2016. Том 57, № 7

Сентябрь – октябрь

C. 1539 – 1549

УДК 544.22

СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА ЧИСТЫХ И ДОПИРОВАННЫХ САМАРИЕМ НАНОЧАСТИЦ МАГНЕТИТА

О.Е. Положенцев¹, С.П. Кубрин², В.В. Бутова¹, В.К. Кочкина¹, А.В. Солдатов¹, В.В. Сташенко²

¹Южный федеральный университет, Ростов-на-Дону, Россия E-mail: olegpolozhentsev@mail.ru

²Научно-исследовательский институт физики, Южный федеральный университет, Ростов-на-Дону, Россия

Статья поступила 7 декабря 2015 г.

Проведено исследование чистых и допированных самарием наночастиц магнетита, синтезированных с использованием микроволнового синтеза в водном растворе. Методами рентгеноструктурного анализа, просвечивающей электронной микроскопии, спектроскопии рентгеновского поглощения и мессбауэровской спектроскопии определена форма, размеры и структура чистых и допированных самарием наночастиц магнетита. Магнитные свойства наночастиц были исследованы с помощью вибрационного магнитометра. Установлено, что допированные самарием наночастицы магнетита обладают суперпарамагнитным поведением с высокими значениями намагниченности насыщения. Допирование самарием в небольшом количестве позволяет уменьшить размеры наночастиц, сузить распределение по размерам, повысить устойчивость к окислению и улучшить их магнитные характеристики.

DOI: 10.15372/JSC20160722

Ключевые слова: наночастицы, магнетит, маггемит, Fe₃O₄, γ-Fe₂O₃, допирование, редкоземельные элементы, XANES спектроскопия, мессбауэровская спектроскопия, вибрационный магнитометр.

введение

Нанотехнологии являются перспективным направлением в биомедицинских и фармакологических целях [1—5]. Одним из важных классов наноматериалов являются магнитные наночастицы (МНЧ) на основе оксида железа(II, III), обладающие наряду с магнитными свойствами биосовместимостью, низкой токсичностью и хорошими адсорбционными свойствами [3, 4]. Такие магнитные наночастицы могут найти свое применение в терапевтических целях [6—8], в качестве носителей лекарственных препаратов и биологических молекул и их адресной доставки [9], магнитной гипертермии [10], как контрастное средство для визуализации в реальном времени процессов при онкологических и других заболеваниях [11, 12] и другие применения. Практически не изучен вопрос о самостоятельной противоопухолевой активности магнитных наночастиц и магнитной жидкости и возможности достижения выраженного противоопухолевого эффекта и полной регрессии злокачественных опухолей. Одним из главных недостатков наночастиц магнетита является их нестабильность на воздухе, особенно при повышенных температурах — Fe²⁺ может окисляться до Fe³⁺ [13, 14]. Однако было отмечено, что допирование магнетита редкоземельными элементами не только улучшает магнитные свойства, но и по-

[©] Положенцев О.Е., Кубрин С.П., Бутова В.В., Кочкина В.К., Солдатов А.В., Сташенко В.В., 2016

вышает его устойчивость к окислению [15, 16]. Покрытие поверхности наночастиц поверхностно-активным веществом позволяет уменьшить тенденцию к агломерации наночастиц и дает возможность их функционализации [17].

Для синтеза частиц магнетита используется множество различных методов, таких как совместное осаждение, использование микроэмульсий, золь-гель методы, термическое разложение солей, совместное осаждение смеси двух- и трехвалентного железа [18—24]. Наиболее распространенный метод — совместное осаждение из водной среды обычно приводит к образованию частиц размером меньше 20 нм с суперпарамагнитными свойствами. Однако такой вид синтеза не позволяет точно контролировать размер и морфологию получаемых частиц [18]. Синтез магнетита с четко контролируемой морфологией и размером частиц обычно проводят сольвотермальным высокотемпературным методом [24]. Стоит, однако, отметить, что сольвотермальный синтез проводится в течение длительного времени в закрытых автоклавах, что снижает возможности варьирования параметров синтеза для отладки методики.

В настоящей работе проведено исследование чистых и допированных самарием наночастиц магнетита, синтезированных с использованием микроволнового синтеза в водном растворе. Методами рентгеноструктурного анализа, просвечивающей электронной микроскопии, спектроскопии рентгеновского поглощения и мессбауэровской спектроскопии определены форма, средние размеры чистых и допированных самарием наночастиц магнетита, структура наночастиц, степень окисления железа и самария. Магнитные характеристики наночастиц были определены с помощью вибрационного магнитометра.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных веществ для синтеза чистых и допированных самарием наночастиц магнетита использовали гексагидрат хлорида железа(III) (FeCl₃·6H₂O), трехводный ацетат натрия (CH₃COONa·3H₂O (NaAc·3H₂O)), этиленгликоль, полиэтиленгликоль, додецилбензолсульфонат натрия, окись самария Sm₂O₃ (Sigma Aldrich). Все реагенты использованы в полученном виде без дальнейшей очистки. Предварительным этапом синтеза стало получение хлорида самария(III) из его оксида. Для этого Sm₂O₃ растворяли в концентрированной соляной кислоте при температуре 80—90 °C до образования прозрачного раствора. Избыток кислоты впоследствии выпаривали, а образовавшийся хлорид растворяли в этиловом спирте с последующей рекристаллизацией.

Синтез чистых и допированных самарием наночастиц магнетита проводился с использованием микроволнового излучения. Реактивы FeCl₃·6H₂O (0,7661 г), NaAc·3H₂O (2,0400 г), додецилбензолсульфонат натрия (1,3939 г) и полиэтиленгликоль (0,42 мл) помещали в 25 мл раствора этиленгликоля и перемешивали при комнатной температуре до образования однородной суспензии. Затем пробирку герметично закрывали силиконовой пробкой с тефлоновой вставкой и помещали в микроволновую печь (CEM Discover SP) на 1 ч при постоянной температуре 200 °С и непрерывном перемешивании, затем охлаждали раствор до комнатной температуры. Получившиеся черные частицы были отделены от раствора с помощью магнитной сепарации, потом трижды промыты абсолютным этанолом и высушены в течение нескольких часов в вакуумном сушильном шкафу при температуре 60 °C. Синтез допированных самарием наночастиц магнетита (Fe₃O₄@Sm) был проведен по той же методике с добавлением гексагидрата хлорида железа(III) FeCl₃·6H₂O (0,3830 г), хлорида самария SmCl₃·6H₂O (0,0216 г), трехводного ацетата натрия NaAc·3H₂O (2,0400 г), додецилбензолсульфонат натрия (1,3939 г) и полиэтиленгликоля (0,42 мл) в 25 мл раствора этиленгликоля. В процессе синтеза были получены частицы черного цвета. Применение микроволнового излучения по сравнению с традиционными методами гидротермального синтеза в реакторе и колбах наночастиц магнетита позволило сократить в 3 раза время синтеза и получить возможность контролируемого синтеза.

Определение усредненной кристаллической структуры и оценка среднего размера чистых и допированных самарием наночастиц проводили с использованием метода рентгеновской дифракции (XRD). Рентгенограммы измеряли при комнатной температуре на дифрактометре ARL Х'ТRA, THERMO FISHER SCIENTIFIC (Химический факультет, ЮФУ, Россия) с использованием Cu K_{α} ($\lambda = 1,5406$ Å) излучения в диапазоне от 15 до 80° со скоростью сканирования 6 град./мин и шагом 0,02°. Исследование размера, формы и морфологии поверхности чистых и допированных самарием наночастиц проводили с помощью просвечивающего электронного микроскопа Tecnai G2 Spirit Bio TWIN (ЦКП ЮФУ, Россия), работающего при ускоряющем напряжении 120 кВ. Определение структуры наночастиц проводили с использованием мессбауэровской спектроскопии. Мессбауэровские спектры образцов измерял на спектрометре MS1104 ЕМ (НИИ физики ЮФУ, Россия) при разных температурах с источником γ -излучения ⁵⁷Со в матрице Cr. Модельную расшифровку проводили в программе UnivemMS. Изомерные химические сдвиги приведены относительно металлического α -Fe. Образцы охлаждали в камере гелиевого рефрижераторного криостата CSS-850 (Janis Research Inc.).

Определение устойчивости к окислению чистых и допированных самарием наночастиц, степени окисления железа и самария проводили с помощью метода анализа околопороговой тонкой структуры рентгеновского спектра поглощения (XANES). Экспериментальные спектры рентгеновского поглощения за FeK-краем чистых и допированных самарием наночастиц магнетита были зарегистрированы на лабораторном спектрометре рентгеновского поглощения Rigaku R-XAS (МИЦ "Интеллектуальные материалы", ЮФУ, Россия) в режиме "на прохождение" с использованием изогнутого кристалла-монохроматора Ge(311) по методу Йоханссона; напряжение на трубке 20 кВ и сила тока 70 мА. Регистрацию интенсивности падающего на образец излучения осуществляли с применением газового детектора Ar-300, а интенсивности излучения, прошедшего сквозь образец, — с использованием сцинтилляционного детектора SC-70.

Магнитные петли гистерезиса были измерены с помощью вибрационного магнитометра LakeShore VSM 7400 (НИЦ "Курчатовский институт", Россия). Измерения проводили в магнитном поле до 10 кЭ при комнатной температуре (295 К). Образцы в виде порошка помещали в полимерную капсулу с размерами 4,5 мм. Вес образцов составлял 5—17 мг. Вклад материала капсулы на магнитный сигнал был незначительный. Ошибка при измерении намагниченности составляла менее 5 %, ошибка измерения массы образца составляла менее 1 %.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование наночастиц проводили с использованием метода порошковой рентгеновской дифракции. Метод позволяет определять атомную структуру вещества, включающую в себя пространственную группу элементарной ячейки, ее размеры и форму, группу симметрии кристалла, а также определить размеры кристаллитов поликристаллического образца. Рентгенограммы чистых и допированных самарием наночастиц показаны на рис. 1.

На рентгенограмме наночастиц наблюдаются характерные для оксида железа рефлексы, указывающие на его кристаллическую структуру. Обнаруженные на рентгенограммах чистых и допированных самарием наночастиц пики (111), (220), (311), (222), (400), (422), (511), (440), (620), (533), (622), (444) соответствуют пикам стандартного образца магнетита (PDF-2 карта № 880315), а пики $2\theta = 26$, 32, 34 и 55° (на рис. 1 показаны *) соответствуют структуре маггемита (γ -Fe₂O₃). Присутствие рефлексов фазы маггемита объясняется термодинамической неустойчивостью магнетита, который даже при комнатной температуре и в кислородной атмосфере быстро окисляется до γ -Fe₂O₃. Процесс окисления магнетита происходит вследствие диффузии катионов железа Fe²⁺ к поверхности наночастиц, где Fe²⁺ окисляется до Fe³⁺, формируя тонкий слой γ -Fe₂O₃. Данные дифракции позволяют определить средний размер кристаллитов, используя формулу Дебая—Шеррера. Исходя из этой формулы, средний размер чистых наночастиц составляет 29 нм, а средний размер допированных самарием наночастицы оказались меньшего размера по сравнению с чистыми наночастицами.

Изображения просвечивающей электронной микроскопии (ПЭМ) чистых и допированных самарием наночастиц магнетита показаны на рис. 2, *а* и *б* соответственно.

Рис. 1. Рентгенограммы чистых и допированных самарием наночастиц магнетита

Анализ изображений показывает, что распределение частиц по размерам достаточно узкое и частицы имеют почти сферическую форму. Размеры чистых наночастиц магнетита не превышают 40 нм, а при допировании наночастиц самарием размеры частиц уменьшаются, что совпадает с результатами по размерам наночастиц, полученными из анализа данных рентгеновской дифракции.

Для исследования чистых и допированных самарием наночастиц был использован метод мессбауэровской спектроскопии, который является одним из основных методов изучения структуры железосодержащих наночастиц. Как правило, мессбауэровский спектр магнетита, измеренный при комнатной температуре, представлет собой два зеемановских секстета [1], с параметрами, соответствующими ионам Fe²⁺ и Fe³⁺. Один из секстетов соответствует ионам Fe²⁺ в тетраэдрическом окружении. Второй секстет отражает суперпозицию состояний Fe²⁺

Рис. 2. Изображения просвечивающей электронной микроскопии чистых (*a*) и допированных самарием наночастиц магнетита (б)

Рис. 3. Мессбауэровский спектр чистых наночастиц магнетита, измеренный при комнатной температуре (*a*); мессбауэровский спектр чистых наночастиц магнетита, измеренный при комнатной температуре с учетом влияния поверхностных слоев (*б*)

и Fe³⁺ в октаэдрическом соостоянии, возникающую вследствие вервеевского обмена. Соотношения площадей октаэдрического и тетраэдрического секстетов примерно 2:1, что отражает тот факт, что 2/3 ионов Fe занимают откаэдрическую *B* подрешетку.

Описанная модель была применена для мессбауэровского спектра наночастиц Fe₃O₄, измеренного при комнатной температуре, представленного на рис. 3, *а*. Мессбауэровские параметры спектра приведены в табл. 1. Величины изомерных сдвигов секстетов соответствуют трехвалентному железу в тетраэдрическом окружении (секстет 1) и ионам Fe²⁺ и Fe³⁺ в октраэдрическом окружении (секстет 2). В отличие от случая кристалического магнетита, для наночастиц имеется иное соотношение площадей секстетов, и линии спектра значительно уширены. Если уширение линий можно объяснить наличием распределения частиц по размеру, то изменение соотношения площадей нельзя. В связи с этим для расшифровки спектра была применена модель, предложенная Шипилиным и др. [2] для нанопорошков Fe₃O₄.

В работе [2] было установлено, что мессбауэровский спектр формируется тремя видами ионов железа: ионами ядра (объема, "bulk") частиц и двумя поверхностными слоями. К первому слою относятся те ионы железа, у которых частично отсутствуют соседи. Ко второму слою —

Таблица 1

Секстет	Компонента	*δ, мм/с	ε, мм/с	$B_{\rm ef}, T$	<i>S</i> , %	<i>G</i> , мм/с	χ	
1	Подрешетка $A \operatorname{Fe}^{3+}$	0,31	-0,01	48,2	38,49	0,55		
1	Подрешетка $B \operatorname{Fe}^{2+}/\operatorname{Fe}^{3+}$	0,53	-0,01	44,7	61,51	1,26	2,745	
Модель по Шипилину и др. [2] (6 секстетов)								
1	«Объем» Подрешетка А Fe ³⁺	0,30	-0,002	484,0	40,15	0,51		
2	«Объем» Подрешетка <i>В</i> Fe ²⁺ /Fe ³⁺	0,55	-0,013	545,9	37,10	0,92		
3	Слой 2 Подрешетка <i>А</i> Fe ³⁺	0,37	-0,189	46,6	6,75	0,48	2 5 2 2	
4	Слой 2 Подрешетка <i>В</i> Fe ²⁺ /Fe ³⁺	0,65	0,102	41,7	6,14	0,57	2,522	
5	Слой 1 Подрешетка <i>А</i> Fe ³⁺	0,32	-0,071	41,5	5,46	0,56		
6	Слой 1 Подрешетка $B \operatorname{Fe}^{2+}/\operatorname{Fe}^{3+}$	0,51	-0,008	36,2	4,41	0,78		

Параметры* мессбауэровского спектра порошка наночастиц магнетита Fe₃O₄

^{*} б — изомерный химический сдвиг; Δ — квадрупольное смещение; $B_{\rm ef}$ —эффективное магнитное поле на ядре ⁵⁷Fe; S — площадь компоненты; G — ширина линий спектра; χ — критерий Пирсона.

те ионы железа, которые находятся у поверхности, но частично окружены ионами железа первого слоя. Применив описанную модель (рис. 3, δ , табл. 1), в результате расшифровки спектр разлагается на 6 зеемановских секстетов. При этом самыми большими значениями эффективного магнитного поля на ядре ⁵⁷Fe обладают секстеты 1 и 2, соответствующие объему частицы. Пара секстетов 3 и 4 соответствует ионам второго слоя, а секстеты 5 и 6 — ионам первого слоя.

Площади компонент спектра позволяют оценить толщину поверхностных слоев [2]. Отношение объема поверхности к полному объему частицы пропорционально отношению толщины поверхностного слоя к радиусу частицы:

$$\frac{V_s}{V} = \frac{3\Delta r}{r},$$

где V — полный объем частицы; r — радиус частицы; V_s — объем поверхностного слоя частицы $V_s = 4\pi r^2 \Delta r$; Δr — толщина поверхностного слоя.

С другой стороны, отношение площади компонент, соответствующих ионам Fe^{3+} на поверхности, к суммарной площади всех компонент пропорционально $\frac{V_s}{V}$:

$$\frac{S_3 + S_4 + S_5 + S_6}{\sum_{i=1}^6 S_i} \sim \frac{V_s}{V} \approx 0,22.$$

Тогда если средний диаметр частиц ≈30 нм, то толщина поверхностного слоя:

$$\Delta r = \frac{V_s}{V} \cdot \frac{r}{3} \approx 1.1 \text{ HM}.$$

Мессбауэровские спектры допированных самарием наночастиц магнетита, измеренные при температуре 473 К (рис. 4), представляют собой суперпозицию двух парамагнитных дублетов, параметры которых (табл. 2) соответствуют ионам Fe³⁺. Дублет с меньшей площадью, повидимому, соответствует ионам железа поверхностей наночастиц. Уширение линий спектра связано с наличием вариации по размерам частиц.

При температурах ниже 380 К на спектрах возникает слаборазрешенный зеемановский секстет, указывающий на возникновение магнитоупорядоченной фазы. При этом парамагнитная компонента спектра присутствует на спектрах вплоть до 100 К. Возникновение магнитного упорядочения на мессбауэровских спектрах проявляется в виде зеемановского расщепления линий спектра, что сопровождается значительным уменьшением их интенсивности. Это свойство можно использовать для установления температуры фазового перехода в магнитоупорядоченное состояние, измеряя величину интенсивности парамагнитной компоненты спектра. На рис. 5 представлена зависимость интенсивности парамагнитной компоненты спектров $\eta(T)$ допированных самарием наночастиц магнетита. Зависимость $\eta(T)$ практически линейна и монотонно убывает в диапазоне от 400 до 100 К; таким образом переход в магнитную фазу

сильно размыт. Размытие перехода обусловлено тем, что частицы покрыты органическими молекулами, которые ослабляют механическое и, как следствие, магнитное взаимодействие между частицами [3]. Таким образом, допированные самарием наночастицы магнетита полностью переходят в магнитоупорядоченное состояние при температуре ниже 100 К.

Таблица 2

Параметры* мессбауэровских спектров допированных самарием наночастиц магнетита, измеренных при температуре 473 К

Образец	Компонента	δ, мм/с	Δ, мм/с	<i>S</i> , %	<i>G</i> , мм/с	χ
Допированные самарием наночастицы магнетита	Дублет 01 Дублет 02	0,21 0,21	0,78 0,63	81,90 18,10	0,87 0,41	1,156

* См. примечания к табл. 1.

Таблица 3

Образец	Компонента	δ, мм/с	ε, мм/с	$B_{\rm ef}, T$	<i>S</i> , %	<i>G</i> , мм/с	χ
Допированные самарием наночастицы магнетита	Секстет 1 Секстет 2 Секстет 3 Секстет 4	0,54 0,39 0,65 0,45	0,01 -0,01 -0,24 -0,01	52,1 51,0 42,4 47,9	34,71 42,64 3,14 19,51	0,61 0,66 0,55 0,79	2,3

Параметры* мессбауэровских спектров допированных самарием наночастиц магнетита, измеренных при температуре 13 К

* См. примечания к табл. 1.

Низкотемпературное мессбауэровское исследование удобнее проводить при температурах, при которых величины эффективных магнитных полей близки к насыщению, поэтому спектры наночастиц были измерены при температуре 13 К и приведены на рис. 6. Следует отметить, что внешний вид спектров отличен от спектров наночастиц магнетита [3—5]. Полученные спектры хорошо разлагаются на четыре зеемановских секстета, параметры которых приведены в табл. 3. Секстеты с меньшими величинами изомерных сдвигов (\approx 0,40) соответствуют ионам Fe³⁺ в тетраэдрическом окружении, секстеты с большим изомерным сдвигом (\approx 0,55) — ионам Fe³⁺ в октаэдрическом окружении. Секстеты 3 и 4 образованы ионами поверхности наночастиц, на что указывают меньшие величины эффективных магнитных полей. Следует отметить, что для полученных спектров не удается обнаружить ионы железа в двухвалентном состоянии, чье

Рис. 5. Зависимость относительной интенсивности линий парамагнитной компоненты спектров допированных самарием наночастиц магнетита

Рис. 6. Мессбауэровский спектр допированных самарием наночастиц магнетита, измеренный при температуре 13 К

Рис. 7. Нормализованные спектры *К*-края железа чистых и допированных самарием наночастиц магнетита в сравнении с эталонными соединениями железа (FeO и α-Fe₂O₃) (*a*); смещение *К*-края поглощения в XANES спектрах чистых и допированных самарием наночастиц магнетита в течение двух месяцев после синтеза наночастиц (*б*)

наличие характерно для Fe₃O₄. Исходя из того, что ионы железа находятся в трехвалентном состоянии и различаются только координационным числом, можно предположить, что данные составы представляют собой наночастицы γ -Fe₂O₃. Таким образом, при проведении температурных измерений наночастицы магнетита окислились до фазы маггемита. Исходя из значений площадей компонент зеемановских секстетов поверхности объема для частиц диаметра ≈ 8 нм, толщина поверхностного слоя составляет приблизительно 0,56 нм.

Процесс и степень окисления железа и самария в чистых и допированных самарием наночастицах магнетита исследовали с помощью спектроскопии рентгеновского поглощения в ближней к краю поглощения области (XANES). Энергетическое положение края поглощения спектров XANES зависит от энергии поглощающего атома и, следовательно, от степени окисления поглощающего атома. Анализ формы спектра XANES и энергетического положения края поглощения позволяет определить степень окисления железа и самария в чистых и допированных самарием наночастицах.

На рис. 7, а показаны нормализованные спектры К-края железа чистых и допированных самарием наночастиц магнетита в сравнении с эталонными соединениями железа (FeO и α-Fe₂O₃) в макроскопическом состоянии. Положение края поглощения определяется как положение максимума первой производной в области энергий края поглощения. Для спектра FeO край поглощения расположен на энергии 7121,6 эВ со слабым предкраевым пиком на энергии 7112 эВ. Для спектра окиси железа Fe₂O₃ край поглощения расположен на энергии 7125,0 эВ с широким предкраевым пиком на энергии 7114 эВ. Край поглощения чистых и допированных самарием наночастиц магнетита расположен на энергиях 7123,8 эВ и 7124,6 эВ соответственно, что указывает на то, что ионы железа в чистой и допированных самарием наночастицах магнетита имеют смешанную степень окисления 2,65±0,1+ и 2,88±0,1+ соответственно. Для магнетита Fe₃O₄ со структурой обратной шпинели ионы железа имеют смешанную валентность 2+ и 3+, с ионами Fe²⁺ в тетраэдрическом и Fe³⁺ в октаэдрическом окружении со средней степенью окисления 2,67+. На рис. 7, б показан процесс окисления наночастиц со смещением К-края поглощения в XANES спектрах чистых и допированных самарием наночастиц магнетита в течение двух месяцев после синтеза наночастиц. Ширина этого смещения указывает на скорость окисления наночастиц. Стрелки на рис. 7, б показывают сдвиг края поглощения в течение двух месяцев после синтеза на 0,3 и 0,1 эВ и изменение степени окисления железа от 2,65+ до 2,74+ и с 2,88+ до 2,91+ для чистых и допированных самарием наночастиц магнетита соответственно. Допированные самарием наночастицы имеют тенденцию сопротивления к окислению, следова*Рис. 8.* Нормализованные спектры *L*₃-края самария допированных самарием наночастиц магнетита и оксида самария

тельно, замещение ионов железа ионами Sm³⁺ повышает их стойкость к окислению. Таким образом, замещение небольшого количества ионов железа редкоземельными элементами может улучшить их устойчивость к окислению.

Нормализованные спектры L_3 -края самария допированных самарием наночастиц магнетита и оксида самария показаны на рис. 8. Степень окисления самария определена из сравнения спектра L_3 -края самария со спектром стандарт-

ного образца оксида самария(III). Степень окисления самария в допированных самарием наночастицах составляет 3+.

На рис. 9 представлены характерные петли гистерезиса и зависимости изменения намагниченности и коэрцитивной силы чистых и допированных самарием наночастиц магнетита. Как показано на рис. 9, *a*, значение намагниченности насыщения (M_s) чистых наночастиц составляет ~75 э.м.е./г, а значение намагниченности насыщения допированных самарием наночастиц составляет ~122 э.м.е./г, что выше, чем у недопированных наночастиц. На рис. 9, *б* приведены зависимости остаточной намагниченности и коэрцитивной силы чистых и допированных самарием наночастиц магнетита от напряженности магнитного поля.

В табл. 4 приведены значения величины магнитных характеристик: остаточная намагниченность для чистых наночастиц составляет 15 э.м.е./г, а значение коэрцитивной силы — 0,0075 Т.

Таблица 4

Магнитные параметры чистых и допированных самарием наночастиц магнетита

Рис. 9. Петли гистерезиса чистых и допированных самарием наночастиц магнетита (*a*); значения остаточной намагниченности и коэрцитивной силы чистых и допированных самарием наночастиц магнетита (*б*)

Допированные самарием наночастицы магнетита со средним размером частиц 8,6 нм обладают суперпарамагнитным поведением с высоким значением намагниченности насыщения 122 э.м.е./г.

ЗАКЛЮЧЕНИЕ

В настоящей работе приведено исследование чистых и допированных самарием наночастиц магнетита, синтезированных с использованием микроволнового синтеза в водном растворе. Наночастицы имеют почти сферическую форму со средним размером чистых наночастиц 30 нм и допированных самарием наночастиц — 8,6 нм. Методом рентгеноструктурного анализа, спектроскопии рентгеновского поглощения и мессбауэровской спектроскопии установлено, что полученные наночастицы сразу после синтеза имеют структуру магнетита (Fe₃O₄). Так как наночастицы быстро окисляются в условиях окружающей среды даже при комнатной температуре, то фазовый состав наночастиц через некоторое время после начала хранения состоит уже из магнетита Fe₃O₄ и маггемита γ-Fe₂O₃ в основном на поверхности наночастиц. На основе спектроскопии рентгеновского поглощения определены степень окисления ионов железа и самария в наночастицах сразу после синтеза и через 2 месяца после синтеза. Показан процесс окисления наночастиц. Поверхностный слой, состоящий из маггемита (γ-Fe₂O₃), составляет относительно небольшую долю по сравнению с фазой магнетита, для чистых наночастиц составляет ~0,9 нм, а для допированных самарием наночастиц ~0,3 нм. Синтезированные чистые и допированные самарием наночастицы показывают в основном суперпарамагнитное поведение с величиной намагниченности для чистых наночастиц магнетита ~75 э.м.е./г, а для допированных самарием наночастиц ~122 э.м.е./г при комнатной температуре. Увеличение значения намагниченности обусловлено допированием редкоземельными элементами с частично заполненными 4f-оболочками. Установлено, что допирование самарием в небольшом количестве позволило уменьшить средний размер наночастиц, получить узкое распределение по размерам, повысить стойкость к окислению и улучшить их магнитные характеристики.

Исследование выполнено за счет гранта Российского научного фонда (проект № 14-35-00051).

СПИСОК ЛИТЕРАТУРЫ

- 1. Reddy L.H., Arias J.L., Nicolas J., Couvreur P. // Chem. Rev. 2012. 112, N 11. P. 5818 5878.
- 2. Gupta A.K., Gupta M. // Biomaterials. 2005. 26. P. 3995 4021.
- 3. Laurent S., Forge D., Port M., Roch A., Robic C., Elst L., Muller R. // Chem. Rev. 2008. **108**. P. 2064 2110.
- 4. Ling D., Lee N., Hyeon T. // Acc. Chem. Res. 2015. 48, N 5. P. 1276 1285.
- 5. Xu C., Sun S. // Adv. Drug Deliv. Rev. 2013. 65. P. 732 743.
- 6. Liu G., Gao J., Ai H., Chen X. // Small. 2013. 9. P. 1533 1545.
- 7. Markides H., Rotherham M., El Haj A.J. // J. Nanomater. 2012. 2012. P. 614094.
- 8. *Alexis F., Pridgen E.M., Langer R., Farokhzad O.C.* Nanoparticle Technologies for Cancer Therapy. Handbook of Experimental Pharmacology. Berlin Heidelberg: Springer-Verlag, 2010.
- 9. Nie S., Xing Y., Kim G.J., Simons J.W. // Ann. Rev. Biomed. Eng. 2007. 9. P. 257 288.
- 10. *Klostergaard J., Seeney C.E.* // NBM. 2012. 8. P. S37 S50.
- 11. Yoo D., Lee J.H., Shin T.H., Cheon J. // Acc. Chem. Res. 2011. 44. P. 863 874.
- 12. Chouly C., Pouliquen D., Lucet I., Jeune J.J., Jallet P. // J. Microencapsul. 1996. 13, N 3. P. 245 255.
- 13. *Li C.* // Nat.Mater. 2014. **13**. P. 110 115.
- 14. Xie J., Liu G., Eden H.S., Ai H., Chen X. // Acc. Chem. Res. 2011. 44, N 10. P. 883 892.
- 15. Huan W., Cheng C., Yang Y., Yuan H., Li Y. // J. Nanosci. Nanotechnol. 2012. 12. P. 4621 4634.
- 16. Liu Y., Zhang N. // Biomaterials. 2012. 33. P. 5363 5375.
- 17. Wu W., He Q., Jiang C. // Nanoscale Res. Lett. 2008. 3. P. 397 415.
- 18. Wang X., Zhuang J., Peng Q., Li Y. // Nature. 2005. 437. P. 121 124.
- 19. Zhang W., Shen F., Hong R. // Particuology. 2011. 9, N 2. P. 179 186.
- 20. Iwasaki T., Nakatsuka R., Murase K., Takata H., Nakamura H., Watano S. // Int. J. Mol. Sci. 2013. 14. P. 9365 9378.

- 21. Chin A.B., Yaacob I.I. // J. Mater. Process. Technol. 2007. 191, N 1. P. 235 237.
- 22. Sun S., Zeng H. // J. Am. Chem. Soc. 2002. 124, N 28. P. 8204-8205.
- 23. Ramimoghadam D., Bagheri S., Hamid S.B.A. // J. Magn. Magn. Mater. 2014. 368. P. 207 229.
- 24. Li C., Wei Y., Liivat A., Zhu Y., Zhu J. // Mater. Lett. 2013. 107. P. 23 26.
- 25. Ravel B., Newville M. // J. Synchrotron Rad. 2005. 12. P. 537 541.
- 26. *Vandenberghe R.E., De Grave E.* Mössbauer Spectroscopy Applied to Inorganic Chemistry. N.Y.: Plenum Press, 1989. P. 59.
- 27. Shipilin M.A., Zakharov I.N., Shipilin A.M., Bachurin V.I. // J. Surface Invest. 2014. 8, N 3. P. 557 561.
- 28. *Roca A.G., Marco J.F., del Puerto Morales M., Serna C.J. //* J. Phys. Chem. C. 2007. **111**. P. 18577 18584.
- 29. Lyubutin I.S., Lin C.R., Korzhetskiy Yu.V., Dmitrieva T.V., Chiang R.K. // J. Appl. Phys. 2009. 106. P. 034311.
- 30. Kalska-Szostko B., Zubowska M., Satual D. // Acta Phys. Polonica A. 2006. 109, N 3. P. 365.