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На основе трехмерного решения, принадлежащего классу решений Остроумова — Би-
риха, проводится исследование двухслойных течений жидкости и газопаровой смеси
с учетом испарения диффузионного типа на термокапиллярной поверхности раздела.
Представлены результаты аналитического и численного моделирования конвективных
течений в канале с твердыми непроницаемыми стенками, возникающих при различных
температурных режимах. Проводится сравнение значений массовой скорости испарения
и термокапиллярных напряжений, рассчитанных на основе точного решения и получен-
ных в экспериментах.
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Введение. Для исследования процессов конвекции в жидкости, сопровождающихся
массопереносом на поверхности раздела, требуется разработка теоретических подходов,
математических моделей и численных алгоритмов, учитывающих законы сохранения и

ряд дополнительных гипотез. Интерес к моделированию конвективных течений с учетом
испарения на основе корректно сформулированных начально-краевых задач обусловлен
необходимостью проведения обобщающего анализа известных экспериментальных дан-
ных, прогнозирования результатов новых экспериментов на модифицированных рабочих
участках, включая получение различных количественных характеристик и структур ди-
намических, температурных и концентрационных полей [1–3]. В экспериментах [1–3] ис-
следовались параметры конвективных режимов в кюветах и открытых слоях, заполненных
рабочей жидкостью (гидрофторэфиром HFE-7100 или этанолом), в условиях испарения на
поверхности раздела, вызываемого спутным потоком сухого газа (воздуха или азота) или
парогазовой смеси. При этом поддерживалась плоская форма поверхности раздела. В ре-
зультате экспериментов получены термографические картины, данные о распределении
температуры на поверхности раздела, рассчитанные на их основе продольные поверхност-
ные градиенты и значения термокапиллярных напряжений, а также профили сдвиговых
напряжений на поверхности фазового перехода. Экспериментальные данные получены в
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широких диапазонах рабочих параметров, таких как толщина жидкого слоя (1 ÷ 8 мм),
средняя скорость газового потока (1,389 · 10−3 ÷ 1,389 м/с), средняя температура рабо-
чей жидкости (20, 30, 40, 50 ◦C). Имеющиеся данные могут не только служить основой
для верификации теоретических подходов, но и использоваться в качестве входных пара-
метров при математическом моделировании. Теоретический и численный анализ влияния
различных факторов на изменение топологии течения, массовой скорости испарения и по-
верхностной температуры позволяет определить область применимости соответствующей

модели и выделить постановки задач, обеспечивающие наилучшее соответствие получае-
мых решений экспериментальным данным.

В настоящей работе изучение конвекции в условиях испарения на поверхности разде-
ла проводится на основе трехмерного точного решения уравнений конвекции Обербека —
Буссинеска [4, 5], в которых учтены взаимообратные эффекты термодиффузии Соре и

Дюфура [6–8]. Используемое в данной работе решение является трехмерным обобщением
решения Бириха [9, 10] на случай термоконцентрационной конвекции; его групповой ха-
рактер установлен в работе [11], в которой предложен аналог решения для трехмерного
нестационарного случая и проведен анализ корректности постановок начально-краевых за-
дач для функций, определяющих вид точного решения. Выполнено численное моделирова-
ние установившихся трехмерных течений в двухслойной системе жидкости и газопаровой

смеси с термокапиллярной границей раздела, возникающих в канале с твердыми непрони-
цаемыми стенками под действием продольного градиента температуры и поперечно на-
правленной силы тяжести. Проводится сравнение количественных характеристик течения
с известными экспериментальными данными.

1. Постановка задачи. Ниже приводятся определяющие уравнения задачи, гранич-
ные условия и точное решение, сопоставляемое с экспериментальными данными.

1.1. Определяющие уравнения. Пусть двухслойная система жидкости и газопаровой
смеси, занимающих соответственно области Ω1 = {(x, y, z): −x0 < x < 0, 0 < y < 1,
−∞ < z < ∞} и Ω2 = {(x, y, z): 0 < x < x0, 0 < y < 1, −∞ < z < ∞} и являющихся
вязкими несжимаемыми теплопроводными жидкостями, заполняет бесконечный канал с
прямоугольным поперечным сечением (рис. 1). Прямоугольная (декартова) система коор-
динат выбирается таким образом, что вектор ускорения свободного падения имеет вид
g = (−g, 0, 0). Поверхность раздела Γ является термокапиллярной границей, определяется
уравнением x = 0, остается плоской в процессе движения и допускает массоперенос в ре-
зультате испарения диффузионного типа (т. е. слабого испарения [4, 5, 12, 13]). Твердые
непроницаемые границы задаются уравнениями x = −x0, x = x0, y = 0 и y = 1. В без-
размерных переменных система уравнений термодиффузионной конвекции в приближении

Обербека — Буссинеска для описания течений испаряющейся жидкости и смеси ее паров
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Рис. 1. Область течения



О. Н. Гончарова 87

и инертного газа имеет вид

(vj · ∇)vj = −ηp
j ∇pj +

ηvj
Re

∆vj + Gj , div vj = 0; (1)

vj · ∇Tj =
ηT
j

Re Pr
(∆Tj + αC ∆C); (2)

v2 · ∇C =
1

Pe
(∆C + αT ∆T2). (3)

Здесь vj = (uj , vj , wj) — вектор скорости j-й жидкости; Tj — температура; C — кон-
центрация пара в газе; индекс j = 1 соответствует характеристикам жидкости, индекс
j = 2 — газопаровой смеси; слагаемое αC ∆C в уравнении (2) и уравнение диффузии пара
учитываются при описании течения верхней, газопаровой среды; pj = Pj−ρ̃jg0 ·x — откло-
нение давления жидкости Pj от гидростатического с учетом равновесных характеристик

каждой жидкости; g0 = g/g и g0 = −i; ρ̃j = (1/ηp
j )

(
(Ga /Re2)(1+ δ2jγC0)+ δ1j (Gr /Re2)T0 +

δ2j (Gr /Re2)β̄T0); Gj = (Gj , 0, 0); G1 = (Gr /Re2)T1; G2 = β̄(Gr /Re2)T2 + γ(Ga /Re2)C;

γ — концентрационный коэффициент плотности газопаровой смеси; ηp
1 = 1, ηp

2 = 1/ρ̄,

ηv1 = 1, ηv2 = ν̄, ηT
1 = 1, ηT

2 = χ̄; ρ̄ = ρ2/ρ1, ν̄ = ν2/ν1, χ̄ = χ2/χ1, β̄ = β2/β1 — отношения

значений плотности (относительных значений плотности, соответствующих равновесной
температуре T0), кинематической вязкости, температуропроводности и коэффициента тем-
пературного расширения жидкости и газопаровой смеси соответственно; параметры αT и

αC характеризуют эффекты термодиффузии (эффект Соре) и диффузионной теплопровод-
ности (эффект Дюфура) соответственно; Re = u∗h/ν1 — число Рейнольдса; Pr = ν1/χ1 —
число Прандтля; Gr = β1T∗gh

3/ν2
1 — число Грасгофа; Ga = gh3/ν2

1 — число Галилея;
Pe = u∗h/D — число Пекле; D — коэффициент диффузии пара в газе; δij — символ Кро-
некера.

Уравнения (1)–(3) получены с использованием процедуры обезразмеривания, предло-
женной в [14]. В качестве характерных масштабов длины h, скорости u∗ и температуры T∗
выбраны линейный размер канала в направлении оси Oy, скорость прокачки газа и пере-
пад температуры, равный 10 ◦C. Характерное давление принимается равным p∗ = ρ1u

2
∗.

1.2. Точное решение уравнений (1)–(3). Граничные условия. Пусть решение системы
уравнений (1)–(3) имеет следующий вид:

uj = uj(x, y), vj = vj(x, y), wj = wj(x, y); (4)

p1 = −A Gr

Re2 xz + q1(x, y), p2 = −A ρ̄β̄ Gr

Re2 xz +Bρ̄γ
Ga

Re2 xz + q2(x, y); (5)

Tj = −Az + Θi(x, y); (6)

C = Bz + Φ(x, y). (7)

Решение (4)–(7) представляет собой частично инвариантное решение ранга 2 дефекта 3
[15–17] и используется для описания различных режимов конвекции в двухслойной системе
с испарением на термокапиллярной поверхности Γ, определяемой уравнением x = 0.

Пусть на твердых непроницаемых и теплоизолированных стенках канала выполняют-
ся условия прилипания для функций скорости; на участках внешней границы, контакти-
рующих с газопаровой средой, формулируется условие отсутствия потока пара:

x = x0, x = −x0, y = 0, y = 1: vj = 0; (8)

x = x0, y = 0, y = 1:
∂C

∂n
+ αT

∂T2

∂n
= 0; (9)
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y = 0, y = 1:
∂Tj

∂n
+ δ2jαC

∂C

∂n
= 0;

x = −x0:
∂T1

∂n
= 0, x = x0:

∂T2

∂n
+ αC

∂C

∂n
= 0. (10)

В силу концепции Гиббса поверхность раздела Γ есть особая термодинамическая сре-
да, свободная энергия которой отождествляется с поверхностным натяжением σ. При
этом σ является линейной функцией температуры: σ = 1 − (Ca Ma /(Re Pr))(T1 − T0), где
Ca = ρ1ν1u∗/σ0 — капиллярное число; Ma = σTT∗h/(ρ1ν1χ1) — число Марангони; σ0, σT —
положительные константы, первая из которых определяется значением поверхностного на-
тяжения при T0, а вторая есть температурный коэффициент поверхностного натяжения.
На поверхности раздела должны быть выполнены соотношения, являющиеся следствием
законов сохранения массы, импульса и энергии, а также гипотез о непрерывности каса-
тельных скоростей и температуры. Представленные ниже кинематическое, динамическое
и тепловое условия, а также условия равенства температуры и компонент скорости полу-
чены с учетом вида точного решения (4)–(7) и неподвижности поверхности раздела Γ:

x = 0: u1 = u2 = 0, v1 = v2, w1 = w2, T1 = T2; (11)(
− P1I +

2

Re
D(v1)

)
n =

(
− P2I +

2ρ̄ν̄

Re
D(v2)

)
n +

2

Ca Re
Hσn +

1

Ca Re
∇Γσ; (12)

∂T1

∂n
− κ̄

∂T2

∂n
− αCκ̄

∂C

∂n
= −LM, M = −

(∂C
∂n

+ αT
∂T2

∂n

)
; (13)

C = C0(1 + ε(T2 − T0)), ε = ε∗T∗, ε∗ =
Lµ

RT 2
0

. (14)

Здесь I — единичный тензор; D(vj) — тензор скоростей деформаций с компонентами

Dkl(vj) =
1

2

(∂ (vj)l
∂xk

+
∂ (vj)k
∂xl

)
, k, l = 1, 2, 3; (vj)1 = uj , (vj)2 = vj , (vj)3 = wj ; x1 = x,

x2 = y, x3 = z; n — единичный вектор внешней нормали (относительно жидкости); H —
средняя кривизна поверхности; ∇Γ = ∇ − n(n · ∇) — поверхностный градиент; κ̄ =
κ2/κ1 — отношение коэффициентов теплопроводности κj ; L = λDρ2/(κ1T∗); λ — скрытая

теплота парообразования; µ, R — молярная масса и универсальная газовая постоянная

соответственно.
Условие (13) включает соотношение, определяющее скорость испаренияM ; считается,

что поток массы пара на поверхности раздела происходит за счет испарения, если M > 0,
и за счет конденсации, если M < 0. Условие (14) используется для определения концен-
трации насыщенного пара и является следствием уравнений Менделеева — Клапейрона и

Клапейрона — Клаузиуса.
Следует отметить, что постоянные продольные градиенты функций температуры и

концентрации A и B удовлетворяют условию связи (B = −C0εA), продиктованному гра-
ничным условием (14). Тем самым параметр A, характеризующий термокапиллярный эф-
фект на поверхности раздела Γ, определяет также интенсивность испарения жидкости
вблизи этой поверхности. Поскольку точное решение предполагает линейную зависимость
функций температуры и концентрации пара от продольной координаты z, возрастающую
либо убывающую в направлении оси Oz (в зависимости от знака продольного градиента A
(см. (6), (7))), решение (4)–(7) описывает двухслойное течение с испарением диффузион-
ного типа на рабочем участке длиной Lh протяженного канала. Оценка величины Lh,
учитывающая диапазон значений температуры жидкостей и концентрации пара вблизи

равновесных значений T0 и C0 на основе выбора исходных значений и определяющая об-
ласть применимости точного решения, представлена в работе [14]. Математическое моде-
лирование конвекции в рамках приближения Обербека — Буссинеска с условием (14) для
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определения концентрации пара на поверхности раздела также проводится при умеренных

перепадах температуры.
2. Результаты численного моделирования. Структура решения (4)–(7) допуска-

ет сведение задачи (1)–(3), (8)–(14) к цепочке двумерных краевых задач, сформулирован-
ных для функций w1(x, y), w2(x, y), Θ1(x, y), Θ2(x, y), Φ(x, y) и искомых функций ψj(x, y),
ωj(x, y) (uj = ∂ψj/∂y, vj = −∂ψj/∂x, ωj = ∂vj/∂x − ∂ui/∂y). Двумерные задачи, поста-

новки которых приведены в [5], численно решаются в областях Ω̃1 = {(x, y): −x0 < x < 0,
0 < y < 1}, Ω̃2 = {(x, y): 0 < x < x0, 0 < y < 1}, находящихся в поперечном сечении z = z0
(при любом z0) областей Ωj , занятых жидкостями. При численном решении стационарной
задачи используется обеспечивающий второй порядок аппроксимации итерационный алго-
ритм на основе конечно-разностной схемы, известной как метод переменных направлений,
и метода прогонки с параметрами (см. [5]).

В отличие от решения двумерной задачи построение решения трехмерной задачи не

предполагает наличия замыкающего постановку условия, задающего расход газа. Тем са-
мым исключается возможность непосредственного учета экспериментально определенной

скорости прокачки газа при моделировании течений и процесса испарения. Поэтому рас-
четы трехмерных течений в канале проведены для чисел Рейнольдса, соответствующих
характерным значениям скорости потока газа, реализующимся в экспериментах [1–3]. Осо-
бенности структуры течения и изменение количественных характеристик (массовой ско-
рости испарения, сдвиговых и термокапиллярных напряжений на поверхности раздела)
исследованы для системы этанол — воздух для различных значений исходной (равновес-
ной) температуры двухслойной системы Tin при условии теплоизоляции внешних стенок

канала. Результаты исследования конвективных течений в случае нагрева границ пред-
ставлены в [14, 18].

Приняты следующие физико-химические параметры системы (см. [1, 19–23]): ρ1 =
0,79 · 103 кг/м3, ν1 = 0,15 · 10−5 м2/с, β1 = 1,08 · 10−3 1/K, χ1 = 0,89 · 10−7 м2/с, κ1 =
0,167 Вт/(м ·K), σT = 0,8 · 10−4 Н/(м ·K), λ = 8,55 · 105 Вт · с/кг; ρ2 = 1,205 кг/м3,
ν2 = 0,15 · 10−4 м2/с, β2 = 3,67 · 10−3 1/K, χ2 = 0,21 · 10−4 м2/с, κ2 = 0,026 Вт/(м ·K);
D = 1,35 · 10−5 м2/с, γ = −0,62, C0 = 0,0561 и ε∗ = 0,0568 1/K при T0 = 20, C0 = 0,0995 и
ε∗ = 0,0531 1/K при T0 = 30, C0 = 0,1699 и ε∗ = 0,0497 1/K при T0 = 40. Коэффициенты
Соре и Дюфура, зависящие от безразмерных параметров αT , αC , приняты равными αT

2 =
5 · 10−3 1/K, αC

2 = 5 · 10−4 K соответственно (αT = αT
2 T∗, αC = αC

2 /T∗).
Пусть характерные длина и скорость определяются значениями h = 10−2 м и u∗ =

0,013 89 м/с, толщины жидкого и газового слоев равны 3 мм (x0 = x0 = 0,3). Эксперимен-
тально установлена зависимость продольного градиента температуры и интенсивности

испарения от исходной температуры системы Tin (T0 = Tin/T∗). При Tin = 20, 30, 40 ◦C
и характерной скорости потока газа u∗ = 0,013 89 м/с экспериментальные значения гра-
диента A∗ в системе этанол — воздух равны 29,29, 62,24, 90,32 ◦C/м, а массовая скорость
испарения M∗

exp достигает значений 0,4696 · 10−3, 1,8527 · 10−3, 2,9113 · 10−3 кг/(м2 · с) со-
ответственно. Безразмерные продольные градиенты температуры, рассчитанные по фор-
муле Aexp = A∗h/T∗, имеют значения 0,029 29, 0,062 24 и 0,090 32.

Структура течений (проекции трубок тока и траектории движения жидких частиц)
и распределения основных характеристик (поля температуры и концентрации) представ-
лены на рис. 2, 3. Для улучшения визуализации вращательного характера течения первая
и вторая компоненты скорости жидкости умножены на 103.

Установившееся течение поступательно-вращательного типа реализуется в форме ва-
ликовой конвекции и характеризуется при Tin = 20 ◦C, Aexp = 0,0293 продольной ше-
стивихревой структурой (четырехвихревой в жидком слое и двухвихревой в газопаровом
слое (см. рис. 2,а)). Четырехвихревое течение наблюдается при Am = 0,293 (см. рис. 2,б).
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Рис. 2. Проекции трубок тока, траектории движения жидких частиц (а, б) и
поле температуры (в, г) для системы этанол — воздух при Tin = 20 ◦C:
а, в — Aexp = 0,0293, б, г — Am = 0,293

Течение подобного типа сохраняется в двухслойной системе при повышении исходной тем-
пературы до значения Tin = 30 ◦C (см. рис. 3,а,б). В жидком слое доминирующие валы
могут сосуществовать с малыми слабоинтенсивными угловыми структурами. Представ-
ленные на рис. 2,в,г и рис. 3,в,г температурные поля характеризуются наличием терми-
ческого вала вдоль поверхности раздела и горячей пленки жидкости вблизи нее. Обнару-
живаются деформация термического вала вблизи боковых стенок канала при Am = 0,6224,
Tin = 30 ◦C (см. рис. 3,г) и его сползание по стенкам.

Различие процессов формирования концентрационных валов зависит от величины про-
дольного градиента A (см. рис. 3,д,е). Следует отметить образование концентрационного
пограничного слоя с повышенной концентрацией пара вблизи поверхности раздела. На
рис. 4, 5 представлены профили массовой скорости испарения M(y), которая в соответ-
ствии с построенным решением представляет собой функцию поперечной координаты y.
При условии (9) на стенках канала, контактирующих с газовой средой, выявляется при-
стенная конденсация пара. Установлено наличие двух локальных экстремумов (максиму-
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Рис. 3. Проекции трубок тока и траектории движения жидких частиц (а, б),
поле температуры (в, г) и распределение концентрации пара (д, е) для системы
этанол — воздух при Tin = 30 ◦C:
а, в, д — Aexp = 0,062 24, б, г, е — Am = 0,6224
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Рис. 4. Профили массовой скорости испаренияM(y) при различных значениях Aexp , Tin :
1 — Aexp = 0,0293, Tin = 20 ◦C, 2 — Aexp = 0,062 24, Tin = 30 ◦C, 3 — Aexp = 0,090 32, Tin = 40 ◦C

Рис. 5. Профили массовой скорости испарения M(y) при различных значениях Am, Tin :
1 — Am = 0,293, Tin = 20 ◦C, 2 — Am = 0,6224, Tin = 30 ◦C, 3 — Am = 0,9032, Tin = 40 ◦C

мов), симметричных относительно плоскости y = 0,5 (см. рис. 4) при расчетах с исполь-
зованием экспериментальных значений A = Aexp . При расчете течений с использовани-
ем модельного значения продольного градиента температуры Am максимальное значение

функции M(y) достигается при y = 0,5 для Am = 0,9032 (см. рис. 5). Сравнение экспе-
риментально полученных значений массовой скорости испарения M∗

exp при температуре

Tin = 20, 30, 40 ◦C с расчетными значениями позволяет сделать вывод о приемлемом со-
гласовании этих данных для ряда модельных значений продольного градиента A, бо́льших
по сравнению с экспериментальными. При A = Am получены расчетные значения скоро-
сти испарения M∗

m = 0,3690 · 10−4; 0,4011 · 10−3; 0,1535 · 10−2 кг/(м2 · с), соответствующие
значениям Tin = 20, 30, 40 ◦C. С увеличением значений Tin , соответствующих рабочим
температурам в эксперименте, наблюдается лучшее согласование расчетных M∗

m и изме-
ренных M∗

exp значений.
Следует отметить также хорошее соответствие расчетного значения величины τσ =

τ∗(τz,1 − τz,2) = 2,3 · 10−3 кг/(м · с2) и экспериментальной оценки данной величины

τ∗exp = 4,5 · 10−3 кг/(м · с2) (τz,1 = (w1)x, τz,2 = ρ̄ ν̄(w2)x; τ∗ = 1,646 · 10−3 кг/(м · с2) — ха-
рактерное значение касательного напряжения; величина τσ характеризует интенсивность
действия термокапиллярных сил на поверхности раздела в продольном направлении). За-
метим, что теоретическое значение τσ = 2,344 · 10−3 кг/(м · с2). Представленные выше
данные получены при Aexp = 0,0293, Tin = 20 ◦C. В случае Tin = 30, 40 ◦C при соот-
ветствующих экспериментальных значениях Aexp расчетные значения величины τσ равны
4,9 · 10−3 и 7,1 · 10−3 кг/(м · с2).

Заключение. В рамках двусторонней модели испарительной конвекции на основе

приближения Обербека — Буссинеска исследованы конвективные течения в системе эта-
нол — воздух, сопровождающиеся слабым испарением, возникающим за счет прокачки
газа над жидким слоем. С помощью точного частично инвариантного решения уравне-
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ний термоконцентрационной конвекции описаны характеристики течения (его структура,
формирование температурных и концентрационных валов, профили и значения массовой
скорости испарения) для ряда значений режимных параметров экспериментов. Верифи-
кация точного решения выполнена на основе сравнения расчетных и экспериментальных

данных. Теоретические значения скорости испарения, полученные с использованием пред-
ставленного решения, меньше по сравнению с экспериментальными значениями. При этом
зависимость указанной величины от рабочих параметров качественно не меняется.

Автор выражает благодарность В. Б. Бекежановой за помощь в представлении ре-
зультатов в графическом виде и Ю. В. Люлину за предоставленные экспериментальные
данные.
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