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1. Введение

Рассмотрим оператор T , отображающий из непустого открытого выпуклого подмно-
жества D банахова пространства U в другое банахово пространство V, чтобы аппрокси-
мировать локально единственное решение ξ∗ нелинейного уравнения

T (g) = 0. (1.1)

Заметим, что в вычислительной науке область численного анализа для вычисления
решений тесно связана с вариациями метода Ньютона, такими как

gn+1 = gn − [T ′(gn)]
−1T (gn), n ≥ 0. (1.2)

Несмотря на медленную сходимость, метод Ньютона часто является предпочитаемым
и его часто используют. Чтобы больше узнать об этом методе, можно ознакомиться
с обзором Ортеги о методе Ньютона [1], а также с литературой, приведенной в рабо-
тах Ралля [2] и Канторовича [3]. Во многих статьях проводился анализ полулокальной
сходимости итерационных методов при условиях Липшица [4–9], Гельдера [10–13], или
w-непрерывности [14–18]. Однако некоторые нелинейные задачи не удовлетворяют ни
одному из этих условий, что ограничивает применимость этих методов. Для устранения
этого ограничения Ван [19] ввел понятие обобщенного условия Липшица для анализа ло-
кальной сходимости метода Ньютона. Саксена с соавторами [20] пришли к выводу, что
исходное определение не может использоваться в том виде, как оно есть, для многошаго-
вого метода типа Ньютона, и поэтому они представили модифицированное определение
обобщенных условий Липшица.

В [21] Ван ввел условие Липшица со средним κ, названное ОУЛ, которое может ис-
пользоваться при исследовании теоремы сходимости, подобной теореме Канторовича.
Это условие использовалось для изучения полулокальной сходимости различных итера-
ционных методов, включая метод Гаусса–Ньютона, как было показано Сюй и Ли [22].
Дальнейшее расширение этого понятия обсуждалось в [23–25]. Численные исследования
полулокальной сходимости основаны на информации об исходной точке для установ-
ления критериев сходимости итеративных методов. Мы будем использовать классиче-
скую ТШСТН [26] при κ-среднем условии для исследования полулокальной сходимости
ТШСТН следующего вида:

hn = gn − [T ′(gn)]
−1T (gn),

zn = hn − [T ′(gn)]
−1T (hn), (1.3)

gn+1 = zn − [T ′(gn)]
−1T (zn),

n ≥ 0.

Важной характеристикой приведенной выше схемы является то, что это простейший
итерационный метод четвертого порядка, который не включает вторую производную.
Локальная сходимость этого метода исследовалась Аргиросом с соавторами [26] при
условии Липшица и центральном условии Липшица. Локальная сходимость при ОУЛ
приведенного выше итерационного метода была тщательно проанализирована Джаисва-
лом [27], тогда как предыдущие исследования имеют свои собственные ограничения в
некоторых ситуациях. Метод мажорирующей функции нашел широкое применение при
анализе сходимости различных методов типа Ньютона, в том числе для решения нели-
нейных операторных уравнений [21, 23, 28], выпуклой составной оптимизации с использо-
ванием метода Гаусса–Ньютона [29], многокритериальной оптимизации с использованием
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расширенного метода Ньютона [30]. Этот аналитический инструмент способствует уста-
новлению более точных критериев сходимости и получению оценок радиусов сходимости
для итерационных методов, улучшая их практическое применение.

Мы приступаем к изучению полулокальной сходимости, поскольку имеется возмож-
ность анализа итерационных методов более высокого порядка, что увеличивает область
их применения. Цель данной статьи — продемонстрировать результат общей полулокаль-
ной сходимости для ТШСТН (1.3) с использованием первой производной нелинейного
оператора T при ОУЛ, предложенной Ваном [21]. Этот анализ сходимости имеет несколь-
ко новых аспектов, включая установление связей между мажорирующей функцией H
и нелинейным оператором T , а также демонстрацию того, что ТШСТН имеет сходи-
мость четвертого порядка. Будет получено несколько важных особых случаев, включая
результаты сходимости типа Канторовича и Y -типа. Результат сходимости подтвержда-
ется численными экспериментами, также показывается, что использование κ-среднего
условия Липшица является существенным преимуществом.

Статья построена следующим образом: обобщенное/среднее условие Липшица введе-
но в пункте 2. После того, как в п. 3 будут рассмотрены некоторые предварительные
понятия и свойства мажорирующих функций и мажоризирующих последовательностей,
в п. 4 будет представлен анализ полулокальной сходимости ТШСТН при использовании
κ-среднего условия Липшица. Применения к нелинейному интегральному уравнению
рассмотрены в п. 5. Заключительные замечания представлены в п. 6.

2. Предварительные результаты и обозначения

Чтобы исследование было как можно более полным, представим некоторые важные
понятия и обозначения, взятые из [21, 31].

Пусть M(g, ρ) — открытый шар с радиусом ρ и центром g, κ(·) — положительная
неубывающая функция на [0, %), где % > 0. Понятия обобщенного/среднего условия Лип-
шица приведены в конце данного пункта.

Условие 2.1. Предположим, что g0 ∈ D, [T ′(g0)]
−1 является невырожденным и

ε > 0, т. е. M(g0, ε) ⊆ D. Тогда считается, что κ-средний критерий Липшица на M(g0, ε)
удовлетворяется при T ′, если для любых g, h ∈M(g0, ε) при ‖g − g0‖+ ‖h− g‖ < ε верно

∥∥[T ′(g0)]
−1
(
T ′(h)− T ′(g)

)∥∥ ≤ ∫ ‖g−g0‖+‖h−g‖
‖g−g0‖

κ(u) du. (2.1)

В работе [21] Ван ввел обобщенное условие Липшица, также известное как централь-
ное условие Липшица, во вписанной сфере с κ-средним. Ли с соавторами в [32] исследо-
вали поведение сходимости Гаусса–Ньютона для вырожденных систем уравнений, а Ли
в [29] — для выпуклой составной оптимизации. Они представили различные адаптиро-
ванные версии для изучения поведения сходимости. Очевидно, что классическое усло-
вие Липшица с постоянной Липшица κ(ε) может быть получено из κ-среднего условия
Липшица на M(g0, ε), согласно предыдущему определению. Использование κ-среднего
условия Липшица может улучшить метод Ньютона путем обеспечения более точного
критерия сходимости и аппроксимации радиуса сходимости.
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3. ТШСТН (1.3) в применении к мажорирующей функции

Пусть M(g, ρ) обозначает замкнутое множество M(g, ρ), а I — тождественный опера-
тор. Предположим, что κ(·) удовлетворяет соотношению∫ %

0 κ(u)(%− u) du
%

= 1. (3.1)

Мажорирующая функция H : [0, %]→ < определяется как

H(k) = β − k +
∫ k

0
κ(u)(k − u) du, k ∈ [0, %], (3.2)

где β > 0. В начале 2000-х в важной работе Вана [21] была определена полулокальная
сходимость метода Ньютона (1.2). Также очевидно, что эта мажорирующая функция
аналогична той, которую использовал Феррейра [28]. Основная причина использования
вышеупомянутой мажорирующей функции в данной статье заключается в том, что она
может привести к выработке более точных критериев сходимости и оценки ошибки трех-
шагового классического подхода. Мы, очевидно, имеем

H′(k) = −1 +
∫ k

0
κ(u) du, k ∈ [0, %),

с
H′′(k) = κ(k) > 0 для п. в. k ∈ [0, %).

Тогда получим∫ k

j
κ(u)du = H′(k)−H′(j) для некоторых j, k ∈ [0, %), если j < k.

Связь между мажорирующей функцией и κ, представленная здесь, будет часто исполь-
зоваться при анализе сходимости ТШСТН (1.3). Предположим, что ρ0 удовлетворяет∫ ρ0

0
κ(u) du = 1. (3.3)

В результате мы видим, что H(k) является строго выпуклой, а H′(k) — возрастающей,
выпуклой и −1 ≤ H′(k) < 0 для любого k ∈ [0, ρ0). Далее мы начнем с обсуждения неко-
торых важных промежуточных результатов по оценкам ошибки для мажорирующих
последовательностей {vi}, {si} и {ki}, задаваемых ниже (см. (3.7)). Кроме того, мы ис-
следуем связь между мажорирующей функцией H(k), определяемой выражением (3.2),
и нелинейным оператором T . Затем мы перейдем к обсуждению анализа сходимости
ТШСТН (1.3) при κ-среднем условии Липшица в банаховых пространствах.

3.1. Промежуточные результаты

Следующий вспомогательный вывод о скалярных функциях можно найти в любой ли-
тературе по элементарному выпуклому анализу (см. [33, теорема 4.1.1, замечание 4.1.2]).
Они являются важными и будут включены в наш анализ.

Лемма 3.1. Предположим, что G : (0, %)→ < является непрерывно дифференцируемой
и выпуклой функцией, в которой % > 0 и 0 ≤ φ ≤ 1. Тогда
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(i) (1− φ)G′(φk) ≤ G(k)−G(φk)
k

≤ (1− φ)G′(k) для всех k ∈ (0, %).

(ii)
G(l)−G(φl)

l
≤ G(m)−G(φm)

m
для всех l,m ∈ (0, %), l < m.

Наиболее примечательно, что если G является строго выпуклой, то приведенные выше
неравенства являются строгими.

Также определим

B :=

∫ ρ0

0
κ(u)u du, (3.4)

где ρ0 определяется уравнением (3.3). Предыдущая лемма взята из [21, лемма 1.2] и дает
некоторые фундаментальные характеристики для мажорирующей функции H, задавае-
мой выражением (3.2).

Лемма 3.2 [21]. Если 0 < β < B, то H является убывающей на [0, ρ0] и возрастающей
на [ρ0, %], при этом

H(β) > 0, H(ρ0) = β −B < 0, H(%) = β > 0. (3.5)

Кроме того, H имеет нуль, который является единственным в каждом интервале,
задаваемом ι∗ и ι∗∗. Они удовлетворяют неравенству

β < ι∗ <
ρ0

B
β < ρ0 < ι∗∗ < % . (3.6)

Зададим первоначальное положение k0 = 0. Пусть {si}, {vi}, {ki} — соответству-
ющие последовательности, сгенерированные с помощью ТШСТН для мажорирующей
функции H, приведенной в [31], которые имеют следующий вид:

si = ki −
H(ki)
H′(ki)

,

vi = si −
H(si)
H′(ki)

, i = 0, 1, 2, . . . .

ki+1 = vi −
H(vi)
H′(ki)

,

(3.7)

Замечание 3.1. Предположим, что 0 < β ≤ B. С использованием лемм 3.1 и 3.2, а
также стандартных аналитических подходов (см., например, [34]), легко показать, что
последовательности {si}, {vi} и {ki}, определяемые с помощью (3.7), удовлетворяют
следующим соотношениям:

0 ≤ ki < si < vi < ki+1 < ι∗ для всех i ≥ 0, (3.8)

и, все больше и больше возрастая, сходятся к одной и той же точке ι∗, где ι∗ — нуль,
который является единственным для H на [0, ρ0] (ρ0 удовлетворяет (3.3)). Кроме того,
мы можем получить

ι∗ − ki+1 ≤ −
1

2

H′′(ι∗)3

H′(ki)3
(ι∗ − ki)4, i ≥ 0,

или
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ι∗ − ki+1 ≤ −
1

2

H′′(ι∗)3

H′(ι∗)3
(ι∗ − ki)4, i ≥ 0. (3.9)

В частности, если 1 + ι∗H′′(ι∗)/H′(ι∗) ≥ 0, то

vi − si ≥
{
1 +
H′′(ι∗)
H′(ι∗)

(ι∗ − ki)
}
(ι∗ − si), i ≥ 0. (3.10)

Свойства сходимости последовательностей {vi}, {si} и {ki}, обсуждавшиеся выше,
будут использоваться для анализа сходимости для ТШСТН (1.3).

Пусть g0 ∈ D — начальное приближение такое, что обратное [T ′(g0)]
−1 существует, и

пусть M(g0, ρ0) ⊂ D, где ρ0 удовлетворяет (3.3). Пусть

β :=
∥∥[T ′(g0)]

−1T (g0)
∥∥. (3.11)

Вспомним, что (3.2) определяет мажорирующую функцию H, (3.4) определяет B, ι∗ и
ι∗∗ — нули, которые являются единственными для H на [0, ρ0] и [ρ0, %] соответственно,
где ρ0 и % удовлетворяют (3.3) и (3.1) соответственно. Заметим, что когда 0 < β ≤ B,
последовательности {vi}, {si} и {ki}, задаваемые (3.7), постепенно сходятся к ι∗, где B
определяется (3.4).

Последующие леммы, которые устанавливают явные связи между мажорирующей
функцией H и нелинейной функцией T , будут важны для анализа полулокальной схо-
димости ТШСТН (1.3).

Лемма 3.3. Предположим, что ‖g − g0‖ ≤ k < ι∗. Каждый раз, когда первая произ-
водная T в M(ξ∗, k) удовлетворяет κ-среднему условию Липшица (2.1), T ′(g) является
невырожденной и ∥∥[T ′(g)]−1T ′(g0)

∥∥ ≤ − 1

H′(‖g − g0‖)
≤ − 1

H′(k)
. (3.12)

Кроме того, T является невырожденной в M(g0, ι
∗).

Доказательство. Возьмем g ∈M(g0, k), 0 ≤ k < ι∗. Мы использовали κ-среднее усло-
вие Липшица (2.1), чтобы убедиться в том, что

∥∥[T ′(g0)]
−1T ′(g)− I

∥∥ ≤ ∫ ‖g−g0‖
0

κ(u) du = H′(‖g − g0‖)−H′(0).

Так как H′(0) = 1 и H является строго возрастающей в (0, ι∗), мы получим∥∥[T ′(g0)]
−1T ′(g)− I

∥∥ ≤ H′(g) + 1 < 1,

поскольку −1 < H′(g) < 0 для любого g ∈ (0, ι∗). В итоге, применив лемму Банаха,
можем сделать вывод о том, что [T ′(g0)]

−1T ′(g) является невырожденной и (3.12) верно.
Лемма доказана.

Лемма 3.4. Пусть vi, si и ki сгенерированы схемой (3.7). Предположим, что T ′ в
M(g0, ι

∗) удовлетворяет κ-среднему условию Липшица (2.1). Если 0 < β ≤ B, по-
следовательности {gi}, {hi} и {zi}, сгенерированные с использованием ТШСТН (1.3)
при начальном приближении g0, считаются вполне определенными и содержащимися
в M(g0, k). Кроме того, для всех i = 0, 1, 2, . . . мы имеем



Дж.П. Джаисвал 17

(i) [T ′(gi)]
−1 существует при

∥∥[T ′(gi)]−1T ′(g0)
∥∥ ≤ −1/H′(‖gi − g0‖) ≤ −1/H′(k).

(ii)
∥∥[T ′(g0)]

−1T (gi)
∥∥ ≤ H(ki).

(iii) ‖hi − gi‖ ≤ si − ki.

(iv) ‖zi − hi‖ ≤ (vi − si)
(
‖hi − gi‖
si − ki

)2

≤ vi − si.

(v) ‖zi − gi‖ ≤ vi − ki.

(vi) ‖gi+1 − zi‖ ≤ (ki+1 − vi)
[
‖zi − hi‖
vi − si

‖hi − gi‖+ τ‖zi − hi‖
si − ki + τ‖vi − si‖

]
≤ ki+1 − vi.

(vii) ‖gi+1 − gi‖ ≤ ki+1 − ki.

Доказательство. Для доказательства используем индукцию. Очевидно, что случай
i = 0 имеет место для (i)–(iii). В результате h0 ∈ M(g0, ι

∗), поскольку ‖h0 − g0‖ ≤
s0− k0 = s0 < ι∗ и ‖z0−h0‖ ≤ v0− s0. Для (iv)–(vii) с использованием схемы (1.3) имеем

T (h0) = T (h0)− T (g0)− T ′(h0)(h0 − g0)

=

∫ 1

0

[
T ′
(
g0 + τ(h0 − g0)

)
− T ′(g0)

]
(h0 − g0) dτ.

Затем используем κ-среднее условие Липшица (2.1) для получения∥∥[T ′(g0)]
−1T (h0)

∥∥ ≤ ∫ 1

0

∥∥[T ′(g0)]
−1
[
T ′
(
g0 + τ(h0 − g0)

)
− T ′(g0)

]∥∥ ‖h0 − g0‖ dτ

≤
∫ 1

0

(∫ τ‖h0−g0‖

0
κ(u) du

)
‖h0 − g0‖ dτ

=

∫ 1

0

[
H′(τ‖h0 − g0‖)−H′(0)

]
‖h0 − g0‖ dτ.

Учитывая, что H′ должно быть строго выпуклым в [0, ρ0) и ‖h0 − g0‖ ≤ s0 − k0 соглас-
но (iii), лемма 3.1 утверждает, что

H′(τ‖h0 − g0‖)−H′(0) =
H′(τ‖h0 − g0‖)−H′(0)

‖h0 − g0‖
‖h0 − g0‖

≤ H
′(τ(s0 − k0))−H′(0)

(s0 − k0)
‖h0 − g0‖.

Затем, объединив приведенное выше неравенство и схему (3.7), получим

∥∥[T ′(g0)]
−1T (h0)

∥∥ ≤ ∫ 1

0

[
H′(τs0)−H′(0)

]
s0 dτ

(
‖h0 − g0‖
s0 − k0

)2

= H(s0)

(
‖h0 − g0‖
s0 − k0

)2

= (v0 − s0)

(
‖h0 − g0‖
s0 − k0

)2

.

В результате

‖z0 − h0‖ =
∥∥[T ′(g0)]

−1T (h0)
∥∥ ≤ (v0 − s0)

(
‖h0 − g0‖
s0 − k0

)2

≤ v0 − s0,

что представляет собой соотношение (iv).
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С использованием этих двух результатов для (v) мы имеем ‖z0 − g0‖ ≤ ‖z0 − h0 +
h0− g0‖ ≤ v0− s0 + s0− k0 ≤ v0− k0. На основании предыдущего подхода можно сделать
вывод, что

‖g1 − z0‖ =
∥∥[T ′(h0)]

−1T (z0)
∥∥ ≤ (k1 − v0)

[
‖z0 − h0‖
v0 − s0

‖h0 − g0‖+ τ‖z0 − h0‖
s0 − k0 + τ(v0 − s0)

]
.

Наконец, получаем

‖g1 − g0‖ ≤ ‖g1 − z0‖+ ‖z0 − h0‖+ ‖h0 − g0‖

≤ (k1 − v0) + (v0 − s0) + (s0 − k0) = k1 − k0.

То есть (v), (vi) и (vii) верны для случая i = 0, а это означает, что g1 ∈M(g0, ι
∗).

Теперь предположим, что gi, hi, zi ∈ M(g0, ι
∗), ‖g1 − g0‖ ≤ ki, и (i)–(vii) верны для

некоторого i ≥ 0. Используя индуктивную гипотезу (iii), мы получим ‖hi − g0‖ ≤ ‖hi −
gi‖+‖gi−g0‖ ≤ si. Кроме того, мы используем индуктивную гипотезу (vii) и (3.8), чтобы
получить

‖gi+1 − g0‖ ≤
i∑

k=0

‖gi+1 − gi‖ ≤
i∑

k=0

(ki+1 − ki) = ki+1 < ι∗.

Это означает, что gi+1 ∈ M(g0, ι
∗). Вместе с соотношением (3.12) это означает, что (i)

верно для случая i + 1. С использованием схемы (1.3) мы можем получить следующее
тождество для (ii):

T (gi+1) = T (gi+1)− T (zi)− T ′(gi)(gi+1 − zi)

=

∫ 1

0

[
T ′(zi + τ(gi+1 − zi))− T ′(gi)

]
(gi+1 − zi) dτ.

В соответствии с κ-средним условием Липшица (2.1)

∥∥[T ′(g0)]
−1T (gi+1)

∥∥ ≤ ∫ 1

0

∥∥[T ′(g0)]
−1
[
T ′(zi + τ(gi+1 − zi))− T ′(gi)

]∥∥ ‖gi+1 − zi‖ dτ

≤
∫ 1

0

(∫ ‖gi−g0‖+‖zi−gi+τ(gi+1−zi)‖

‖gi−g0‖
κ(u) du

)
‖gi+1 − zi‖ dτ.

Учитывая, что H′ является выпуклой и возрастает в [0, ρ0], из леммы 3.1 и (3.8) можно
сделать вывод, что∫ ‖gi−g0‖+‖zi−gi+τ(gi+1−zi)‖

‖gi−g0‖
κ(u) du

= H′
(
‖gi − g0‖+ ‖zi − gi + τ(gi+1 − zi)‖

)
−H′(‖gi − g0‖)

≤ H′
(
‖gi − g0‖+ ‖zi − gi‖+ τ‖gi+1 − zi‖

)
−H′(‖gi − g0‖)

≤
H′
(
vi + τ(ki+1 − vi)

)
−H′(ki)

vi − ki + τ(ki+1 − vi)
(
‖zi − gi‖+ τ‖gi+1 − zi‖

)
≤ H′

(
vi + τ(ki+1 − vi)

)
−H′(ki).

Это позволяет получить
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∥∥[T ′(g0)]
−1T (gi+1)

∥∥ ≤ ∫ 1

0

[
H′
(
vi + τ(ki+1 − vi)

)
−H′(ki)

]
‖gi+1 − zi‖ dτ

=
{
H(ki+1)−H(vi)−H′(ki)(ki+1 − vi)

} ‖gi+1 − zi‖
ki+1 − vi

= H(ki+1)
‖gi+1 − zi‖
ki+1 − vi

≤ H(ki+1), (3.13)

что показывает, что (ii) верно для случая i + 1. Объединив выражения (3.12) и (3.13),
мы получим

‖hi+1 − gi+1‖ =
∥∥[T ′(gi+1)]

−1T (gi+1)
∥∥

≤
∥∥[T ′(gi+1)]

−1T ′(g0)
∥∥∥∥[T ′(g0)]

−1T (gi+1)
∥∥

≤ −H(ki+1)

H′(ki+1)
= si+1 − ki+1. (3.14)

Это означает, что (iii) верно для случая i + 1. Тогда мы приходим к выводу, что
‖hi+1 − g0‖ ≤ ‖hi+1 − gi+1‖ + ‖gi+1 − g0‖ ≤ si+1 < ι∗ и, следовательно, hi+1 ∈ M(g0, ι

∗).
Относительно (iv) также заметим, что

T (hi+1) = T (hi+1)− T (gi+1)− T ′(gi+1)(hi+1 − gi+1)

=

∫ 1

0

[
T ′
(
gi+1 + τ(hi+1 − gi+1)

)
− T ′(gi+1)

]
(hi+1 − gi+1) dτ.

В соответствии с κ-средним условием Липшица (2.1)

∥∥[T ′(gi+1)]
−1T (hi+1)

∥∥ ≤ −1
H′(ki+1)

∫ 1

0

(∫ ‖gi+1−g0‖+‖τ(hi+1−gi+1)‖

‖gi+1−g0‖
κ(u)du

)
‖hi+1 − gi+1‖ dτ.

Учитывая, что H′ является выпуклой и возрастает в [0, ρ0], из леммы 3.1 и (3.8) можно
заключить, что∫ ‖gi+1−g0‖+τ‖hi+1−gi+1‖

‖gi+1−g0‖
κ(u) du

= H′
(
‖gi+1 − g0‖+ τ‖hi+1 − gi+1‖

)
−H′(‖gi+1 − g0‖)

≤
H′
(
ki+1 + τ(si+1 − ki+1)

)
−H′(ki+1)

si+1 − ki+1
‖hi+1 − gi+1‖

≤ H′
(
ki+1 + τ(si+1 − ki+1)

)
−H′(ki+1).

Это позволяет получить∥∥[T ′(gi+1)]
−1T (hi+1)

∥∥ ≤ −1
H′(ki+1)

∫ 1

0

[
H′
(
ki+1 + τ(si+1−ki+1)

)
−H′(ki+1)]

∥∥hi+1−gi+1‖ dτ

=
−1

H′(ki+1)

[
H(si+1)−H(ki+1)−H′(ki+1)(si+1−ki+1)

]‖hi+1−gi+1‖2

(si+1−ki+1)2

=
−H(si+1)

H′(ki+1)

‖hi+1 − gi+1‖2

(si+1 − ki+1)2
, (3.15)

что приводит к следующему:
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‖zi+1 − hi+1‖ =
∥∥[T ′(gi+1)]

−1T (hi+1)
∥∥ ≤ −H(si+1)

H′(ki+1)
= vi+1 − si+1. (3.16)

Это означает, что (iv) верно для случая i+ 1. Учитывая эти два результата, для (v) мы
имеем ‖zi+1 − gi+1‖ ≤ ‖zi+1 − hi+1 + hi+1 − gi+1‖ ≤ vi+1 − si+1 + si+1 − ki+1 ≤ vi+1 − ki+1.
Аналогичным образом для следующего соотношения, исходя из (1.3), видим, что

gi+2 − zi+1 = −[T ′(gi+1)]
−1

∫ 1

0

[
T ′(hi+1 + τ(zi+1 − hi+1))− T ′(gi+1)

]
(zi+1 − hi+1) dτ.

С помощью κ-среднего условия Липшица (2.1) получим

‖gi+2 − zi+1‖ ≤
∥∥[T ′(hi+1)]

−1T ′(g0)
∥∥×∫ 1

0

∥∥[T ′(g0)]
−1
[
T ′(hi+1 + τ(zi+1 − hi+1))− T ′(gi+1)

]
(zi+1 − hi+1)

∥∥ dτ
≤
∥∥[T ′(gi+1)]

−1T ′(g0)
∥∥×∫ 1

0

(∫ ‖gi+1−g0‖+‖hi+1−gi+1‖+τ‖zi+1−hi+1‖

‖gi+1−g0‖
κ(u) du

)
‖zi+1 − hi+1‖dτ

=
−1

H′(ki+1)

∫ 1

0

[
H′
(
‖gi+1 − g0‖+ ‖hi+1 − gi+1‖+ τ‖zi+1 − hi+1‖

)
−

H′(‖gi+1 − g0‖)
]
‖zi+1 − hi+1‖ dτ.

Учитывая, что H′ является строго выпуклой в [0, ρ0] и, кроме того, ‖zi+1 − hi+1‖ ≤
vi+1 − si+1 согласно (iv), из леммы 3.1 получим

‖gi+2 − zi+1‖ ≤
−1

H′(ti+1)

(∫ 1

0

H′
(
si+1 + τ(vi+1 − si+1)

)
−H′(ki+1)

(si+1 − ki+1) + τ(vi+1 − si+1)
dτ ×

‖zi+1 − hi+1‖
(
‖hi+1 − gi+1‖+ τ‖zi+1 − hi+1‖

))
≤ −H(vi+1)

H′(ki+1)

[
‖zi+1 − hi+1‖
vi+1 − si+1

‖hi+1 − gi+1‖+ τ‖zi+1 − hi+1‖
si+1 − ki+1 + τ‖vi+1 − si+1‖

]
≤ (ki+2 − vi+1)

[
‖zi+1 − hi+1‖
vi+1 − si+1

‖hi+1 − gi+1‖+ τ‖zi+1 − hi+1‖
si+1 − ki+1 + τ‖vi+1 − si+1‖

]
≤ (ki+2 − vi+1),

что доказывает (vi) для случая i+ 1. Кроме того, в результате (3.14) и (3.16) имеем

‖gi+2 − gi+1‖ ≤ ‖gi+1 − zi+1‖+ ‖zi+1 − hi+1‖+ ‖hi+1 − gi+1‖

≤ (ki+2 − vi+1) + (vi+1 − si+1) + (si+1 − ki+1) = ki+2 − ki+1.

Следовательно, все формулы утверждения леммы верны по индукции. Доказательство
завершено.
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4. Основной результат полулокальной сходимости
для ТШСТН (1.3)

Теперь мы готовы продемонстрировать свойства полулокальной сходимости, включая
сходимость, единственность и скорость сходимости ТШСТН (1.3) при κ-среднем условии
Липшица (2.1) в банаховых пространствах. Кроме того, этот основной результат имеет
важное значение, поскольку он дает два особых случая, а именно, сходимость Y и, при
условии Липшица, сходимость типа Канторовича.

Следующие леммы будут играть важную роль в этом.

Лемма 4.1. При использовании тех же гипотез, что в лемме 3.4, последовательность
gi сходится к точке ξ∗ ∈M(g0, ι∗) при T (ξ∗) = 0. Кроме того, мы имеем

‖ξ∗ − gi‖ ≤ ι∗ − ki, i ≥ 0, (4.1)

‖ξ∗ − hi‖ ≤ (ι∗ − si)
(
‖ξ∗ − gi‖
ι∗ − ki

)2

, i ≥ 0, (4.2)

‖ξ∗ − zi‖ ≤ (ι∗ − vi)
(
‖ξ∗ − gi‖
ι∗ − ki

‖ξ∗ − hi‖
ι∗ − si

)
, i ≥ 0. (4.3)

Доказательство. Используем (vii) из леммы 3.4 и соотношение (3.8) для доказатель-
ства того, что

∞∑
i=N

‖gi+1 − gi‖ ≤
∞∑
i=N

(ki+1 − ki) = ι∗ − kN < +∞ для любого N ∈ N.

В результате, gi — последовательность Коши в M(g0, ι
∗) и, следовательно, она сходит-

ся к ξ∗ ∈ M(g0, ι∗). Для каждого i ≥ 0 приведенное выше неравенство означает, что
‖ξ∗ − gi‖ ≤ ι∗ − ki. Теперь покажем, что T (ξ∗) = 0. В соответствии с леммой 3.3 мы
можем утверждать, что T (gi) ограничено. Затем из доказанной леммы 3.4 следует, что∥∥T (gi)∥∥ ≤ ∥∥T ′(gi)∥∥∥∥[T ′(gi)]−1T (gi)

∥∥ ≤ ∥∥T ′(gi)∥∥(si − ki).
Пусть i → ∞, и учитывая тот факт, что si и ki сходятся к одной и той же точке ι∗
(см. замечание 3.1), мы получим limi→∞ T (gi) = 0. Поскольку T непрерывно в M(g0, ι∗),
gi ⊂ M(g0, ι

∗) и gi сходится к ι∗, получаем limi→∞ T (gi) = T (ξ∗), что подтверждает
равенство T (ξ∗) = 0. Остается показать оценки (4.2) и (4.3). Согласно лемме 3.4, имеем

‖hi − g0‖ ≤ ‖hi − gi‖+ ‖gi − g0‖ ≤ si. (4.4)

Однако мы можем получить следующее тождество:

ξ∗ − hi = −
[
T ′(gi)

]−1
∫ 1

0

[
T ′(gi + τ(ξ∗ − gi))− T ′(gi)

]
(ξ∗ − gi) dτ.

Далее, учитывая тот факт, что H′ является выпуклой и возрастает в [0, ρ0), можно объ-
единить соотношение (3.12), κ-среднее условие Липшица (2.1) и лемму 3.1, тогда
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‖ξ∗ − hi‖ ≤
−1
H′(ki)

∫ 1

0

(∫ ‖gi−g0‖+‖τ(ξ∗−gi)‖

‖gi−g0‖
κ(u) du

)
‖ξ∗ − gi‖ dτ

≤ −1
H′(ki)

∫ 1

0

[
H′
(
‖gi − g0‖+ τ‖ξ∗ − gi‖

)
−H′(‖gi − g0‖)

]
‖ξ∗ − gi‖ dτ

≤ −1
H′(ki)

∫ 1

0

H′(ki + τ(ι∗ − ki))−H′(ki)
ι∗ − ki

dτ ‖ξ∗ − gi‖2

≤ (ι∗ − si)
‖ξ∗ − gi‖2

(ι∗ − ki)2
.

Необходимо получить оценки (4.2) и (4.3). В результате леммы 3.4 получим

‖zi − g0‖ ≤ ‖zi − hi‖+ ‖hi − g0‖ ≤ vi. (4.5)

Кроме того, мы можем получить следующее тождество:

ξ∗ − zi = −[T ′(gi)]−1

∫ 1

0

[
T ′
(
hi + τ(ξ∗ − hi)

)
− T ′(gi)

]
(ξ∗ − hi) dτ.

Далее, учитывая, что H′ является выпуклой и возрастает в [0, ρ0), можно объединить
соотношение (3.12), лемму 3.1 и κ-среднее условие Липшица (2.1):

‖ξ∗ − zi‖ ≤
−1
H′(ki)

∫ 1

0

(∫ ‖gi−g0‖+‖hi−gi+τ(ξ∗−hi)‖

‖gi−g0‖
κ(u)du

)
‖ξ∗ − hi‖ dτ

=
−1
H′(ki)

∫ 1

0

[
H′
(
‖gi − g0‖+ ‖hi − gi + τ(ξ∗ − hi)‖

)
−H′(‖gi − g0‖)

]
‖ξ∗ − hi‖ dτ

≤ −1
H′(ki)

∫ 1

0

H′
(
si + τ(ι∗ − si)

)
−H′(ki)

ι∗ − ki
‖ξ∗ − gi‖ dτ ‖ξ∗ − hi‖

≤ (ι∗ − vi)
‖ξ∗ − gi‖ ‖ξ∗ − hi‖
(ι∗ − ki)(ι∗ − si)

.

Доказательство леммы получено.

Лемма 4.2. При стандартных условиях как в лемме 3.4 и, используя гипотезу, что
1 + ι∗H′′(ι∗)/H′(ι∗) > 0, мы видим, что

zi − hi
vi − si

≤
1− H

′′(ι∗)

H′(ι∗) (ι∗ − ki)

1 +
H′′(ι∗)
H′(ι∗) (ι∗ − ki)

‖ξ∗ − hi‖2

‖ι∗ − si‖2
. (4.6)

Доказательство. Из схемы (3.7) мы можем получить

ι∗ − vi =
−1
H′(ki)

∫ 1

0
H′
(
si + τ(ι∗ − si)

)
−H′(ki)(ι∗ − si) dτ.

Учитывая тот факт, что H′ является выпуклой в [0, ρ0), лемма 3.1 утверждает, что для
любого τ ∈ (0, 1]

H′
(
si + τ(ι∗ − si)

)
−H′(ki) ≤

H′(ι∗)−H′(ki)
ι∗ − ki

(
si + τ(ι∗ − si)

)
≤ H′′(ι∗) (ι∗ − ki).

Поэтому, учитывая положительное свойство 1/H′(k), из приведенной выше леммы 3.1
можно заключить, что
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ι∗ − vi ≤
−1
H′(ki)

∫ 1

0

H′(ι∗)−H′(ki)
ι∗ − ki

(ι∗ − ki)(ι∗ − si) dτ =
−H′′(ι∗)
H′(ι∗)

(ι∗ − ki)(ι∗ − si). (4.7)

Поскольку ‖zi − hi‖ ≤ ‖ξ∗ − zi‖+ ‖ξ∗ − hi‖, из выражений (4.2) и (4.3) следует, что

‖zi − hi‖ ≤ (ι∗ − vi)
(
‖ξ∗ − gi‖
ι∗ − ki

‖ξ∗ − hi‖
ι∗ − si

)
+ ‖ξ∗ − hi‖ ≤

(
ι∗ − vi
ι∗ − si

+ 1

)
‖ξ∗ − hi‖. (4.8)

Наконец, с использованием (4.7) можем пойти дальше:

‖zi − hi‖ ≤
(
1− H

′′(ι∗)

H′(ι∗)
(ι∗ − ki)

)
‖ξ∗ − hi‖.

В результате (3.10) мы можем получить

‖zi − hi‖
vi − si

≤

(
1− H

′′(ι∗)

H′(ι∗) (ι
∗ − ki)

)
(
1 +

H′′(ι∗)
H′(ι∗) (ι

∗ − ki)
) ‖ξ∗ − hi‖2

(ι∗ − ki)2
.

Таким образом, используя леммы 4.1 и 4.2, мы можем получить следующую теорему.

Теорема 4.1. Рассмотрим нелинейный оператор T : D ⊂ U → V, который являет-
ся непрерывно дифференцируемым по Фреше и определенным в открытом и выпуклом
подмножестве D. Предположим, что имеется начальное приближение g0 ∈ D, для
которого существует [T (g0)]

−1, и что T удовлетворяет κ-среднему условию Липши-
ца (2.1) в шаре M(g0, ι

∗). Рассмотрим последовательность итераций {gi}, полученных
путем использования ТШСТН (1.3) с начальным значением g0. Если постоянные удо-
влетворяют 0 < β ≤ B, то последовательность {gi}, полученная путем использования
ТШСТН (1.3) с начальным приближением g0, должна быть вполне определена и счи-
таться сходящейся к единственному решению ξ∗ уравнения (1.1) в шаре M(g0, ρ) с
порядком 4, где ρ определяется как ρ := sup{k ∈ (ι∗, R) : H(k) ≤ 0}. Кроме того, это
решение гарантированно будет единственным в пределах большего шара M(g0, ρ), где
ι∗ ≤ ρ < k∗∗. Кроме того, если

1 +
ι∗H′′(ι∗)
H′(ι∗)

> 0 ⇐⇒ 1− ι∗κ(ι∗)
1−

∫ ι∗
0 κ(u)du

> 0, (4.9)

тогда можно ожидать по меньшей мере четвертого порядка сходимости и получить
следующие границы ошибки :

‖ξ∗ − gi+1‖ ≤ −
1

2
H3
∗
1− ι∗H∗
1 + ι∗H∗

‖ξ∗ − gi‖4, i ≥ 0, (4.10)

где H∗
∆
= H′′(ι∗)/H′(ι∗).

Доказательство. С помощью доказанной леммы 3.4 мы можем подтвердить, что по-
следовательность gi является вполне определенной. На основании (vii) леммы 3.4 и (3.8)
можно сделать вывод, что ‖gi− g0‖ ≤ ki < ι∗ для i ≥ 0 и в результате gi находится внут-
ри шара M(g0, ι

∗). Кроме того, согласно лемме 4.1, последовательность {gi} сходится к
решению ξ∗ уравнения (1.1) в M(g0, ι

∗). На следующем шаге мы подтвердим пятый по-
рядок сходимости итерационного метода. Для этого используем обычные аналитические
методы, чтобы получить следующий результат:
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ξ∗ − gi+1 = ξ∗ − zi + [T ′(gi)]
−1T (zi)

=−[T ′(gi)]−1[T (ξ∗)− T (zi)− T ′(gi)(ξ∗ − zi)]

=−[T ′(gi)]−1

[ ∫ 1

0

(
T ′(zτi )−T ′(zi)

)
(ξ∗−zi) dτ +

(
T ′(zi)− T ′(gi)

)
(ξ∗−zi)

]
, (4.11)

где gτi := gi+ τ(ξ∗− gi). Используя κ-среднее условие Липшица (2.1) и уравнение (3.12),
мы можем получить

‖ι∗ − gi+1‖ ≤
−1
H′(ki)

[∫ 1

0

(∫ ‖zi−g0‖+‖zi−zi+τ(ξ∗−zi)‖

‖zi−g0‖
κ(u) du

)
‖ξ∗ − zi‖ dτ +∫ ‖gi−g0‖+‖zi−gi‖

‖gi−g0‖
κ(u) du ‖ξ∗ − zi‖

]
.

Далее, учитывая, что H′ является выпуклой и возрастает в [0, ρ0), можно объединить
соотношения (4.1), (4.5), лемму 3.1, лемму 3.4 и κ-среднее условие Липшица (2.1):

‖ξ∗ − gi+1‖ ≤
−1
H′(ki)

[∫ 1

0

H′(vi + τ(ι∗ − vi))−H′(vi)
ι∗ − vi

‖ξ∗ − zi‖2 dτ +

H′(vi)−H′(ki)
vi − ki

‖ξ∗ − zi‖ ‖zi − gi‖
]

=
−1
H′(ki)

[(
H(ι∗)−H(vi)−H′(vi)(ι∗ − vi)

) ‖ξ∗ − zi‖2
(ι∗ − vi)2

+

(
H′(vi)−H′(ki)

)
(ι∗ − vi)

‖ξ∗ − zi‖
(ι∗ − vi)

‖zi − gi‖
vi − ki

]
.

Снова используя лемму 3.4 и соотношения (4.1), (4.5), можно получить следующее нера-
венство из приведенного выше выражения:

‖ξ∗ − gi+1‖ ≤ (ι∗ − ki+1)

[
‖ξ∗ − gi‖
ι∗ − ki

]3

. (4.12)

Теперь из (3.9) можно получить

‖ξ∗ − gi+1‖
‖ξ∗ − gi‖3

≤ ι∗ − ki+1

(ι∗ − ki)3
≤ −1

2

H′′(ι∗)3

H′(ι∗)3
(ι∗ − ki). (4.13)

Взяв предел при приближении i к бесконечности в предыдущих неравенствах, и учиты-
вая, что {ki} сходится к ι∗, мы получим

lim
i→∞

‖ξ∗ − gi+1‖
‖ξ∗ − gi‖3

= 0. (4.14)

Кроме того, если условие (4.9) также удовлетворяется, мы можем использовать оценки
(4.1), (4.5), (4.6) и (3.9) для получения следующего неравенства из (4.10):

‖ξ∗ − gi+1‖ ≤
−1
H′(ki)

[(
H(ι∗)−H(vi)−H′(vi)(ι∗ − vi)

) ‖ξ∗ − zi‖2
(ι∗ − vi)2

+

(
H′(vi)−H′(ki)

)
‖ξ∗ − zi‖

‖zi − gi‖
(vi − ki)

]
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≤ −1

2

(
H′′(ι∗)
H′(ι∗)

)3 1− ι∗H′′(ι∗)
H′(ι∗)

1 +
ι∗H′′(ι∗)
H′(ι∗)

‖ξ∗ − gi‖4. (4.15)

В результате мы продемонстрировали оценку (4.10), данную в теореме 4.1, что подтвер-
ждает четвертый порядок сходимости итераций.

Наконец докажем, что решение единственно. Сначала установим единственность ре-
шения ξ∗ для (1.1) в области M(g0, ι∗). Предположим, что существует альтернативное
решение ξ∗∗ вM(g0, ι∗). Это означает ‖ξ∗∗−g0‖ ≤ ι∗. Затем продемонстрируем с помощью
индукции, что

‖ξ∗∗ − gi‖ ≤ ι∗ − ki, i = 0, 1, 2, . . . . (4.16)

Поскольку k0 равно 0, сценарий, где i = 0, очевидно верен. Предполагая, что приведенное
выше выражение верно для i ≥ 0, используем эту же процедуру для оценки ‖ξ∗∗ − hi‖
из (4.2), а ‖ξ∗∗ − zi‖ в (4.3) и получим

‖ξ∗∗ − hi‖ ≤ (ι∗ − si)
(
‖ξ∗∗ − gi‖
ι∗ − ki

)2

, i ≥ 0,

‖ξ∗∗ − zi‖ ≤ (ι∗ − vi)
(
‖ξ∗∗ − gi‖
ι∗ − ki

‖ξ∗∗ − hi‖
ι∗ − si

)
, i ≥ 0.

Кроме того, используя этот же самый метод оценки ‖ξ∗∗ − zi‖ в (4.12), мы можем пока-
зать, что

‖ξ∗∗ − gi+1‖ ≤ (ι∗ − ki+1)

[
‖ξ∗∗ − gi‖
ι∗ − ki

]3

.

Затем, используя индуктивную гипотезу (4.16) для упомянутого выше неравенства, мо-
жем заключить, что (4.16) применимо к сценарию i+ 1. Поскольку {gi} сходится к ξ∗ и
{ki} сходится к ι∗, из (4.16) можно заключить, что ξ∗∗ = ξ∗. Следовательно,
ξ∗ — единственный корень (1.1) в M(g0, ι∗). Необходимо продемонстрировать, что нели-
нейный оператор T не имеет корней в областиM(g0, ρ)\M(g0, ι∗). Предполагая обратное,
допустим, что T имеет один или несколько корней в этой области, что указывает на на-
личие ξ∗∗ ∈ D ⊂ X, где ι∗ < ξ∗∗−g0 < ρ и T (ξ∗∗) = 0. Мы покажем, что вышеупомянутые
предположения не верны. Как мы знаем,

T (ξ∗∗) = T (g0) + T ′(g0)(ξ
∗∗ − g0) +

∫ 1

0

[
T ′(gτ0 )− T ′(g0)

]
(ξ∗∗ − g0) dτ, (4.17)

где gτ0 := g0 + τ(ξ∗∗ − g0). Заметим, что∥∥[T ′(g0)]
−1
[
T (g0) + T ′(g0)(ξ

∗∗− g0)
]∥∥ ≥ ‖ξ∗∗− g0‖ −

∥∥T ′(g0)]
−1T (g0)

∥∥ = ‖ξ∗∗− g0‖−H(0).

Кроме того, мы используем κ-среднее условие Липшица (2.1) для получения∥∥∥∥[T ′(g0)
]−1

∫ 1

0

[
T ′(gτ0 )− T ′(g0)

]
(ξ∗∗ − g0) dτ

∥∥∥∥ ≤ ∫ 1

0

(∫ τ‖ξ∗∗−g0‖

0
κ(u)du

)
‖ξ∗∗ − g0‖ dτ

=

∫ 1

0

[
H′(τ ‖ξ∗∗ − g0‖)−H′(0)

]
‖ξ∗∗ − g0‖

= H
(
‖ξ∗∗ − g0‖

)
−H(0)−H′(0) ‖ξ∗∗ − g0‖.
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Учитывая, что T (ξ∗∗) = 0 и H′(0) = −1, из (4.17) мы можем сделать вывод о том, что

H(‖ξ∗∗ − g0‖)−H(0)−H′(0) ‖ξ∗∗ − g0‖ ≥ ‖ξ∗∗ − g0‖ −H(0).

Это эквивалентно H(‖ξ∗∗− g0‖) ≥ 0. На основании приведенной выше леммы (3.2) мож-
но заключить, что H является строго положительной в диапазоне (‖ξ∗∗− g0‖,<). Таким
образом, понятно, что ρ < ‖ξ∗∗ − g0‖, а это противоречит первоначальным предположе-
ниям. В результате T не имеет корней вM(g0, ρ)\M(g0, ι∗), и поэтому ξ∗ — единственный
корень (1.1) в M(g0, ρ). Это завершает доказательство.

Замечание 4.1. Проверенные критерии сходимости 0 < β ≤ B, как утверждается в
теореме (4.1), фактически были первоначально получены Ваном [21] для исследования
сходимости метода Ньютона (1.2) в некоторых пределах. Для получения сходимости
четвертого порядка необходимо также выполнение условия (4.9).

Результаты позволяют сделать следующие обобщения. Пусть

ε := sup{t ≥ 0 : M(g0, t) ⊂ D}.

Условие 4.1. Оператор T ′ удовлетворяет центральному κ0-среднему условию Липшица
на шаре M(g0, ε), если для каждого x ∈M(g0, ε)

∥∥[T ′(g0)
]−1

(T ′(x)− T ′(g0))
∥∥ ≤ ∫ ‖x−g0‖

0
κ0(u) du (4.18)

для некоторой неубывающей непрерывной и неотрицательной функции, определенной в
интервале [0, ε]. Предположим, что уравнение

∫ ε
0 κ0(u) du− 1 = 0 имеет наименьшее по-

ложительное решение ε0 ∈ (0, ε]. Определим шарM(g0, ε0). Из этих определений следует,
что

M(g0, ε0) ⊂M(g0, ε),

и, следовательно,

κ0(u) ≤ κ(u) для каждого u ∈ [0, ε0].

Более того, линейный оператор T ′(x) является необратимым для x ∈M(g0, ε0) и∥∥[T ′(x)]−1
T ′(g0)

∥∥ ≤ 1

1−
∫ ε0

0 κ0(u) du
.

Эта оценка является более точной, чем

∥∥[T ′(x)]−1
T ′(g0)

∥∥ ≤ 1

1−
∫ ε

0 κ(u) du
,

использовавшаяся в предыдущих пунктах.
Дадим определение ограниченного κ-среднего критерия Липшица.

Условие 4.2. Оператор T ′ удовлетворяет ограниченному κ-среднему критерию Липши-
ца на шаре M(g0, ε0), если для любых x, y при ‖y − x‖+ ‖x− x0‖ ≤ ε0 имеет место
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∥∥[T ′(g0)
]−1

(T ′(y)− T ′(x))
∥∥ ≤ ∫ ‖x−g0‖

0
κ(u) du,

где κ — непрерывная, неубывающая и неотрицательная функция, определенная в ин-
тервале [0, ε0]. Из этих определений следует, что

κ(u) ≤ κ(u) для каждого u ∈ [0, ε0].

Следовательно, более жесткая функция κ может заменить κ во всех предыдущих ре-
зультатах. Таким образом, достаточные критерии сходимости слабее, и оценки ошибок
‖xi+1−xi‖, ‖ξ∗−xi‖, по крайней мере, такие же точные. Заметим, что κ0 = κ0(M(g0, ε)),
κ = κ(M(g0, ε)), а κ = κ(M(g0, ε)). Также стоит отметить, что функции κ0 и κ являются
специализациями исходной функции κ. Таким образом, для получения этих улучшений
не используются никакие дополнительные условия. Оказывается, единственность обла-
сти решения может быть более точной.

Теорема 4.2. Предположим, что существует решение ξ∗∗ ∈ M(g0, ρ1) уравнения
T (g) = 0 для некоторого ρ1 > 0, условие (4.18) верно на шаре M(g0, ρ1) и существу-
ет ρ2 ≥ ρ1 такое, что для bτ = (1− τ)‖ξ∗ − g0‖+ τ‖ξ∗∗ − g0‖∫ 1

0

∫ (1−τ)ρ1+τρ2

0
κ0(u) du dτ < 1. (4.19)

Определим множество D1 = M(g0, ε0) ∩ M(g0, ρ2). Тогда уравнение T (g) = 0 имеет
единственное решение ξ∗ в множестве D1.

Доказательство. Определим линейный оператор S =
∫ 1

0 T
′(ξ∗ + τ(ξ∗∗ − ξ∗)) dτ , где

ξ∗∗ ∈ D1 при T (ξ∗∗) = 0. Из этого определения и условий (4.18), (4.19) следует, что

∥∥[T ′(g0)
]−1(

S − T ′(g0)
)∥∥ ≤ ∫ 1

0

∫ bτ

0
κ0(u) du dτ < 1,

поскольку bτ < (1− τ)ρ1 + τρ2. Таким образом, S является необратимым, и из

ξ∗∗ − ξ∗ = S−1
(
T (ξ∗∗)− T (ξ∗)

)
= S−1(0)− 0

мы получим ξ∗∗ = ξ∗. Доказательство завершено.

Замечание 4.2.
(a) Предельная точка ι∗ заменяется на ρ в теореме 4.1.
(b) Если все предположения теоремы 4.1 верны, то пусть ρ1 = ι∗ и ξ∗∗ = ξ∗ в теореме 4.2.

Особые случаи. Теперь, с использованием теоремы 4.1, мы получим несколько след-
ствий путем рассмотрения различных вариаций положительной функции κ. Для начала
рассмотрим случай, когда функция κ имеет положительное постоянное значение, а затем
κ-среднее условие Липшица (2.1) можно упростить до следующего условия Липшица.

Следствие 4.1. Пусть T : D ⊂ U → V — нелинейный оператор, непрерывно диффе-
ренцируемый по Фреше в выпуклом подмножестве, т. е. является открытым для D.
Предположим, что начальное приближение g0 ∈ D, для которого [T ′(g0)]

−1 существует
и, кроме того, T удовлетворяет условию Липшица
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∥∥[T ′(g0)
]−1(

T ′(h)− T ′(g)
)∥∥ ≤ κ‖h− g‖, g, h ∈M(g0, ρ0), (4.20)

где ρ0 = 1/κ. Теперь мажорирующая функция H, определенная в уравнении (3.2), имеет
следующий вид :

H(k) = β − k + κ
2
k2, k ∈ [0, R].

С помощью уравнения (3.3) значение R может быть получено как R = 2/κ. Теперь
постоянную B, определенную в уравнении (3.3), можно выразить как B = 1/(2κ). Кро-
ме того, лемма 3.2 означает, что если κβ ≤ 1/2, то корни H в интервалах (0, 1/κ) и
(1/κ, 2/κ) следующие :

ι∗ =
1−
√
1− 2κβ
κ

, ι∗∗ =
1 +
√
1− 2κβ
κ

. (4.21)

Пусть {gi}— итерации, сгенерированные ТШСТН (1.3) при начальном приближении g0.
При предположении 0 < κβ ≤ 1/2 итерации {gi} определены и сходятся к единствен-
ному решению ξ∗ ∈ M(g0, ι

∗) уравнения (1.1), где ι∗ < ρ < ι∗∗, а ι∗ и ι∗∗ даны в виде
(4.21). Кроме того, если 0 < κβ ≤ 3/8, то порядок сходимости не ниже четвертого, и
имеет место следующая граница ошибки :

‖ξ∗ − gi+1‖ ≤
1

2

κ3

(1− 2κβ)3/2
1

2
√
1− 2κβ − 1

‖ξ∗ − gi‖4, i ≥ 0. (4.22)

Пусть Y > 0. Рассмотрим положительную функцию κ, определяемую следующим
выражением:

κ(u) :=
2Y

(1− Y u)3
, u ∈

[
0,

1

Y

)
. (4.23)

Следствие 4.2. Предположим, что T : D ⊂ U → V — нелинейный оператор, непре-
рывно дифференцируемый по Фреше в выпуклом подмножестве, т. е. он является от-
крытым для D, и ∃ — это начальное приближение g0 ∈ D, для которого [T (g0)]

−1

существует, и T удовлетворяет условию∥∥[T ′(g0)
]−1(

T ′(h)− T ′(g)
)∥∥ ≤ 1

(1− Y ‖g − g0‖ − ‖h− g‖)2
− 1

(1− Y ‖g − g0‖)2
. (4.24)

Теперь мажорирующая функция H, определяемая уравнением (3.2), имеет следующий
вид :

H(k) = β − k + Y t2

1− Y t
, k ∈

[
0,

1

Y

]
.

Значение ρ0 может быть получено с использованием уравнения (3.3) как ρ0 =(
1 − 1√

2

)
1

Y
. Постоянную B, определяемую уравнением (3.4), теперь можно предста-

вить как B =
0.1715728

Y
. Пусть a := βY ≤ 0.1715728. Тогда ι∗ =

1 + a−
√

(1 + a)2 − 8a

4Y
и

ι∗∗ =
1 + a+

√
(1 + a)2 − 8a

4Y
— корни H. Постоянная H∗ := H

′′(ι∗)

H′(k∗) , как в теореме (4.1), те-

перь имеет особый вид : H∗ = − 32Y√
(1 + a)2 − 8a.(3− a+

√
(1 + a)2 − 8a)2)

. Итерации {gi} сге-

нерированы с помощью ТШСТН (1.3) при начальном приближении g0. Предположим,
что 0 < a ≤ 0.1715728. Итерации {gi} определены и сходятся к единственному ре-
шению ξ∗ ∈ M(g0, ι

∗) уравнения (1.1), где ι∗ < ρ < ι∗∗, ι∗ и ι∗∗. Кроме того, если
0 < a ≤ 1

6

(
17 − 49

(937− 48
√

330)1/3
− (937 − 48

√
330)1/3

)
, то порядок сходимости не ме-

нее четвертого, и имеется следующая граница ошибки :
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‖ξ∗ − gi+1‖ ≤
l

2
(H∗)3l‖ξ∗ − gi‖4, i ≥ 0, (4.25)

где l = − 7− a3 +
√

1− 6a+ a2 + a2(9 +
√

1− 6a+ a2)− 3a(5 + 2
√

1− 6a+ a2)

1 + a3 − 9
√

1− 6a+ a2 − a2(9 +
√

1− 6a+ a2) + a(23 + 6
√

1− 6a+ a2)
.

5. Численный пример, демонстрирующий применение

В данном пункте представлено применение результатов, основанных на анализе по-
лулокальной сходимости, полученных в предыдущем пункте.

Пример 5.1. Пусть X = C[0, 1] — пространство непрерывных функций, определенных
в интервале [0, 1] с максимальной нормой ‖g‖ = maxs∈[0,1] |g(s)|, и пусть φ = U [0, 1]
представляет функцию T на φ, имеющую следующий вид:

T (g)(s) = g(s)− 2λ

∫ 1

0
γ(s, k)x(k)3 dk. (5.1)

Здесь γ — ядро функции Грина, определенное в интервале [0, 1]× [0, 1] и задаваемое как

γ(s, k) =

{
(1− s)k k ≤ s,
s(1− k), s ≤ k.

Здесь s ∈ [0, 1], λ — вещественное число, g ∈ C[0, 1] — функция, которая должна быть
определена. В результате

T ′(g)h(s) = h(s)− 6λ

∫ 1

0
γ(s, k)x(k)2h(k) dk, h ∈ φ. (5.2)

Теперь пусть S = maxs∈[0,1]

∫ 1
0 |γ(s, k)| dk, что в результате дает S = 1/8. Кроме того,

выбрав g0(k) = 0.25 в качестве начального приближенного решения, для любого g, h ∈ φ
получим

β =
∥∥[T ′(g0)

]−1
T (g0)

∥∥ ≤ 0.0039063 |λ|
1− 0.046875 |λ|

. (5.3)

С помощью определения κ-среднего из следствия 4.1 получаем κ =
3

2
|λ| 1

1− 0.046875 |λ| .
Поскольку β < B, критерий сходимости удовлетворяется. Эта теорема может использо-
ваться для утверждения, что последовательность, сгенерированная ТШСТН (1.3) при
начальном приближении g0, сходится к нулю T .

Таблица 1 показывает область единственности и существования решения для значе-
ний λ = 0.0625, 0.125, 0.25, 0.5, 1.

В табл. 2 представлены критерии κβ < 3/8 и границы ошибки для аналогичных
значений λ. По сравнению с полулокальной сходимостью двухшагового метода из [31],
мы видим из табл. 2, что новый критерий сходимости сильнее.
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Таблица 1. Области единственности и существования решения для ТШСТН

λ
Шар сходимости

Существование M(g0, ι∗) Единственность M(g0, ι∗∗)

1.0 M(0.25, 0.00409923) M(0.25, 1.26672)

0.5 M(0.25, 0.00200157) M(0.25, 2.60217)

0.25 M(0.25, 0.00098834) M(0.25, 5.26984)

0.125 M(0.25, 0.00049118) M(0.25, 10.6037)

0.0625 M(0.25, 0.000244864) M(0.25, 21.2706)

Таблица 2. Критерии сходимости и границы ошибки для ТШСТН

λ κβ < 3/8 Границы ошибки
1.0 0.006449 2.01331
0.5 0.00153602 0.228242
0.25 0.000374952 0.0273677
0.125 0.0000926362 0.00335607
0.0625 0.0000230232 0.000415678

Благодарности. Автор хотел бы выразить свою искреннюю благодарность рецензентам
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