит в минимизации в пространстве параметров мо-
дельной системы целевого функционала, оценивающего близость наборов векторов скоро-
сти исходного и модельного течений. Алгоритм включает несколько этапов: поиск началь-
ного приближения для вихревой структуры, уточнение параметров модельных вихрей,
повторение этих этапов для описания невязки полученного модельного и исходного набо-
ров векторов. Прогноз выполняется путем решения двумерной нестационарной задачи для
уравнений Эйлера идеальной жидкости с помощью спектрально-вихревого метода.

В силу некорректности обратных задач и сильной зависимости результатов от ис-
ходной информации теоретический анализ методов их решения и предложенного алгорит-
ма затруднен, поэтому адекватность и эффективность метода исследовались эксперимен-
тально с использованием тестового примера. В качестве набора векторов, для которого
проводилась идентификация, использовались 400 опорных точек, расположенных в узлах
прямоугольной равномерной сетки.

Проведены численные эксперименты по идентификации тестовых течений. Заданное
количество опорных точек позволило адекватно описать достаточно сложную вихревую

структуру, состоящую из восьми вихрей. Вычисленные координаты центров вихрей мо-
дельной системы и их интенсивности оказались близкими к характеристикам тестовых

пространственно-распределенных вихрей, а структуры линий тока топологически эквива-
лентны. Решение начально-краевой задачи для уравнений Эйлера с начальными данными,
определяемыми модельной системой, хорошо согласуется с тестовым расчетом при време-
нах, при которых происходят качественные изменения топологии течений.

Метод имеет как преимущества, так и недостатки. Одним из недостатков является
простота используемой модельной системы, состоящей из вихрей Рэнкина. Простота фор-
мы (круг) такого вихря и постоянство завихренности внутри круга приводят к тому, что
не все реальные вихри можно хорошо приблизить с помощью достаточно малого числа

модельных вихрей, что ограничивает время адекватного прогноза. При увеличении числа
модельных вихрей существенно увеличивается размерность задачи безусловной миними-
зации, что затрудняет сходимость метода и приводит к увеличению времени вычисле-
ний. Однако простота модели является также преимуществом рассмотренного варианта
метода, поскольку имеется явное аналитическое выражение для скорости, индуцирован-
ной вихрем Рэнкина, что существенно уменьшает вычислительную сложность алгоритма.
Другим недостатком метода является большое количество параметров. Оптимальные зна-
чения параметров существенно зависят от количества и положения опорных точек, струк-
туры течения и др. Поэтому для применения алгоритма к конкретному классу течений
требуется “настройка” метода.

Результаты численных расчетов, представленные в данной работе, свидетельствуют
об эффективности предложенного подхода для решения обратной задачи идентификации

вихревой структуры в предложенной постановке и адекватного прогноза двумерной вихре-
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вой динамики на его основе. Для демонстрации работы метода использована только одна
тестовая структура, но вычисления проводились также для других примеров, в которых
использовалось разное число вихрей с различной топологией. Во всех случаях метод каче-
ственно описывает линии тока при идентификации тестовых структур вплоть до значений

времени, при которых происходит значительное изменение течений.
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