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Для нелинейной параболической системы реакция — диффузия строятся и исследуются
решения, имеющие вид диффузионной волны, распространяющейся в покоящейся среде
с конечной скоростью. Впервые для случаев сферической и цилиндрической симмет-
рии рассмотрена задача об инициировании диффузионной волны краевыми условиями,
заданными на сфере (круговой цилиндрической поверхности). Доказана теорема суще-
ствования и единственности решения в классе аналитических функций. Построено точ-
ное решение, которое представлено в виде явных формул. Предложен пошаговый ите-
рационный алгоритм, основанный на методе коллокаций и разложении по радиальным
базисным функциям. Выполнены численные расчеты, для верификации результатов ко-
торых использовано точное решение.

Ключевые слова: система реакция — диффузия, диффузионная волна, теорема су-
ществования и единственности, точное решение, численный метод

Введение. В настоящее время проводится большое количество исследований нелиней-
ных параболических уравнений и систем второго порядка [1], которые являются широко
известными моделями механики сплошных сред [2] и используются для описания распро-
странения тепла [3], фильтрации жидкостей и газов в пористых средах [4, 5], а также дру-
гих физических процессов, связанных с диффузией и конвекцией [6, 7]. Одним из наиболее
распространенных направлений исследований является изучение свойств параболических

уравнений и систем в абстрактных функциональных пространствах с доказательством су-
ществования их решений [8, 9]. В частности, рассматриваются слабые решения [10, 11],
двойное вырождение [12], строятся глобальные оценки решений [13, 14]. Преимуществом
таких моделей является то, что при их использовании можно, не переходя к гиперболиче-
ским моделям, описать эффекты, возникающие вследствие конечной скорости распростра-
нения возмущений. Решения с подобными свойствами называются также диффузионными
(тепловыми, фильтрационными) волнами [15]. Обычно это кусочно-гладкие решения, со-
стоящие из неотрицательной и тривиальной частей, непрерывно состыкованных вдоль
фронта волны. Однако из результатов работ [16–18] следует необходимость обобщения ре-
шений подобного типа для систем уравнений, поскольку в случае двух различных нулевых
фронтов для двух искомых функций диффузионная волна описывается кусочно-гладким
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решением, состоящим из следующих трех частей: 1) обе функции положительны; 2) одна
функция положительна, другая равна нулю; 3) обе функции равны нулю. Таким образом,
возникает не двухчастная, а трехчастная структура. Фронтом диффузионной волны явля-
ется граница, на которой равны нулю обе искомые функции, причем хотя бы одна из них
позади фронта положительна.

В работах [17, 18] выполнены исследования для случая плоской симметрии. В [16]
рассмотрена задача при заданном нулевом фронте диффузионной волны, общем для двух
искомых функций. В [17] с помощью краевых условий были заданы различные нулевые

фронты для разных искомых функций и обобщено понятие диффузионной волны, кото-
рая в рассмотренном случае имела трехчастную структуру. В [18] рассмотрена задача
об инициировании диффузионной волны заданными в точке краевыми условиями, которая
в общем случае также состоит из трех частей.

Настоящая работа посвящена построению решений задачи об инициировании диф-
фузионной волны, симметричной относительно начала координат или координатной оси.
Доказывается теорема существования и единственности аналитического решения искомого

типа, разработан алгоритм численного решения, основанный на методе коллокаций [19] и
разложении по радиальным базисным функциям [20, 21], построено новое точное решение,
проведены тестовые расчеты.

1. Постановка задачи. Рассмотрим систему параболических уравнений типа реак-
ция — диффузия

ut = uuρρ +
1

σ
u2

ρ +
νuuρ

ρ
+ F (u, v), vt = vvρρ +

1

δ
v2
ρ +

νvvρ

ρ
+G(u, v), (1)

где u, v — искомые функции; t, ρ — независимые переменные (t — время; ρ =

√√√√ν+1∑
i=1

x2
i ;

xi (i = 1, . . . , ν + 1) — пространственные декартовы координаты); σ > 0, δ > 0, ν = 1, 2 —
константы; F , G — достаточно гладкие функции; F (0, 0) = G(0, 0) = 0. Подобные системы
используются для описания термодиффузии в бинарных смесях, а также взаимодействия
видов в математической биологии. Система уравнений (1) имеет решение u ≡ 0, v ≡ 0.

Для системы (1) зададим граничные условия

u(t, ρ)
∣∣
ρ=R

= f(t), v(t, ρ)
∣∣
ρ=R

= g(t). (2)

Здесь R > 0; f(t), g(t) — достаточно гладкие функции, удовлетворяющие условиям f(0) =
g(0) = 0, f ′(0) > 0, g′(0) > 0.

2. Теорема существования и единственности. Под аналитической в точке бу-
дем понимать функцию, которая в некоторой окрестности совпадает с ее тейлоровским
разложением.

Теорема. Пусть выполняются следующие условия: 1) функции f , g и F , G являются
аналитическими при t = 0 и u = v = 0 соответственно; 2) f(0) = g(0) = 0, f ′(0) > 0,
g′(0) > 0, F (0, 0) = G(0, 0) = 0. Тогда задача (1), (2) имеет в точке (0, R) аналитическое
решение, которое при выбранных знаках uρ(0, R), vρ(0, R) является единственным.
Доказательство. Поскольку ранее аналогичная теорема была обоснована для част-

ного случая ν = 0 [18], приведем лишь краткое доказательство. Построим формальное
решение в виде двойных рядов Тейлора в окрестности точки t = 0, ρ = R:

w(t, ρ) =
∞∑

i,j=0

wi,j
ti(ρ−R)j

i!j!
, wi,j =

∂i+ju

∂ti ∂ρj

∣∣∣
t=0,ρ=R

. (3)
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Здесь параметр w принимает значения u, v. Построение проводится методом индукции по
m = i+ j. В силу аналитичности функций f , g и условий (2) имеем ui,0 = fi, vi,0 = gi, где

fi = f (i)(0), gi = g(i)(0), в том числе u0,0 = v0,0 = 0, u1,0 = f1 > 0, v1,0 = g1 > 0. Полагая
в системе (1) t = 0, ρ = R, получаем систему алгебраических уравнений второй степени
для определения u0,1, v0,1:

u1,0 = u0,0u0,2 +
u2

0,1

σ
+
νu0,0u0,1

R
+ F0,0, v1,0 = v0,0v0,2 +

v2
0,1

σ
+
νv0,0v0,1

R
+G0,0.

Здесь F0,0 = F (u0,0, v0,0); G0,0 = G(u0,0, v0,0). Следовательно,

u0,1 = ±
√
σf1, v0,1 = ±

√
δg1. (4)

Выбор знаков в (4) определяет, в свою очередь, выбор одной пары значений u0,1, v0,1 из

четырех допустимых (см. условие теоремы). Таким образом, база индукции при m = 0, 1
установлена.

Пусть известны ui,j , vi,j при m = i+j = 0, 1, . . . , n. Для нахождения un+1−k,k, vn+1−k,k,
k = 0, . . . , n будем, увеличивая k, применять к системе (1) дифференциальный оператор

D[ · ] =
∂n[ · ]

∂tn−k∂ρk

∣∣∣
t=ρ=0

. Учитывая предположение метода индукции, получаем

−wn−k+1,k + (k + 2/η)w0,1wn−k,k+1 + (n− k)w1,0wn−k−1,k+2 = Ln−k,k(w),
(5)

k = 0, . . . , n.

Здесь η принимает значения σ и δ; величины u1,0, u0,1, v1,0, v0,1 найдены при задании базы

индукции; величины un+1,0 = fn+1, vn+1,0 = gn+1 заданы в (2); Lk,n−k(u), Lk,n−k(v) извест-
ны в силу предположения метода индукции (соответствующие формулы не приводятся

вследствие громоздкости); u−1,n+2 = v−1,n+2 = 0. Таким образом, уравнения (5) пред-
ставляют собой две системы линейных алгебраических уравнений с однотипными трех-
диагональными матрицами. Условие диагонального преобладания для этих уравнений не
выполняется, однако, как следует из ранее доказанных утверждений [22], они однозначно
разрешимы при любых значениях u0,1, v0,1 из множества допустимых (см. (4)). Итак, фор-
мальное решение построено, при выбранных знаках u0,1, v0,1 оно является единственным.

Сходимость построенных рядов доказывается с использованием классического метода

мажорант, причем для функций u, v строится общая мажоранта, что позволяет свести
доказательство к использованию аналога теоремы Коши — Ковалевской для одного нели-
нейного параболического уравнения [18, 22].

Следствие. При выполнении условий теоремы и неравенства u0,1v0,1 > 0 существу-
ет решение задачи (1), (2), являющееся при t > 0 диффузионной волной с трехчастной
структурой, причем при выбранных знаках величин u0,1, v0,1 решение единственно. Слу-
чай u0,1 > 0, v0,1 > 0 соответствует волне, распространяющейся в области 0 < ρ < R;
случай u0,1 < 0, v0,1 < 0 — волне, распространяющейся в области ρ > R.
Доказательство. Поскольку u(0, R) = v(0, R) = 0, а все частные производные пер-

вого порядка отличны от нуля, в плоскости переменных t, ρ для каждой искомой функции
найдется нулевой фронт — достаточно гладкая кривая, проходящая через точку (0, R), на
которой эта функция меняет знак и обращается в нуль: u

∣∣
ρ=a(t)

= v
∣∣
ρ=ā(t)

= 0. При этом

совпадение знаков производных обеспечивает существование области, в которой одновре-
менно u > 0, v > 0, что позволяет построить диффузионную волну, имеющую в общем

случае трехчастную структуру.
Действительно, пусть u0,1 < 0, v0,1 < 0. Тогда a′(0) > 0, ā′(0) > 0, т. е. нулевые

фронты движутся в направлении увеличения ρ и диффузионная волна распространяется
в области ρ > R. Примем a(t) 6 ā(t), t ∈ (0, ε). Тогда u > 0, v > 0 при R 6 ρ 6 a(t)
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и ряды (3) определяют, причем однозначно, первую часть диффузионной волны. Далее,
при a(t) 6 ρ 6 ā(t) имеем u(t, ρ) 6 0. Заменим отрицательные значения нулевыми: u = 0.
Тогда v(t, ρ) получается из решения задачи

vt = vvρρ +
1

δ
v2
ρ +

νvvρ

ρ
+G(v, 0), v

∣∣
ρ=a(t)

= va(t), (6)

где va(t) = v(t, a(t)) > 0 — функция v, определяемая рядом (3) на нулевом фронте ρ = a(t).
Задача (6) удовлетворяет условиям ранее доказанных теорем (см., например, [16]), что
обеспечивает существование и единственность решения, образующего совместно с услови-
ем u ≡ 0 вторую часть диффузионной волны, а также существование линии ρ = b(t) (не
совпадающей с ρ = ā(t)), такой что v|ρ=b(t) = 0. Наконец, при ρ > b(t) имеем u ≡ 0, v ≡ 0
(третья часть диффузионной волны).

Остальные случаи рассматриваются аналогично. Заметим, что если ā(t) = a(t), то
вторая часть диффузионной волны отсутствует и имеет место случай, рассмотренный
в [16].

3. Численное решение. Доказанные выше утверждения позволяют найти нетриви-
альное решение задачи (1), (2), удовлетворяющее условиям

u
∣∣
ρ=a(t)

= 0, v
∣∣
ρ=b(t)

= 0, a(0) = b(0) = R, (7)

для достаточно гладких функций a(t), b(t), которые априори неизвестны, но удовлетворя-
ют неравенству a′(0)b′(0) > 0. Рассмотрим случай a′(t) > 0, b′(t) > 0, когда диффузионная
волна при t > 0 находится в области ρ > R и ее нулевые фронты движутся в направлении
увеличения пространственной переменной ρ.

Решение будем строить по шагам по времени. Для того чтобы получить краевую

задачу в известной области, выполним на каждом шаге tk = kh (h — величина шага)
замену переменных. В обоих уравнениях системы (1) поменяем роли искомой функции
(соответственно u и v в первом и втором уравнениях) и пространственной переменной ρ,
при этом пространственную переменную во втором уравнении обозначим ρ̄. В результате
в момент t = tk имеем систему уравнений

ρtρ
2
u = uρuu −

ρu

σ
− νuρ2

u

ρ
− F (u, v)ρ3

u, ρ̄tρ̄
2
v = vρ̄vv −

ρ̄v

δ
− νvρ̄2

v

ρ̄
−G(u, v)ρ̄3

v, (8)

где ρ(tk, u) — функция, обратная u(tk, ρ); ρ̄(tk, v) — функция, обратная v(tk, ρ). Будем
полагать, что эти функции существуют в каждый момент времени.

Разрешив уравнения (8) относительно старших производных, сформулируем для мо-
мента t = tk следующую задачу в области u ∈ [0, U ], v ∈ [0, V ], U = f(tk), V = g(tk):

ρuu = S(u, v, ρ), ρ̄vv = T (u, v, ρ̄); (9)

ρ
∣∣
u=U

= R, ρ̄
∣∣
v=V

= R. (10)

Здесь

S(u, v, ρ) =
1

u

(
ρtρ

2
u +

ρu

σ
+ F (u, v)ρ3

u

)
+
νρ2

u

ρ
,

T (u, v, ρ̄) =
1

v

(
ρ̄tρ̄

2
v +

ρ̄v

δ
+G(u, v)ρ̄3

v

)
+
νρ̄2

v

ρ̄
,

условие (10) следует из (2).
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Далее будем полагать, что в любой момент времени f(t) 6 g(t) и, соответственно,
a(t) 6 b(t). Для корректного решения системы уравнений второго порядка (9) гранич-
ных условий (10) недостаточно. Сформулируем дополнительные условия, используя усло-
вия (7). Взяв в них полную производную по времени, получаем равенства

ut(t, a(t)) = −a′(t)uρ(t, a(t)), vt(t, b(t)) = −b′(t)vρ(t, b(t)),

подставляя которые в систему (1), находим

u2
ρ(t, a(t)) + σa′(t)uρ(t, a(t)) + σF (0, v(t, a(t))) = 0,

v2
ρ(t, b(t)) + δb′(t)vρ(t, b(t)) + δG(0, u(t, b(t))) = 0.

Учитывая, что при принятых предположениях u(t, b(t)) = 0, после замены переменных

имеем

a′(t) = − 1

σρu(t, 0)
− F (0, v(t, a(t)))ρu(t, 0), b′(t) = − 1

δρ̄v(t, 0)
. (11)

Интерполируем неизвестные функции ρ(t, 0) = a(t) и ρ̄(t, 0) = b(t) на отрезке t ∈ [tk−1, tk]
квадратичными функциями вида

ρ(t, 0) = A(t− tk−1)(t− tk) + (ρ(tk, 0)− ρ(tk−1, 0))
t− tk−1

h
+ ρ(tk−1, 0),

ρ̄(t, 0) = B(t− tk−1)(t− tk) + (ρ̄(tk, 0)− ρ̄(tk−1, 0))
t− tk−1

h
+ ρ̄(tk−1, 0),

(12)

где A,B — константы. Запишем для функций (12) равенства (11) в моменты времени

t = tk−1 и t = tk:

−Ah+
ρ(tk, 0)− ρ(tk−1, 0)

h
= − 1

σρu(tk−1, 0)
− F (0, v(tk−1, a(tk−1)))ρu(tk−1, 0),

Ah+
ρ(tk, 0)− ρ(tk−1, 0)

h
= − 1

σρu(tk, 0)
− F (0, v(tk, a(tk)))ρu(tk, 0),

−Bh+
ρ̄(tk, 0)− ρ̄(tk−1, 0)

h
= − 1

δρ̄v(tk−1, 0)
,

(13)

Bh+
ρ̄(tk, 0)− ρ̄(tk−1, 0)

h
= − 1

δρ̄v(tk, 0)
.

Складывая в (13) первое уравнение со вторым, а третье — с четвертым, получаем допол-
нительные граничные условия для задачи (9), (10)(2ρ(tk, u)

h
+

1

σρu(tk, u)
+ F (u, v(tk, a(tk)))ρu(tk, u)

)∣∣∣
u=0

= Pk−1,(2ρ̄(tk, v)

h
+

1

δρ̄v(tk, v)

)∣∣∣
v=0

= Qk−1,

(14)

где значения

Pk−1 =
2ρ(tk−1, 0)

h
− 1

σρu(tk−1, 0)
− F (0, v(tk−1, a(tk−1)))ρu(tk−1, 0),

Qk−1 =
2ρ̄(tk−1, 0)

h
− 1

δρ̄v(tk−1, 0)
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определяются на предыдущем шаге (при k > 1). Очевидно, что ρ(0, 0) = ρ̄(0, 0) = R.

Можно показать, что из условия (10) следует ρu(0, 0) = −1/
√
σf ′(t), ρ̄v(0, 0) = −1/

√
δg′(t),

что соответствует соотношениям (4). Это позволяет найти необходимые на первом шаге
значения P0 и Q0.

Таким образом, на шаге tk получаем краевую задачу (9), (10), (14), решение которой,
так же как в [18], будем строить итерационно, на основе метода коллокаций [19]. Предста-
вим решение в виде ρ(tk, u) = λ(u) + µ(u), ρ̄(tk, v) = λ̄(v) + µ̄(v), где λ(u), λ̄(v) — частное

решение системы (9); µ(u), µ̄(v) — решение соответствующей задачи для однородной си-
стемы

µ′′ = 0, µ̄′′ = 0; (15)

µ
∣∣
u=U

= R− λ(U), µ̄
∣∣
v=V

= R− λ̄(V ); (16)(2(λ(u) + µ(u))

h
+

1

σ(λ′(u) + µ′(u))
+ F (u, v(tk, a(tk)))(λ

′(u) + µ′(u))
)∣∣∣

u=0
= Pk−1,(2(λ̄(v) + µ̄(v))

h
+

1

δ(λ̄′(v) + µ̄′(v))

)∣∣∣
v=0

= Qk−1.

(17)

В этом случае итерационная процедура имеет вид

λ0 = 0, λ̄0 = 0; (18)

µn = c(u− U) +R− λn(U), µ̄n = d(v − V ) +R− λ̄n(V ); (19)

ρn = λn + µn, ρ̄n = λ̄n + µ̄n; (20)

λ′′n+1 = S(u, v, ρn), λ̄′′n+1 = T (u, v, ρ̄n), (21)

где ρn, λn, µn, ρ̄n, λ̄n, µ̄n — n-е итерации решений; значения c, d задачи (15)–(17) — отрица-
тельные корни квадратных уравнений, получаемых путем подстановки (19) в граничные
условия (17). Заметим, что дискриминанты этих уравнений положительны и решение (19)
определяется однозначно при найденном частном решении λn, λ̄n. Для решения систе-
мы (21) применим методом коллокаций [19]. Для этого разложим правые части уравнений
по радиальным базисным функциям (РБФ)

S(u, v, ρn) =
K∑

k=1

α
(k)
n+1ϕ

(k)(u), T (u, v, ρ̄n) =
M∑

m=1

β
(m)
n+1ϕ

(m)(v). (22)

Здесь ϕ(k)(w) = ϕ(k)(|w−wk|) — РБФ; wk — точки коллокации. Расположим точки колло-
кации u1, u2, . . . , uK на отрезке [0, U ], а точки коллокации v1, v2, . . . , vM — на отрезке [0, V ].
Записав в этих точках соответствующие уравнения (22), получаем две системы линейных

алгебраических уравнений относительно коэффициентов α
(k)
n+1, β

(m)
n+1:

S(u, v, ρn)
∣∣
u=ui

=
K∑

k=1

α
(k)
n+1ϕ

(k)(ui), i = 1, . . . , K; (23)

T (u, v, ρ̄n)
∣∣
v=vj

=
M∑

m=1

β
(m)
n+1ϕ

(m)(vj), j = 1, . . . ,M. (24)

Поскольку каждой РБФ ϕ(k)(w) соответствует функция ψ(k)(w), такая что d2ψ(k)/dw2 =

ϕ(k), решения систем (23), (24) определят следующую итерацию частного решения систе-
мы (9):

λn+1 =
K∑

k=1

α
(k)
n+1ψ

(k)(u), λ̄n+1 =
M∑

m=1

β
(m)
n+1ψ

(m)(v).
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Значение переменной v в левой части i-го уравнения системы (23) находится из условия
ρ̄n(tk, v) = ρn(tk, ui). Аналогичным образом значение переменной u в левой части j-го урав-
нения системы (24) определяется условием ρn(tk, u) = ρ̄n(tk, vj). Поскольку f(tk) < g(tk),
возможна ситуация, когда ρn(tk, 0) < ρ̄n(tk, vj) 6 ρ̄n(tk, 0). В этом случае принимается

значение u = 0.
Производные по времени в правых частях (23), (24) вычисляются с помощью метода

конечных разностей. Как правило, в подобных алгоритмах применяются разностные схемы
первого порядка. В рассматриваемом случае, когда область решения с каждым шагом
увеличивается, такая схема принимается в виде

∂ρn(tk, ui)

∂t
=


ρn(tk, ui)− ρ(tk−1, ui)

h
, ui 6 f(tk−1),

ρn(tk, ui)

h
(i)
k

, ui > f(tk−1),
(25)

где h
(i)
k = tk − t(i); t(i) = f−1(ui); t = f−1(u) — функция, обратная u = f(t). Таким об-

разом, t(i) — момент времени, когда f(t) = ui. Производная ∂ρ̄n(tk, vj)/∂t находится по
формуле (25), если заменить в правой части ui и f(t) на vj и g(t) соответственно. Для
расчетов в более простом случае [18] использование такой схемы позволило получить ре-
зультаты, близкие к точному решению. Однако при достаточно большом шаге по времени
итерационные процедуры сходятся медленно и не всегда стабильно. Поэтому в данной ра-
боте для проведения анализа точности решения впервые для таких задач была предложена

разностная схема второго порядка

∂ρn(tk, ui)

∂t
=



3ρn(tk, ui)− 4ρ(tk−1, ui) + ρ(tk−2, ui)

2h
, ui 6 f(tk−2),

2h+ h
(i)
k−1

h(h+ h
(i)
k−1)

ρn(tk, ui)−
h+ h

(i)
k−1

hh
(i)
k−1

ρ(tk−1, ui), f(tk−2) < ui 6 f(tk−1),

2ρn(ui)− σ[f ′(t(i))]2h
(i)
k

h
(i)
k

, ui > f(tk−1).

(26)

Первая строка в правой части (26) — классическая трехточечная схема на равномер-
ной сетке, вторая строка — трехточечная схема на неравномерной сетке (в этом случае
ρ(tk−2, ui) = 0). Наконец, третья схема построена по двум точкам, в одной из которых
известна производная.

Итерационный процесс завершается, когда n-я и (n+ 1)-я итерации достаточно близ-
ки и в качестве решения задачи (9), (10) в момент tk принимаются непрерывно диффе-
ренцируемые по пространственным переменным функции ρ(tk, u) = λn+1(u) + µn+1(u),
ρ̄(tk, v) = λ̄n+1(v) + µ̄n+1(v). При этом определяются положения нулевых фронтов в мо-
мент tk:

a(tk) = ρ(tk, 0), b(tk) = ρ̄(tk, 0). (27)

Непрерывность функций позволяет определить без потери точности обратные функции

u(tk, ρ), ρ ∈ [a(0), a(tk)] и v(tk, ρ), ρ ∈ [b(0), b(tk)], являющиеся приближенным решением
задачи (1), (2) на шаге tk.

В случае a′(t) < 0, b′(t) < 0 решение строится аналогичным образом.
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4. Точное решение. Поскольку для предложенного численного метода доказать схо-
димость вряд ли возможно (это не удается даже для отдельных уравнений), особую акту-
альность приобретает верификация выполненных расчетов. В подобных случаях обычно
применяются точные решения (см., например, [18]).

Рассмотрим задачу (1) в случае, когда функции F (u, v) и G(u, v) линейные:

ut = uuρρ +
1

σ
u2

ρ +
νuuρ

ρ
+ α1u+ α2v, vt = vvρρ +

1

δ
v2
ρ +

νvvρ

ρ
+ β1u+ β2v. (28)

Здесь α1, α2, β1, β2 ∈ R. Решение (28) будем искать в виде

u =
n∑

k=1

Ak(t)ρ
k, v =

n∑
k=1

Bk(t)ρ
k, (29)

т. е. в виде полиномов по степеням ρ с коэффициентами, зависящими от t. Индукцией по n
можно показать, что ненулевыми могут быть только коэффициенты с номерами 0 и 2,
которые удовлетворяют следующей системе обыкновенных дифференциальных уравнений

(СОДУ):

A′0(t) = 2(1 + ν)A0A2 + α1A0 + α2B0, B′
0(t) = 2(1 + ν)B0B2 + β1A0 + β2B0; (30)

A′2(t) = 2(1 + ν + 2/σ)A2
2 + α1A2 + α2B2, B′

2(t) = 2(1 + ν + 2/δ)B2
2 + β1A2 + β2B2. (31)

Любые функции, удовлетворяющие СОДУ (30), (31), позволяют построить решение систе-
мы (28) вида (29). Однако для удобства дальнейшего использования полученных решений
примем упрощающие предположения. Во-первых, положим, что A2 и B2 — константы, то-
гда (31) является системой алгебраических уравнений второй степени. Во-вторых, примем
α1 = −2A2(1 + ν), β2 = −2B2(1 + ν). Тогда система (30), (31) упрощается и принимает
вид

4A2
2/σ + α2B2 = 0, 4B2

2/δ + β1A2 = 0; (32)

A′0(t) = α2B0(t), B′
0(t) = β1A0(t). (33)

Нетрудно показать, что (32) имеет единственный действительный корень A2 =

− 3
√
σ2δα2

2β1/4, B2 = − 3
√
σδ2α2β2

1/4.

Пусть α2β1 = λ2 > 0. Тогда общее решение СОДУ (33) имеет вид

A0(t) = c11 exp (λt) + c12 exp (−λt), B0(t) = c21 exp (λt) + c22 exp (−λt),

где c11 = c21

√
α2/β1; c12 = −c22

√
α2/β1. Добавив условия c11 + c12 = −R2A2, c21 + c22 =

−R2B2, которые позволяют рассматривать решение (29) в виде диффузионной волны, по-
рожденной краевыми условиями при ρ = R, получаем

c11 = −A2R
2(1 + θ)

2
, c12 = −A2R

2(1− θ)

2
, c21 = −B2R

2(1 + θ)

2θ
, c22 =

B2R
2(1− θ)

2θ
,

где θ = 6
√

(δ2α2)/(σ2β1) > 0. Итак, получено решение системы (28) вида

u = u∗(t, ρ) = A0(t) + A2ρ
2 = −A2R

2[ch (λt) + θ sh (λt)] + A2ρ
2; (34)

v = v∗(t, ρ) = B0(t) +B2ρ
2 = −B2R

2

θ
[sh (λt) + θ ch (λt)] +B2ρ

2. (35)

При t > 0 из (34), (35) следуют равенства (напомним, что ρ > 0)

u∗
∣∣
ρ=R

√
ch (λt)+θ sh (λt)

= 0, v∗
∣∣
ρ=R

√
[sh (λt)+θ ch (λt)]/θ

= 0, (36)
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т. е. нулевые фронты различаются, если θ 6= 1 (при θ = 1 они совпадают). На нулевых
фронтах (36) выполнены равенства

v∗
∣∣
u∗=0

= −2B2R
2(1− θ2)

θ
sh (λt), u∗

∣∣
v∗=0

=
2A2R

2(1− θ2)

θ
sh (λt). (37)

Пусть 0 < θ < 1. Тогда из (37) следует v∗|u∗=0 > 0, u∗|v∗=0 6 0. Это означает, что при

R 6 ρ 6 R
√

ch (λt) + θ sh (λt) диффузионная волна определяется равенствами (34), (35);

при ρ > R
√

ch (λt) + θ sh (λt) справедливо равенство u(t, ρ) = 0, а v(t, ρ) является решени-
ем задачи

vt = vvρρ +
1

δ
v2
ρ +

νvvρ

ρ
+ β2v, v

∣∣
ρ=R

√
ch (λt)+θ sh (λt)

= −2B2R
2(θ + 1)(1− θ)

θ
sh (λt).

При θ > 1 структура диффузионной волны аналогична, но функции u и v меняются ролями.
Наконец, при θ = 1 нулевые фронты для обеих искомых функций совпадают и имеет место
случай, рассмотренный в работе [16].
Замечание. Решение (34), (35) в случае ν = 0 совпадает с решением, построенным

в работе [18. С. 75].
5. Тестовые примеры. Для верификации предложенного численного алгоритма про-

ведено сравнение результатов расчетов с известными точными решениями, полученными
в п. 4.
Пример 1. Рассмотрим случай, когда нулевые фронты для двух искомых функций

совпадают. Пусть в системе (28) σ = δ = 5, R = 1, α2 = β1 = 0,2. Тогда решение
системы (32) имеет вид A2 = B2 = −0,25, λ = 0,2, θ = 1, α1 = β2 = 1 при ν = 1, α1 =
β2 = 1,5 при ν = 2. Этим параметрам соответствуют функции f(t) = g(t) = 0,25(e0,2t − 1)
в краевых условиях (2) и точное решение

u1(t, ρ) = v1(t, ρ) = 0,25(e0,2t − ρ2), (38)

имеющее нулевой фронт

a1(t) = b1(t) = e0,1t .

В качестве РБФ в расчетах были приняты мультиквадратичные функции [23] ϕ(w) =√
1 + ε2(w − wi)2, где wi — точки коллокации. Значение параметра формы ε было вы-

брано в соответствии с [24]. Во всех рассмотренных вариантах расчетов получены оди-
наковые функции u(t, ρ) и v(t, ρ), близкие к точному решению (38). Наибольшая погреш-
ность наблюдалась в точке ρ = a(t), где a(t) — найденный в процессе решения нулевой

фронт (27), поэтому точность численного решения в момент t = tk оценивалась разностью
δ1(tk) = |u(tk, a(tk))−u1(tk, a(tk))| = |u1(tk, a(tk))|. Точность определения нулевого фронта
оценивалась величиной δ2(tk) = |a(tk) − a1(tk)|. В таблице приведены оценки δ1, δ2 в мо-
менты времени t = 0,5; 1,0 при различных величине шага по времени h и числе точек
коллокации K = M . Обе оценки уменьшаются с уменьшением шага и увеличением коли-
чества точек коллокации, что свидетельствует о сходимости алгоритма относительно этих
параметров. При этом величина шага по времени оказывает более существенное влияние
на точность решения, чем число точек коллокации. Заметим, что применение разностной
схемы второго порядка для вычисления производных по времени обеспечило стабильную

сходимость итерационных процессов.
Пример 2. Рассмотрим случай, когда нулевые фронты a(t) и b(t) различны, а именно

a(t) < b(t). В системе (28) положим σ = 8,64, δ = 5, R = 1, α1 = β1 = 0,2. Тогда решение
системы (32) имеет вид A2 = −0,36, B2 = −0,3, λ = 0,2, θ = 5/6, α1 = 1,44, β2 = 1,2
при ν = 1, α1 = 2,16, β2 = 1,8 при ν = 2. Этим параметрам соответствуют функции
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Погрешности численных решений δ1(t) и положения найденных нулевых фронтов δ2(t) в примере 1

ν h K
δ1 · 104 δ2 · 104

t = 0,5 t = 1 t = 0,5 t = 1

1 0,10 8 2,26 2,42 4,30 4,39
1 0,10 16 2,06 2,37 4,02 4,29
1 0,10 32 2,00 2,23 3,92 4,03
1 0,05 8 0,87 1,35 1,65 2,45
1 0,05 16 0,83 1,33 1,57 2,42
1 0,05 32 0,83 1,33 1,55 2,42
2 0,10 8 2,27 2,46 4,32 4,44
2 0,10 16 2,12 2,27 3,95 4,11
2 0,10 32 2,07 2,26 3,92 4,09
2 0,05 8 0,88 1,34 1,66 2,43
2 0,05 16 0,84 1,32 1,58 2,41
2 0,05 32 0,83 1,32 1,55 2,41

f(t) = 0,36 ch t + 0,3 sh t − 0,36, g(t) = 0,3 ch t + 0,36 sh t − 0,3 в краевых условиях (2) и
точное решение вида (34), (35):

u2(t, ρ) = 0,36 ch t+ 0,3 sh t− 0,36ρ2, v2(t, ρ) = 0,3 ch t+ 0,36 sh t− 0,3ρ2. (39)

Нулевой фронт для функции u2(t, ρ) имеет вид a2(t) =
√

ch t+ 5 sh t/6. Поскольку реше-
ние (39) имеет смысл только при R 6 ρ 6 a2(t), оно сравнивалось с численными реше-
ниями на этом промежутке. Для анализа точности численных решений в примере 2 ис-
пользовались следующие оценки: δ3(tk) = |u(tk, a(tk)) − u2(tk, a(tk))| = |u2(tk, a(tk))| —
наибольшее отклонение функции u от точного решения, наблюдаемое на фронте вол-
ны; δ4(tk) = |a(tk) − a2(tk)| — погрешность определения нулевого фронта функции u;
δ5(tk) = |v(tk, a(tk)) − v2(tk, a(tk))| — наибольшее отклонение функции v от точного ре-
шения. Расчеты были проведены для тех же значений параметров ν, h, K = M , что и в
примере 1. Оценки δ3, δ4, δ5 имеют тот же порядок, что и δ1, δ2. Также δ3, δ4, δ5 умень-
шаются с уменьшением шага по времени и увеличением числа точек коллокации. Таким
образом, как и в примере 1, наблюдается сходимость алгоритма численного решения от-
носительно этих параметров.

Дополнительно в области ρ > a2(t) определялась функция v — решение задачи (6),
которое было получено с помощью численного алгоритма, предложенного в [25]. На рисун-
ке видно, что численное решение, полученное при реализации алгоритма, предложенного
в настоящей работе, близко к точному решению. Также следует отметить, что оба эти ре-
шения отличаются от решения v2(t, ρ). Заметим, что в отличие от двухэтапного решения
задачи с заданными нулевыми фронтами [17] предложенный в данной работе алгоритм поз-
воляет с помощью единой процедуры найти на каждом шаге функцию u(tk, ρ), ρ ∈ [R, a(tk)]
и функцию v(tk, ρ), ρ ∈ [R, b(tk)].

Заключение. В работе построены и изучены решения, имеющие вид диффузион-
ной волны, распространяющейся по покоящейся среде с конечной скоростью, для систем
нелинейных параболических уравнений второго порядка. Впервые рассмотрена задача об
инициировании диффузионной волны в случаях сферической и цилиндрической симмет-
рии. Доказана теорема существования и единственности, разработан численный метод,
построено точное решение, а также дано обоснование того, что диффузионная волна со-
стоит из трех частей, причем в частном случае две части могут совпасть.

Проведенный вычислительный эксперимент показал эффективность предложенного

алгоритма решения как в случае двухчастной диффузионной волны, так и в случае трех-
частной. Наблюдается сходимость численных решений к точному с уменьшением шага по
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Функция v(t, ρ) при ρ > a(t) в примере 2 в различные моменты времени:
а — t = 0,5, б — t = 1,0; 1 — решение задачи (1), (2), 2 — решение задачи (6),
3 — точное решение (39)

времени и увеличением числа точек коллокации. Применение для рассматриваемого ти-
па задач формулы численного дифференцирования второго порядка позволило повысить

стабильность сходимости итерационных процессов.
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