УДК 536.44: 536.63: 536.71

Кроссоверное уравнение состояния метана для расчета теплоемкостей и скорости звука в регулярной и критической областях состояния до 30 МПа^{*}

П.П. Безверхий¹, О.С. Дутова²

¹Институт неорганической химии им. А.В. Николаева СО РАН Новосибирск

²Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: ppb@niic.nsc.ru

Предложено новое термическое уравнение состояния для метана в явном виде, включающее кроссоверную функцию, новую регулярную и масштабную части с 22 регулируемыми коэффициентами в реальных переменных температура – плотность. Коэффициенты определены по массиву p, ρ , T-данных CH₄, данные по теплоемкостям C_v , C_p и скорости звука W не привлекались, кроме данных изохорной теплоемкости C_v в идеально-газовом состоянии и значения C_v при 100 K на ветви жидкости кривой равновесия жидкость – пар. В регулярной области расчетные величины C_v , C_p и W близки к экспериментальным и табличным значениям, в критической области расхождения с табличными величинами составляют не более 5 %, что связано с применением масштабного уравнения состояния. Среднее абсолютное отклонение описания давления CH₄ составляет 0,3 %, среднеквадратичная погрешность $\sigma_p = 0,5$ %, погрешность в C_v — не более 5 %. Результаты расчетов сравниваются с данными известных кроссоверных уравнений состояния для CH₄. Сделан вывод о предпочтительности предлагаемой модели уравнения состояния для расчетов теплофизических свойств метана.

Ключевые слова: метан, комбинированное уравнение состояния, критическая точка, теплоемкость, скорость звука.

Введение

Исследования термодинамических свойств метана проводятся в настоящее время как в чистом газе, так и в жидких и газообразных смесях [1-3]. Эти сведения важны для обработки природного газа. Справочные таблицы по термодинамическим свойствам CH₄ рассчитываются по уравнениям состояния (УС) в виде ряда с большим числом членов с целыми и дробными степенями плотности ρ и температуры *T*, и с членами экспоненциального типа, имеющими до 54 и более подгоночных коэффициентов [4-6]. Известные

^{*} Работа выполнена с финансовой поддержкой Министерства науки и высшего образования Российской Федерации, проекты № 121031700314-5 и № 121031800219-2.

[©] Безверхий П.П., Дутова О.С., 2023

Безверхий П.П., Дутова О.С.

справочные таблицы для CH₄ [4, 5] не включают область критического состояния. Новые справочные таблицы по свойствам СН₄ (1991 г.) [6] рассчитаны по регулярному УС (УС-SetW) в виде ряда с 40 коэффициентами и 23 различными показателями. Члены этого степенного ряда содержат также и экспоненциальные функции от ρ и *T*. Для кривой равновесия жидкость – пар (бинодали) в работе [6] были предложены отдельные зависимости, переходящие к зависимостям по масштабной теории в критической области. Несмотря на регулярный вид, УС-SetW [6] воспроизводит особенности поведения теплоемкости С_v и скорости звука W в критической области. В УС-SetW используются экспериментальные данные по термическим и калорическим свойствам для получения подгоночных констант. Программы с применением таких УС не всегда доступны для инженерных расчетов свойств в областях состояния СН4, где справочные таблицы не дают подробных сведений. В связи с этим в работе [7] было предложено простое регулярное УС Span-Wagner (УС-SpW) с 12-ю подгоночными константами для «технических» расчетов свойств метана. УС-SpW [7] имеет более узкую область применения по ρ и T по сравнению с областью применения УС [6], погрешность в давлении р в области жидкости при T < 120 K составляет более 10 %. В этих УС критические условия не выполняются точно в реальной критической точке.

Таблицы от 2002 г. [8], основанные на УС-SetW [6], были дополнены справочными данными по вязкости и теплопроводности CH₄. Справочные таблицы [4–6, 8] не содержат данных в критической области, где C_v расходится в критической точке согласно масштабной теории (скейлинга). В работе [9] была предложена модель кроссоверного УС с использованием «классического» кубического УС и масштабных членов неявного вида с трансформацией «классических» значений ρ и *T* в реальные. Такая модель УС неявного вида имеет 13 подгоночных параметров и дает более высокую погрешность при расчете C_v . В работе [10] для метана было предложено кроссоверное УС с 18-ю подгоночными коэффициентами, для получения которых использовались все имеющиеся данные в критической области. Недостатки УС из [10] состоят в неширокой области применения (0,3 < ρ/ρ_c < 1,7, 0,95< T/T_c < 1,3), а также в сложном способе расчета кроссоверной функции.

Разработанные авторами комбинированные уравнения состояния (КУС) с числом регулируемых констант до 20 [11–15] применены для описания свойств SF₆ и CO₂ как в критической области, так и в области регулярного поведения. Эти уравнения содержат регулярную и масштабную части давления (p_{reg} и p_{scal}), имеют явную (непараметрическую) форму зависимости от ρ и T и регулярную кроссоверную функцию в явном виде. Для p_{reg} в этих КУС предложены регулярные УС [11–15], которые содержат от 8 до 13 подгоночных коэффициентов. Феноменологический подход к конструированию таких полуэмпирических УС для расчета p_{reg} был дан в работе [16]. Теоретическое обоснование уравнения для p_{scal} в явной форме, содержащее 6 системно-зависимых констант, приводилось в работе [17]. Наличие p_{reg} в КУС позволяет избежать применения неасимптотических членов, которые возникают при расширении области применения скейлинга и заметно усложняют расчеты теплофизических свойств. Масштабное УС в явном виде для p_{scal} [17] проще применять для описания p, ρ , T-данных в сравнении с УС, в которых переменные p, ρ , T выражены в параметрическом виде [9, 18].

Комбинированные модели для $p(\rho, T)$ явного вида, например, [19], содержат p_{reg} в виде ряда, для которого критические условия не выполняются. В [19] p_{reg} имеет чисто

эмпирическую форму, в отличие от УС [12-15] для p_{reg} , в которых часть членов имеет определенное физическое обоснование. В масштабной части УС [19] применяются скейлингоподобные эмпирические члены и содержится до 30 подгоночных коэффициентов, для вычисления которых привлечены данные по всем термическим и калорическим свойствам. По сравнению с моделями [19] КУС явного вида [12-15], в том числе уравнение, которое предлагается в настоящей работе, содержат до 22 регулируемых коэффициентов, для нахождения которых используются *p*, *p*, *T*-данные.

КУС [12-15] с различными модификациями p_{reg} для CO₂ и SF₆ позволили рассчитать C_v с погрешностью от 5 до 10 % в различных областях состояния при давлениях до 30 МПа и плотностях ρ , меньших плотности жидкости ρ_t в тройной точке. Для расчета подгоночных коэффициентов в этих КУС [12-15] никакие данные по другим термодинамическим свойствам не использовались. Исключение составляет расчет C_v в идеальном состоянии, где применялись известные зависимости $C_v(T)$ идеального газа. С помощью дифференциальных уравнений термодинамики C_v , C_p и W рассчитывались по КУС, полученному при описании p, ρ , T-данных. Среднеквадратичная погрешность расчета давления σ_p в этих КУС не превышает ~0,7 % при строгом выполнении в критической точке трех известных критических условий.

В представленной работе для расчетов термодинамических свойств CH₄ при *P* до 30 МПа и *T* от 100 К и выше предлагается КУС, содержащее p_{reg} и p_{scal} в явном виде. Модифицированный вид p_{reg} с 13-ю подгоночными коэффициентами разработан на основе регулярного УС с 10 подгоночными константами для метана [20]. Три из 13 коэффициентов этого УС связаны тремя условиями в критической точке и вычисляются по соответствующим формулам, содержащим остальные 10 коэффициентов. Как правило, при соблюдении этих условий для p_{reg} заметно возрастает погрешность описания p, ρ , *T*-поверхности в регулярной области, поэтому удачный выбор формы для части членов в p_{reg} обеспечивает минимальную погрешность расчета. Для p_{scal} в КУС используется асимметричная скейлинговая форма, примененная ранее в исследованиях [12–15] совместно с переходной функцией *Y* регулярного вида, которая обращается в нуль при $\rho = 0$ и $\rho = \rho_t$.

Комбинированное уравнение состояния

Аппроксимация экспериментальных *p*, *ρ*, *T*-данных CH₄ новым комбинированным УС проводилась в интервалах их измерений ($0 < \rho/\rho_c < 2,7$, 100 K < T < 520 K, 0 $<math>\leq 30$ МПа). Для _{этого} использовались *p*, *ρ*, *T*-данные [21–24], полученные одним методом измерения плотности в широкой области состояний CH₄. Эти данные, по мнению авторов, являются наиболее точными и согласованными (обзор *p*, *ρ*, *T*-данных приведен в работе [6]). К сожалению, *p*, *ρ*, *T*-данные [23] малочисленны и разрежены в широкой окрестности критической точки. Аппроксимационный *p*, *ρ*, *T*-массив (677 точек) для CH₄ был сформирован из данных работ [21–24] до 30 МПа. Параметры критической и тройной точек для CH₄ взяты из исследования [6] и имеют следующие значения: $T_c = 190,564$ K, $\rho_c = 162,66$ кг/м³, $p_c = 4,5992$ МПа (как близкие к экспериментальным данным из [23, 24]), $z_c = p_c/\rho_c RT_c = 0,2862887$, $T_t = 90,6941$ K, $\rho_t = 451,48$ кг/м³, $\omega_t = \rho_t/\rho_c = 2,775706$ (здесь и далее нижний индекс «с» означает критическое значение, индекс «t» — значение в тройной точке). Комбинированное УС имеет форму явной функции *ρ*, *T* и записывается в виде

$$p/p_{\rm c} = (1-Y) p_{\rm reg}/p_{\rm c} + Y p_{\rm scal}/p_{\rm c}.$$
 (1)

УС (1) включает новую регулярную часть p_{reg} для аппроксимации p, ρ , T-данных в регулярной области, сингулярную масштабную часть p_{scal} [17] для критической области и переходную (кроссоверную) функцию

$$Y = \omega \left[\left(1 - \omega / \omega_{t} \right)^{2} / \left(1 - 1 / \omega_{t} \right)^{2} \right] \operatorname{erfc} \left(\sqrt{\lambda} \cdot |\tau| \right) \exp \left(-\mu (\Delta \rho)^{2} \right), \tag{2}$$

где $t = T/T_c$, $\omega = \rho/\rho_c$, $\tau = t - 1$, $\Delta \rho = \omega - 1$ — относительные расстояния от критической точки; λ и μ — подгоночные константы, определяющие область влияния p_{scal} , erfc $(\sqrt{\lambda} \cdot |\tau|)$ — функция ошибок Лапласа, которая вычислялась с помощью ряда, приведенного в работе [13]. Нуль функции *Y*, кроме $\omega = 0$, находится также и при $\omega = \omega_t$, что позволяет более эффективно гасить влияние p_{scal} при больших плотностях. Функция *Y* действует во всей области состояний, так же как и член p_{reg}/p_c в УС (1), который не исчезает в окрестности критической точки, а играет роль неасимптотической добавки. Функция *Y* в данной форме успешно применялась ранее в работах [12–15].

В отличие от формы p_{reg} с 10-ю константами из [20], взятой здесь за основу, в настоящей работе предложен новый вид для p_{reg} с 13-ю подгоночными константами:

$$p_{\rm reg} / p_{\rm c} = \frac{\omega t}{z_{\rm c}} \Big\{ 1 + A_{\rm l} \Big(e^{1/t} - 1 - 1/t \Big) \omega \Big[1 - \omega / x^2 \Big] \varphi(\omega) - A_2 \omega / t - A_3 \omega \Big(e^{-1/t} - 1 \Big) - A_6 \omega \Big(e^{-2/t} - 1 \Big) + A_4 (e^{2t} - 1 - 2/t) \omega \Big[1 - 2\omega / x^2 \Big] \varphi^2(\omega) + A_5 \Big(e^{6/t} - 6/t \Big) \omega^2 \Big[2 - 5z_{\rm c} \omega / x^2 \Big] \varphi^{5z_{\rm c}}(\omega) + A_7 \omega / x + A_8 \omega / x^2 + A_9 \omega^2 / x^3 + A_{10} \omega^3 / x^4 + A_{11} t^{-14} \omega^3 (3 - 3\omega^3) e^{-\omega^3} + A_{12} t^{-3.5} \omega (1 - 2\omega^2) e^{-\omega^2} + A_{13} t^{-6} \omega^5 \Big[5 - 4\omega (py)^3 \Big] e^{-(py)^4} \Big\},$$
(3)

здесь $x = 1 - z_c \omega$, $\varphi(\omega) = \exp(-\omega/x)$, $py = \omega - 0,82(1/t + 2)$. Температурные функции при некоторых членах с A_i связаны с видом применяемого межмолекулярного потенциала [16, 25] и имеют некоторые отличия от функций из [20]. В уравнении (3) добавлены члены с A_{11} и A_{12} из регулярного «технического» УС-SpW [7], с которыми погрешность описания расчетного давления p_{reg} при малых и средних плотностях и на газовой ветви бинодали сводится к минимуму. Член с A_{13} позволяет с приемлемой погрешностью описать давление на изотермах жидкости и поведение теплоемкости C_v на ветви жидкости бинодали в области 100 K < T < 140 K. Константы A_5 , A_6 и A_{11} вычислялись по формулам, следующим из условий в критической точке:

$$p_{\rm reg}(\rho_{\rm c}, T_{\rm c})^{\rm calc} = p_c^{\rm exp}, \quad \left[\left(\partial \left(p_{\rm reg} / p_{\rm c} \right) / \partial \omega \right]_{T_{\rm c}\rho_{\rm c}}^{\rm calc} = 0, \quad \left[\partial^2 \left(p_{\rm reg} / p_{\rm c} \right) / \partial \omega^2 \right]_{T_{\rm c}\rho_{\rm c}}^{\rm calc} = 0, \quad (4)$$

и по значениям остальных A_i , получаемых при аппроксимации массива p, ρ , T-данных. Эти формулы громоздки и здесь не приводятся.

Сингулярная (масштабная) часть p_{scal} в (1) содержит величины p_c , ρ_c , T_c , подгоночные константы q, k, $M - a_p$, C_1 , b, a_p и выбрана с учетом асимметрии в форме [17]

$$p_{\text{scal}} / p_{\text{c}} = 1 - k(q_{\text{p}} - q)^{\gamma} \Delta \rho \left| \Delta \rho \right|^{\delta - 1} \left[1 + \delta \cdot \Delta \rho / (1 + \delta) \right] + k \left(\tau + q_{\text{p}} \left| \Delta \rho \right|^{1/\beta} \right)^{\gamma} (\Delta \rho + \Delta \rho^{2}) - k \int_{0}^{\Delta \rho} x \left(\tau + q_{\text{p}} \left| x \right|^{1/\beta} \right)^{\gamma} dx + C_{\text{s}} t^{2 - \alpha} / (2 - \alpha) + (M - a_{\text{p}})(1 - a_{\text{p}}b)^{-1} \tau +$$

150

$$+ C_{1}\tau^{2} / 2 - b (M - a_{p})(1 - a_{p}b)^{-1}h_{1},$$

$$h_{1} = -k(q_{p} - q)^{\gamma} \Delta \rho |\Delta \rho|^{\delta - 1} + k(\tau + q_{p} |\Delta \rho|^{1/\beta})^{\gamma} \Delta \rho.$$
(5)

Для удобства аппроксимации вместо точного вида членов $-k \int_{0}^{\Delta \rho} x (\tau + q_p |x|^{1/\beta})^{\gamma} dx +$ $+C_{s}\tau^{2-\alpha}/(2-\alpha)$ в p_{scal} (5) использовалось выражение $-k |\tau|^{\gamma-1} \Delta \rho^{2} (\tau/2 + \gamma \beta (1+\alpha))$ $+2\beta)^{-1}q_{\rm p}|\Delta\rho|^{1/\beta}$), которое возникает при разложении подынтегральной скобки $(\tau + q_{\rm p}|x|^{1/\beta})^{\gamma}$ с точностью до членов первого порядка ввиду того, что $\gamma \approx 1$. Здесь учтено, что при последующем интегрировании на нижнем пределе этот интеграл сокращается с членом $C_s \tau^{2-\alpha}/(2-\alpha)$ [17]. Для расчета поведения термодинамических функций в критической области по температурным производным от p_{scal} следует пользоваться выражением (5), содержащим этот интеграл (а не его разложение). В уравнении (5) k — это коэффициент сжимаемости в асимптотической зависимости $p_c K_T = \tau^{-\gamma}/k$ на критической изохоре. Величина q в (5) является коэффициентом в асимметричной форме пограничной кривой (бинодали) $\Delta \rho_{\text{bin}} = \pm (-\tau/q)^{\beta} + B_1(-\tau)^{1-\alpha}, B_1 = -bk \cdot 2,5314112\gamma \beta / q^{2\beta}, q_p = 4,0015q$ [14, 17]. Значения $q = 0,191519, B_1 = -0,60439$ получены аппроксимацией экспериментальной бинодали CH₄ [24]. Индексы γ , β , α и $\delta = (\gamma + \beta)/\beta$ являются критическими показателями, их значения $\beta = 0.3255$, $\gamma = 1.239$, $\alpha = 0.11$ взяты в согласии с трехмерной моделью Изинга [26]. $C_s = k\beta\gamma B(\alpha - 1, 2\beta) / q_n^{2\beta}$, $B(\alpha - 1, 2\beta) = 2,6396$ (при данных α, β) бета-функция Эйлера [27], *а* — индекс теплоемкости в зависимости *C_v*(*τ*) на критической изохоре $\rho = \rho_c$, $M - a_p = s_c T_c / p_c - a_p$, s_c — значение критической энтропии на единицу объема, *a*_p — константа преобразований Покровского [28]. Очевидно, что коэффициент асимметрии b в УС (5) не может быть получен независимо из подгонки к p, ρ, T данным СН4, так как он связан с асимметричным членом в выражении для бинодали (bk = -0.2018609) и зависит от значения k, получаемого при аппроксимации всего массива p, ρ, T -данных.

Применяемая методика минимизации квадратичного функционала относительных отклонений расчетных давлений ($p_{calc} - p_{exp}$)/ p_{exp} , подробно описывалась в работе [12]. Исходный массив p, ρ , T-данных включал 29 изотерм и данные на бинодали в интервалах 0,67 кг/м³ < ρ < 440 кг/м³, 100 K < T < 520 K, 0 < $p \le 30$ МПа [21–24]. Константы КУС (1) приведены в таблице. Из-за недостатка изотерм в критической области значение параметра λ в кроссоверной функции Y, отвечающего за температурный интервал влияния масштабных законов и определенного по p, ρ , T-данным, оказалось меньше, чем величина λ , необходимая для корректного описания околокритической изохоры C_v (см. таблицу). Константа $A_{13} = 0,0000050394$, определенная по p, ρ , T-данным, применялась для расчета p_{reg} и производных от p_{reg} , однако для корректного расчета C_v на ветви жидкости бинодали величина $A_{13} = -0,000008734$ была определена по экспериментальному значению C_v [29] на этой ветви при T = 100 K и применялась только для расчетов регулярной части C_v . Как показали расчеты, вклад члена с A_{13} в C_v становится заметным при $\rho > 370$ кг/м³ и T < 140 K, в других областях этот член и его производные малы и не влияют

Системно-зависимы	еконстанты комбин	ированного уравнения	а состояния (1)
Регулярное УС (3)		Масштабное УС (5)	
Константы	Значения	Константы	Значения
A_1	0,053384214	<i>M</i> – <i>a</i> _p	5,95075551
A2	1,78806772	q	0,191519
A ₃	-0,074364572	k	7,578
A_4	-0,011325276	C_1	-11,50
<i>А</i> ₅ (расчет по условиям (4))	-0,0003954283	ap	0,26
A_6 (расчет по условиям (4))	0,51090301	b	-0,2018609/k
A ₇	0,38496324	Кроссоверная функция У (2)	
A_8	0,042439395		
A_9	0,0019902140	Константы	Значения
A_{10}	-0,0001654904	λ^{a}	230,528 ^a
<i>А</i> ₁₁ (расчет по условиям (4))	-0,0050750180	λ^{b}	650,530 ^b
A ₁₂	-0,095702032	μ	28,57
A_{13}^{a}	0,0000050394 ^a	$\omega_{\rm t}$	2,775606
A_{13}^{b}	-0.0000087340^{b}		

Таблица

- значения A_{13} и λ для расчета давления и производных от давления,

^b — значения A_{13} для расчета теплоемкости $C_{\nu, \text{ reg}}$, λ — для расчета C_{ν} , C_p и W.

на расчетные величины. Среднеквадратичная погрешность аппроксимации р, р, Т-данных CH₄ по давлению $\sigma_p = 0.48$ %, среднее абсолютное отклонение p_{calc} от p_{exp} составляет 0,29 %, а по плотности — 0,40 %. Отклонения $\delta \rho = 100 (\rho_{exp} - \rho_{calc})/\rho_{exp}$, которые оценивались по линейным отклонениям давления Δp согласно формуле ($\rho_{exp} - \rho_{calc}$)/ ρ_{exp} = $= (\Delta p/p)/[(\rho/p)(\partial p/\partial \rho)_T]$, не превышают 0,1 % в области жидкости 1,5 < ω < 2,8, при ω < 1 они составляют до 1 %, а в критической области при ω ~ 1 — возрастают до 5 % из-за малости производной $(\partial p/\partial \rho)_T$. Расчет ρ_{calc} и отклонений $\delta \rho$ по КУС (1), при котором значения T_{exp} , p_{exp} считались точными, дал такие же результаты.

Теплоемкости C_{ν}, C_{ρ} и скорость звука W

Изохорная теплоемкость С_v вычислялась по известному соотношению термодинамики путем интегрирования по плотности производной $[\partial^2 (p/p_c)/\partial t^2]_{\omega}$: от УС (1):

$$C_{v} = C_{v, \text{reg}} - z_{c}Rt \left\{ \int_{0}^{\omega_{l}} Y \Big[\partial^{2} (\Delta p_{\text{sr}}) / \partial t^{2} \Big]_{\omega} \omega^{-2} d\omega + 2 \int_{0}^{\omega_{l}} \Big[\partial (\Delta p_{\text{sr}}) / \partial \omega t \Big]_{\omega} (\partial Y / \partial t)_{\omega} \omega^{-2} d\omega + \int_{0}^{\omega_{l}} (\Delta p_{\text{sr}}) (\partial^{2} Y / \partial t^{2})_{\omega} \omega^{-2} d\omega \right\},$$

$$(6)$$

где $\Delta p_{\rm sr} = (p_{\rm scal} - p_{\rm reg})/p_{\rm c}$, ω_1 — значение ω на верхнем пределе при интегрировании по ω , производные $\partial Y/\partial t$, $\partial^2 Y/\partial t^2$ от Y (2) не содержат интегралов и имеют явный вид. Интегралы в соотношении (6) не выражаются в элементарных функциях (за исключением регулярной части теплоемкости C_{v, reg}) и считались численно. Регулярный вклад C_{v,reg} в (6) рассчитывался с учетом значений $A_1, A_3, A_4, A_5, A_6, A_{11}, A_{12}, A_{13}$ по выражению

$$C_{\nu, \text{ reg}} = C_{\nu, \text{ id}} - Rt \Big\{ A_1 e^{(1/t)} / t^3 \omega \cdot \varphi(\omega) - A_3 \omega e^{(-1/t)} / t^3 - 4A_6 \omega e^{(-2/t)} / t^3 + 4A_4 \omega \cdot \varphi^2(\omega) e^{(2/t)} / t^3 + 4A_4 \omega \cdot \varphi^2(\omega) e^{$$

+ 36
$$A_5 \omega^2 \cdot (\varphi(\omega))^{5z_c} e^{(6/t)} / t^3 + 14 \cdot 13 \cdot A_{11} t^{(-15)} \omega^3 \exp(-\omega^3) + 3.5 \cdot 2.5 \cdot A_{12} t^{(-4,5)} \omega \exp(-\omega^2) + 2A_{13} t^{-7} \omega^5 [15 + 24 \cdot 0.82 (py)^3 / t - 6 \cdot (0.82)^2 (py)^2 / t^2 + 8 \cdot (0.82)^2 (py)^6 / t^2] \exp(-(py)^4) \},$$
 (7)

где $C_{\nu, id}$ — вклад теплоемкости разреженного газа, который вычислялся для CH₄ по интерполяционной формуле из работы [6].

Формулы для температурных производных от p_{scal} , входящие в (6) и содержащие интегралы по плотности, приводились в работе [14]. При вычислении интегралов в этих формулах они заменялись быстросходящимися рядами, которые имели разную форму при $\tau < 0$ и $\tau > 0$ [12, 14].

При расчете C_v по соотношению (6) в области жидкого состояния ($\omega_1 > 1,5$) вдоль околокритических изотерм было обнаружено недостаточно быстрое убывание вкладов в C_v от интегралов в (6), содержащих $\Delta p_{\rm sr}$, $\partial (\Delta p_{\rm sr})/\partial t$, которые дают некоторый остаток при прохождении критической области при численном интегрировании по ω от нуля до заданного значения ω_1 . Поэтому при расчете C_{ν} в области жидкости применялась специальная процедура замены значения $T_{\rm c}$ в кроссоверной функции $Y(\tau, \Delta \rho)$ и ее температурных производных в (6) на значения температуры T_{s} ветви жидкости спинодали, соответствующей плотности ω_1 , при которой рассчитывается C_{ν} . Величина T_s рассчитывалась по значению ω_l на верхнем пределе интегралов в (6) согласно формуле $\omega_l - 1 = \pm (-\tau_s/q_s)^{\beta} +$ + B₂ (- τ_s)^{*l*-α}, где τ_s = T_s/T_c - 1, q_s = 2,4196q, B₂ = - b k γ β $\left[(q_p - q_s)^{\gamma - 1} q_s^{\alpha - 1} (1 - \alpha)^{-1} + 2,6396 q_p^{-2\beta} \right] = 0.5$ = -1,9413189 bk [17]. В критической области эта замена не оказывает влияния, поскольку величины T_s близки к T_c , а при $\omega > 1$ и $T > T_c$ температурный множитель в $Y(\tau, \Delta \rho)$ с новым $\tau = (T - T_s)/T_s$ быстро гасил влияние вклада критической области в C_v . Для области $\omega > 1$ и $T < T_c$ применялись значения T_s , получаемые при «зеркальном» отражении ветви жидкости $\tau_s(\Delta \rho)$ спинодали относительно линии $T = T_c$ ($\tau = 0$). Для расчетов C_v вдоль изохор при заданном ω_1 в области жидкого состояния при $T < T_c$ ($\tau < 0$) и $\omega_1 > 1,15$ применялась дополнительная процедура исключения сингулярного вклада в интег-

ралы (6) при численном интегрировании по плотности путем исключения интервала $-0,15 < \Delta \rho < 0,15$ в критической области (соответствует интервалу $-0,01 < \tau < 0$), если при этом значения $|\Delta \rho|_{\text{bin}}$ на бинодали при заданной температуре находились внутри этого интервала. Это позволяет произвести «обрезание» сингулярного вклада в C_{ν} , если изохора находится в области состояний жидкости.

Вычисление С_р проводилось в согласии с общей формулой термодинамики:

$$C_{p} = C_{v} + z_{c}Rt\omega^{-2} \left[\frac{\partial(p/p_{c})}{\partial t} \right]_{\omega}^{2} / \left[\frac{\partial(p/p_{c})}{\partial \omega} \right]_{t},$$

$$\left[\frac{\partial(p/p_{c})}{\partial t} \right]_{\omega} = \frac{\partial(p_{reg}/p_{c})}{\partial t} + \Delta p_{sr} \frac{\partial Y}{\partial t} + Y \cdot \frac{\partial(\Delta p_{sr})}{\partial t},$$
(8)

где

$$\left[\partial(p / p_{\rm c}) / \partial\omega\right]_{\rm t} = \partial(p_{\rm reg} / p_{\rm c}) / \partial\omega + \Delta p_{\rm sr} \partial Y / \partial\omega + Y \cdot \partial(\Delta p_{\rm sr}) / \partial\omega$$

Формула (8) при подстановке выражений для производных принимает вид:

$$C_p = C_v + Rz_c t\omega^{-2} (Cp3 + Cp2 + Cp1)^2 / (Cp6 + Cp5 + Cp4),$$

где

153

$$\begin{split} Cp1 &= \mathrm{erfc}(\sqrt{\lambda} | \mathbf{t} |) \omega(1 - \omega/\omega_{t})^{2}(1 - 1/\omega_{t})^{-2} \mathrm{e}^{-\mu(\Delta\rho)^{2}} [\partial(\Delta p_{\mathrm{sr}})/\partial t]_{\omega}, \\ Cp2 &= -2\sqrt{\lambda/\pi} \mathrm{e}^{-\lambda\tau^{2}} \omega [(1 - \omega/\omega_{t})/(1 - 1/\omega_{t})]^{2} \mathrm{e}^{-\mu(\Delta\rho)^{2}} (\Delta p_{\mathrm{sr}}), \\ Cp3 &= \omega z_{\mathrm{c}}^{-1} \left\{ 1 + A_{\mathrm{I}} \left[\mathrm{e}^{1/t}(1 - t^{-1}) - 1 \right] \omega(1 - \omega/x^{2}) \varphi - \\ -A_{3} \omega [\mathrm{e}^{-1/t}(1 + t^{-1}) - 1] - A_{6} \omega \left[\mathrm{e}^{-2/t}(1 + 2t^{-1}) - 1 \right] + \\ + A_{4} \omega \left[\mathrm{e}^{2/t}(1 - 2t^{-1}) - 1 \right] (1 - 2\omega/x^{2}) \varphi^{2} + A_{5} \mathrm{e}^{6/t}(1 - 6t^{-1}) \omega^{2}(2 - 5z_{\mathrm{c}} \omega x^{-2}) \varphi^{5z_{\mathrm{c}}} + \\ + A_{7} \omega/x + A_{8} \omega/x^{2} + A_{9} \omega^{2}/x^{3} + A_{10} \omega^{3}/x^{4} - 13A_{11}t^{-14} \omega^{3}(3 - 3\omega^{3}) \mathrm{e}^{-\omega^{3}} - \\ -2, 5A_{12}t^{-3.5} \omega(1 - 2\omega^{2}) \mathrm{e}^{-\omega^{2}} - A_{13}t^{-6} \omega^{5} \left[25 - 20\omega(py)^{3} + \\ + 12 \cdot 0, 82\omega(py)^{2}/t + 20 \cdot 0, 82(py)^{3}/t - 16 \cdot 0, 82\omega(py)^{6}/t \right] \mathrm{e}^{-(py)^{4}} \right\}, \\ Cp4 &= \mathrm{erfc}\left(\sqrt{\lambda} |\tau|\right) \left[(1 - \omega/\omega_{t})/(1 - 1/\omega_{t})^{2} \left[1 - 2(\omega/\omega_{t})(1 - \omega/\omega_{t})^{-1} - \\ -2\mu\omega(\Delta\rho) \right] \mathrm{e}^{-\mu(\Delta\rho)^{2}} (\Delta p_{\mathrm{sr}}), \\ Cp5 &= \mathrm{erfc}\left(\sqrt{\lambda} |\tau|\right) \omega(1 - \omega/\omega_{t})^{2}(1 - 1/\omega_{t})^{-2} \mathrm{e}^{-\mu(\Delta\rho)^{2}} \left[\partial(\Delta p_{\mathrm{sr}})/\partial\omega \right]_{\mathrm{t}}, \\ Cp6 &= \left[\partial(p_{\mathrm{reg}}/p_{\mathrm{c}})/\partial\omega \right]_{\mathrm{t}} = tz_{\mathrm{c}}^{-1} \left\{ 1 + A_{1}a_{2}\omega x^{-2}(2x^{2} - 4\omega - 2z_{\mathrm{c}}\omega^{2}/x + \omega^{2}x^{-2}) \varphi - A_{2}2\omega/t - \\ -2(A_{3}a_{1} + A_{6}a_{3}) \omega + A_{4}a_{4}2\omega x^{-2}(x^{2} - 4\omega - 2z_{\mathrm{c}}\omega^{2}/x + \omega^{2}x^{-2}) \varphi - A_{2}2\omega/t - \\ -2(A_{3}a_{1} + A_{6}a_{3}) \omega + A_{4}a_{4}2\omega x^{-2}(x^{2} - 4\omega - 2z_{\mathrm{c}}\omega^{2}/x + 2\omega^{2}x^{-2}) \varphi^{2} + \\ + A_{5}a_{5}\omega^{2}x^{2} \left[6x^{2} - 20z_{\mathrm{c}}\omega - 10z_{\mathrm{c}}\omega/x + 25z_{\mathrm{c}}^{2}\omega^{2}x^{-2} \right] \varphi^{5z_{\mathrm{c}}} + A_{7}\omega (1 + x)x^{-2} + \\ + 2A_{8}\omega/x^{3} + 3A_{9}\omega^{2}/x^{4} + 4A_{10}\omega^{3}/x^{5} + 3A_{11}t^{-14}\omega^{3}(4 - 10\omega^{3} + 3\omega^{6}) \mathrm{e}^{-\omega^{3}} + \\ + 2A_{12}t^{-3.5}\omega (1 - 5\omega^{2} + 2\omega^{4}) \mathrm{e}^{-\omega^{2}} + 2A_{13}t^{-6}\omega^{5} \left[15 - 24\omega(py)^{3} - 6\omega^{2}(py)^{2} + 8\omega^{2}(py)^{6} \right] \mathrm{e}^{-(py)^{4}} \right\}, \\ \mathrm{e}$$

где

$$= e^{1/t} - 1 - 1/t, a_3 = e^{-2/t} - 1, a_4 = e^{2/t} - 1 - 2/t, a_5 = e^{6/t} - 6/t.$$

Равновесная адиабатическая скорость звука W рассчитывается по стандартной формуле, которая имеет вид:

$$W = (p_c/R)^{0.5} \left[Cp4 + Cp5 + Cp6 + (Cp3 + Cp2 + Cp1)^2 z_c t/(\omega^2 C_v) \right]^{0.5}.$$
 (9)

Отметим, что экспериментальные и табличные данные по Cp, Cv [1-4, 6, 29-33] и скорости звука W [3, 34-38] для CH₄ на изохорах и изобарах (за исключением аппроксимационной формулы для расчета $C_{\nu, id}$ и одного значения $C_{\nu, liq}$ (при 100 K) [29] на ветви жидкости бинодали) привлекались только для сравнения со значениями С_v, получаемыми путем расчета по формулам (6) - (9) с использованием констант КУС (1).

Сравнение расчетных кривых C_v на изохорах, близких к ρ_c , с экспериментальными данными [29, 32] в критической области представлено на рис. 1 с учетом разницы в принятых значениях T_c в настоящей работе и T_c из работы [32], где получены подробные данные C_v вблизи T_c . Расчетные кривые (6) хорошо согласуются с данными [29, 32] во всей области значений Log (τ) > – 2,5, но при Log (τ) < – 2,5 наблюдаются расхождения расчетных значений при T_c, принятой для КУС (1) (сплошная линия), и экспери-

мента [32] (символы *I*). Штриховая линия, рассчитанная по (6) при $T_c = 190,663$ К из [32], лучше согласуется с данными [32], которые относятся к этой же T_c .

Кривые C_{ν} , рассчитанные по (6) (сплошные линии), вдоль изохор $\rho > \rho_c$ хорошо совпадают с данными [29, 31, 32] в регулярной области (рис. 2), штриховыми линиями показаны расчетные изохоры C_{ν} по УС-SpW [7]. На изохоре 162,9 кг/м³ ~ ρ_c при $\tau < 0.05$

155

Символы — экспериментальные данные, сплошные линии — расчет по (8), штриховая линия — расчет по многоконстантному УС-SetW [6] при *p* = 5 МПа; экспериментальные данные [30]: 8,274 (1), 5,516 (2), 5,00 (3), 4,30 (4) МПа; [33]: 5,00 (5), 3,20 (6) МПа.

(область применения скейлинга) значения C_{ν} из работы [29] располагаются ниже расчетной кривой до ~ 3 %. Возможно, это происходит из-за усреднения на большом интервале температуры в 5–7 К ($\Delta \tau \sim 0.03$), характерном для измерений в [29].

Результаты расчета C_p (8) на изобарах в критической области (рис. 3) показывают хорошее совпадение расчетных кривых C_p (8) с экспериментальными данными [30, 33], которые не использовались при нахождении коэффициентов КУС (1), и с табличными данными [6], которые рассчитывались по УС-SetW. В регулярной области при значениях p до 30 МПа расчеты C_p по (8) показали совпадение в пределах 0,5–1,5 % с экспериментальными данными C_p [3] на изотермах в области 240 К < T < 360 К.

На рис. 4 представлены отклонения данных C_p [1–3, 30, 33] от расчетных кривых $C_p(T)$ (8) на изобарах в области температур от 100 до 400 К и давлений до 30 МПа. Отклонения большинства экспериментальных точек находятся в интервале от – 4 до +3 %, что соответствует погрешности измерений. На рис. 4 штриховой линией показаны отклонения табличных данных C_p при 5 МПа, рассчитанных по УС-SetW [6]. Максимальные отклонения данных [6] от расчетных значений C_p (8) находятся в области вблизи T_c , что, видимо, является следствием учета масштабной части p_{scal} (5) в УС (1) по сравнению с УС-SetW.

Рис. 5 позволяет сравнить поведение модельных кривых C_{ν} (6) (толстые сплошные линии) на бинодали вдоль ветви газа и жидкости с табличными данными [6] (тонкие сплошные линии) и [4] (штриховые линии). Экспериментальные данные C_{ν} на бинодали имеются только для ветви жидкости (символы) [29]. При расчете $C_{\nu, \text{ reg}}$ (7) применялся коэффициент $A_{13} = -0000087340$ из регулярного УС (3), определенный по экспериментальному значению C_{ν} при 100 К [29]. Максимальное отклонение значений C_{ν} (6) на ветви жидкости в интервале 110 К < T < 140 К от кривой [6] (тонкая линия) не превышает 4 %,

от расчетных значений $C_p(8)$ настоящей работы.

что находится в пределах погрешности данных [29]. Кривые C_v на газовой ветви бинодали, рассчитанные по регулярным УС [4] и УС-SetW [6], в регулярной области лежат ниже (порядка от 3 до 8 %) толстой кривой C_v (6), при расчете которой учитывались регулярные и масштабные вклады и которая, по мнению авторов, лучше отражает реальное поведение C_v вдоль газовой ветви.

Скорости звука W_{calc} , рассчитанные по (9) вдоль газовой ветви и ветви жидкости пограничной кривой (рис. 6, толстые линии), показывают хорошее совпадение с экспериментальными данными [35, 37]. При 110 К < T < 140 К на ветви жидкости наблюдается

отличие W_{calc} (менее 2 %) от справочных данных [6] (тонкие линии), связанное с меньшими значениями расчетных C_{ν} (6) в этой области. Отметим, что данные по скорости звука не привлекались для получения коэффициентов КУС (1).

в зависимости от плотности. Толстые линии — данные расчета настоящей работы по (9), тонкие линии (200,16, 193,05 и 190,86 К) — результаты расчета [39] по кроссоверному УС, штриховые линии (200,16, 191,46 и 190,86 К) — результаты расчета [6] по УС SetW; экспериментальные данные [34]: 200,16 (1) К, [37]: 190,63 (2), 190,86 (3), 191,46 (4), 193,05 (5) К.

Рис. 8. Скорость звука W на изотермах в регулярной области состояния метана до 50 МПа. Кривая 1 — расчет W при T = 190,86 К (~ T_c); символы — табличные данные [6],

линии — соответствующие изотермы, рассчитанные по (9).

На рис. 7 видно, что в критической области поведение кривых W_{calc} (9), построенных по представленной здесь модели в зависимости от плотности на изотермах, близких к T_c , (толстые линии), находится в хорошем соответствии с экспериментальными данными [34, 37] и кривыми УС-SetW [6] (штриховые линии). Более крутое падение расчетных кривых W_{calc} (9) к минимальным значениям при ρ_c по сравнению с экспериментальными тальными кривыми в газовой области 120 кг/м³ < $\rho < \rho_c$ при $T \sim T_c$. вероятно, связано с малочисленностью p, ρ , T-данных в этой области. Вследствие этого температурная область перехода к масштабным законам для производных давления, регулируемая коэффициентом λ^a (см. таблицу) в Y (2), меньше, чем для экспериментальных кривых. Тонкими линиями на рис. 7 для изотерм 200,16, 193,05 и 190,86 К показано поведение кривых W_{calc} по кроссоверной модели УС (8 регулярных и 4 масштабных подгоночных коэффициентов) [39] в критической области при 90 кг/м³ < $\rho < 230$ кг/м³. Вне этого интервала заметны растущие отклонения расчетных кривых [39] от значений W_{exp} .

Сравнительное поведение кривых W, построенных по табличным данным (символы, [6]), и рассчитанных по (9) W_{calc} (линии) вдоль изотерм в регулярной области до давлений 50 МПа показано на рис. 8. Кривая I — расчет по формуле (9) на околокритической изотерме T = 190,86 K, для которой табличные данные отсутствуют. В области экстраполяции от 30 до 50 МПа при T < 170 K значения W_{calc} выше табличных W [6] до 5 %, в остальных областях состояний W_{calc} отлично согласуются с табличными величинами.

Заключение

Предложено описание термических и калорических свойств CH₄ с помощью комбинированного уравнения состояния в явной форме, включающего новое 13-константное VC для регулярной области и масштабное 6-константное VC для критической области. Описание p, ρ , T-данных получено в однофазной области газового и жидкого состояний до 30 МПа от 100 до 520 K с $\sigma_p \sim 0,5$ %. С использованием коэффициентов комбинированного УС рассчитаны теплоемкости C_v , C_p и скорость звука в широком диапазоне параметров однофазного состояния, включая критическую область. Кривые C_v , рассчитанные на тех же изохорах и изотермах, для которых существуют экспериментальные данные по C_v разных авторов, показывают хорошее согласование с этими экспериментальными данными с отклонениями в пределах до 4 % в регулярной области состояния и до 8–10 % — в критической области. Регулярное поведение расчетных свойств C_v , C_p и W по данной модели хорошо соответствует табличным величинам [6] и экспериментальным данным с точностью 2–4 % в разных областях состояний. Сингулярное поведение C_v в критической области рассчитано с применением критических индексов, полученных для трехмерной модели Изинга.

Сравнение поведения W, рассчитанного по комбинированному УС (1), с данными расчетов по кроссоверной модели УС для CH₄ [39] показывает расхождение расчетных кривых по обеим моделям и с экспериментальными данными в критической области не более 5 %. По сравнению с УС, предложенным в настоящей работе, кроссоверные УС [10, 39] пригодны в ограниченной области вокруг критической точки и неудобны для практических расчетов из-за неявной формы производных от давления и кроссоверной функции [39].

По мнению авторов, предлагаемое комбинированное УС в явной форме с относительно небольшим числом подгоночных констант позволяет проще рассчитывать термодинамические свойства CH_4 в разных областях состояния на уровне экспериментальной погрешности. Данные по C_v , C_p и W не привлекались для получения подгоночных коэффициентов для представленной модели УС. Поэтому применение предлагаемого способа расчетов теплофизических свойств других жидкостей требует меньше данных и является более удобным.

Список литературы

- Syed T.H., Hughes T.J., Marsh K.N., May E.F. Isobaric heat capacity measurements of liquid methane, ethane, and propane by differential scanning calorimetry at high pressures and low temperatures // J. of Chem. Engng Data. 2012. Vol. 57, No. 12. P. 3573–3580.
- 2. Xiao X., Al Ghafri Saif Z.S., Rowland D., Hughes T.J., Hnedkovsky L., Hefter G., May E.F. Isobaric heat capacity measurements of natural gas model mixtures (methane + *n*-heptane) and (propane + *n*-heptane) by differential scanning calorimetry at temperatures from 313 K to 422 K and pressures up to 31 MPa // Fuel. 2021. Vol. 296. P. 120668-14.
- **3. Ernst G., Keil B., Wirbser H., Jaeschke M.** Flow-calorimetric results for the massic heat capacity c_p and the Joule–Thomson coefficient of CH₄, of (0:85 CH₄ + 0:15 C₂H₆), and of a mixture similar to natural gas // J. Chem. Thermodyn. 2001. Vol. 33. P. 601–613.
- **4.** Сычев В.В., Вассерман А.А., Загорученко В.А., Козлов А.Д., Спиридонов Г.А., Цымарный В.А. Термодинамические свойства метана. ГСССД. Серия монографии. М.: Изд. Стандартов. 1979. 348 с.
- Friend D.G., Ely J.F., Ingham H. Thermophysical properties of methane // J. Phys. Chem. Ref. Data. 1988. Vol. 18, No. 2. P. 583–638.
- 6. Setzmann U., Wagner W. A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa // J. Phys. Chem. Ref. Data. 1991. Vol. 20, No. 6. P. 1061–1155.
- Span R., Wagner W. Equations of state for technical applications. II. Results for nonpolar fluids // Intern. J. of Thermoph. 2003. Vol. 24, No. 1. P. 41–109.
- 8. Козлов А.Д., Мамонов Ю.В., Роговин М.Д., Рыбаков С.И., Степанов С.А., Сычев В.В., Дрегуляс Э.К., Ставцев А.Ф. ГСССД 195-01. Таблицы стандартных справочных данных. Метан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 91...700 К и давлениях 0.1...100 МПа. МТК-180 "ГСССД", 2002.
- Kiselev S.B., Ely J.F. Generalized crossover description of the thermodynamic and transport properties in pure fluids. II. Revision and modifications // Fluid Phase Equilibr. 2007. Vol. 252. P. 57–65.

- 10. Григорьев Б.А., Герасимов А.А., Григорьев Е.Б. Фундаментальные уравнения состояния углеводородов в критической области // Химия и химическая промышленность. 2010. № 3. С. 52–60.
- Безверхий П.П., Мартынец В.Г., Матизен Э.В., Каплун А.Б., Мешалкин А.Б. Описание поведения SF₆ в области состояний от тройной точки до сверхкритического флюида // Теплофизика и аэромеханика. 2012. Т. 19, № 6. С. 781–791
- 12. Безверхий П.П., Мартынец В.Г., Станкус С.В. Описание теплоемкости С_v простых жидкостей с помощью термического уравнения состояния, включающего регулярную и масштабную части // Теплофизика высоких температур. 2015. Т. 53, № 3. С. 356–366.
- 13. Безверхий П.П., Мартынец В.Г., Каплун А.Б., Мешалкин А.Б. Расчет термодинамических свойств SF₆, включая критическую область. Комбинированное термическое уравнение состояния с малым числом параметров // Теплофизика высоких температур. 2017. Т. 55, № 5. С. 706–715.
- 14. Безверхий П.П., Мартынец В.Г., Каплун А.Б., Мешалкин А.Б. Расчет термодинамических свойств SF₆, включая критическую область. Тепловые функции и скорость звука // Теплофизика высоких температур. 2017. Т. 55, № 5. С. 716–724.
- 15. Bezverkhii P.P., Martynets V.G., Kaplun A.B., Meshalkin A.B. The thermodynamic properties of CO₂ up to 200 MPa including the critical region, calculated by a new combined equation of state with few parameters // Int. J. of Thermophys. 2020. Vol. 41. 20 p.
- 16. Kaplun A.B., Meshalkin A.B. Phenomenological method for construction of the liquid and gas equation of state // J. Chem. Engng Data. 2010. Vol. 55. P. 4285–4289.
- 17. Безверхий П.П., Мартынец В.Г., Матизен Э.В. Непараметрическое масштабное уравнение состояния для флюидов с учетом асимметрии // Журн. эксперим. и теорет. физики. 2009. Т. 136, Вып. 2(8). С. 311–317.
- Lee Y., Shin M.S., Yeo J.K., Kim H. A Crossover cubic equation of state near to and far from the critical region // J. Chem. Thermodyn. 2007. Vol. 39, No. 9. P. 1257–1263.
- 19. Рыков А.В., Кудрявцева И.В., Рыков С.В. Непараметрическое масштабное уравнение состояния, не содержащее дифференциальных биномов // Науч. журн. НИУ ИТМО. Сер. Холодильная техника и кондиционирование. 2013. № 2. 16 с.
- Meshalkin A.B., Dutova O.S. Equation of liquid, gas, and fluid state for methane // J. of Phys.: Conf. Series. 2020. Vol. 1677. P. 012171-1–012171-6.
- 21. Haendel G., Kleinrahm R., Wagner W. Measurements of the (pressure, density, temperature) relation of methane in the homogeneous gas and liquid regions in the temperature range from 100 K to 260 K and at pressures up to 8 MPa // J. Chem. Thermodyn. 1992. Vol. 24. P. 685–695.
- 22. Klimeck J., Kleinrahm R., Wagner W. Measurements of the (*p*, *ρ*, *T*) relation of methane and carbon dioxide in the temperature range 240 K to 520 K at pressures up to 30 MPa using a new accurate single-sinker densimeter // J. Chem. Thermodyn. 2001. Vol. 33. P. 251–267.
- Kleinrahm R., Duschek W., Wagner W. (Pressure, density, temperature) measurements in the critical region of methane // J. Chem. Thermodyn. 1986. Vol. 18. P. 1103–1114.
- Kleinrahm R., Wagner W. Measurement and correlation of the equilibrium liquid and vapour densities and the vapour pressure along the coexistence curve of methane // J. Chem. Thermodyn. 1986. Vol. 18. P. 739–760.
- 25. Каплун А.Б., Мешалкин А.Б. Простое фундаментальное уравнение состояния жидкости, газа и флюида для аргона, азота и диоксида углерода // Теплофизика и аэромеханика. 2017. Т. 24, № 4. С. 529–538.
- 26. Agayan V.A., Anisimov M.A., Sengers J.V. Crossover parametric equation of state for Ising-like systems // Phys. Rev. E. 2001. Vol. 64. P. 026125-1–026125-19.
- **27. Градштейн И.С., Рыжик И.М.** Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1962. 1097 с.
- 28. Паташинский А.З., Покровский В.Л. Флуктуационная теория фазовых переходов. М.: Наука, 1982. 382 с.
- **29.** Younglove B.A. The specific heats C_{σ} and C_v of compressed and liquified methane // J. of Reseach of NBS (Phys. and Chem.). 1974. Vol. 78A, No. 3. P. 401–420.
- 30. Jones M.L., Mage D.T., Faulkner R.C., Katz D.L. Measurement of the thermodynamic properties of gases at low temperature and high pressure — methane // Chem. Engng Prog. Symp. Ser. 1963. Vol. 59, No. 44. P. 52–60.
- 31. Roder H.M. Measurements of the specific heats, C_σ and C_v, of dense gaseous and liquid ethane // J. of Reseach of NBS (Phys. and Chem.). 1976. Vol. 80A, No. 5–6. P. 739–759.
- 32. Анисимов М.А., Бекетов В.Г., Воронов В.П., Нагаев В.Б., Смирнов В.А. Экспериментальное исследование *Т*, *р*-зависимости вдоль кривой сосуществования и изохорной теплоемкости метана // Теплофизические свойства веществ и материалов. М: Изд-во стандартов. 1982. Вып. 16. С. 124–135.
- Kasteren H.G., Zeldenrust H. A flow calorimeter for condensable gases at low temperatures and high pressures:
 Compilation of experimental results and comparison with predictions based on a modified Redlich-Kwong equation of state // Ind. Engng Chem. Fundam. 1979. Vol.18, No. 4. P. 339–345.

- 34. Sivaraman A., Gammon B.E. Speed-of-sound measurements in natural gas fluids // Gas Research Institute Report. 1986. No. 86-0043.
- 35. Straty G.C. Velocity of sound in dense fluid methane // Cryogenics. 1974. Vol. 14. P. 367-370.
- 36. Ewing M.B., Goodwin A.R.H. Speed of sound, perfect-gas heat capacities, and acoustic virial coefficients for methane determined using spherical resonator at temperatures between 255 K and 300 K and pressures in the range 171 kPa to 7.1 MPa // J. Chem. Thermodyn. 1992. Vol. 24. P. 1257–1274.
- **37. Gammon B.E., Douslin D.R.** The velocity of sound and heat capacity in methane from near-critical to subcritical conditions and equation-of-state implications // J. Chem. Phys. 1976. Vol. 64. P. 203–218.
- 38. Trusler J.P.M., Zarari M. The speed of sound and derived thermodynamic properties of methane at temperatures between 275 K and 375 K and pressures up to 10 MPa. // J. Chem. Thermodyn. 1992. Vol. 24, No. 9. P. 973–991.
- 39. Kurumov D.S., Olchowy G.A., Sengers J.V. Thermodynamic properties of methane in the critical region // Intern. J. Thermophys. 1988. Vol. 9, No. 1. P. 73–76.

Статья поступила в редакцию 20 июля 2022 г., после доработки — 28 июля 2022 г., принята к публикации 2 сентября 2022 г.