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Проведено исследование влияния на концентрацию напряжений основных параметров
нелокальной модели континуума при решении задачи о растяжении пластины с эллип-
тическим вырезом в ее центре, называемой также задачей Кирша. Изучено влияние тем-
пературного расширения среды на напряженно-деформированное состояние пластины.
Проведено сравнение полученных результатов с классическими. Показано, что макси-
мальные напряжение и плотность теплового потока уменьшаются, а деформация в зонах
концентрации напряжений увеличивается.
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Введение. Материалы с микро- и наноструктурой широко применяются в микро-
и наноэлектромеханических системах (МЭМС и НЭМС) и устройствах [1–3]. Основной
причиной повреждения элементов МЭМС и НЭМС является их нагрев и, как следствие,
расширение с последующим разрушением конструкции. Поэтому необходимо знать точ-
ные характеристики используемых материалов и их поведение при различных нагруже-
ниях. Однако для изучения поведения исследуемых микроструктур классические модели
термоупругости неприменимы, так как в них используется гипотеза сплошности среды,
которая непригодна на малых масштабах вследствие того, что расстояние между атомами
сопоставимо с размерами рассматриваемого тела. На таких масштабах учет взаимодей-
ствия атомов приводит к значительному изменению поведения исследуемых материалов.
Экспериментально показано, что на наномасштабах нарушается закон Фурье [4, 5] или
уменьшается концентрация напряжений [6, 7].

Для объяснения обнаруженных эффектов разрабатываются новые модели, учитыва-
ющие структурные особенности среды, например, модели молекулярной динамики [8, 9].
Однако для использования этих моделей требуется большой объем вычислительных ре-
сурсов, вследствие чего применяются более простые модели, основанные на классических
уравнениях механики сплошной среды. К числу таких моделей относятся микрополярные
модели [10], градиентные модели [11, 12] и нелокальная модель Эрингена [13], изучению
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которой посвящена данная работа. В указанной модели основные уравнения принимают
интегродифференциальную форму, что, с одной стороны, позволяет использовать хорошо
изученные численные методы, например метод конечных элементов [14, 15], с другой —
приводит к значительному усложнению расчетов [16] и анализа [17–19]. Такая постановка
обеспечивает возможность учета дальнодействующих атомных потенциалов.

Наибольшему риску разрушения подвержены конструкции, имеющие разного рода гео-
метрические особенности, например вырезы различной формы, которые используются для
крепления деталей конструкции. Вырезы представляют опасность, так как служат кон-
центраторами таких величин, как тепловые потоки, напряжения и деформации. При этом
существенное влияние на степень концентрации оказывают форма выреза и направление

нагружения. Однако, как отмечено выше, на наноуровне степень влияния концентраторов
уменьшается. Проведено исследование влияния основных параметров модели нелокальной
термоупругости на решения в области с эллиптическим вырезом. Выбор данной задачи
обусловлен тем, что она имеет широкое применение [20, 21], а также хорошо исследова-
на в рамках как классических моделей [22, 23], так и неклассических моделей механики
сплошной среды, например, с использованием микрополярной теории упругости [10] или
методов молекулярной динамики [9].

1. Основные соотношения. Определим линейный интегральный оператор [13],
представляющий собой взвешенную сумму

N (∗) = p1(∗) + p2

∫ ∫
S′(x′)∩S

ϕ(x, x′)(∗) dS′(x′), x′ ∈ S′(x), (1)

где первое слагаемое — выражение с весовым множителем p1, а второе слагаемое — то

же выражение, взвешенное по области S′(x) с некоторой весовой функцией ϕ и весовым

параметром p2. В (1) (∗) — некоторое выражение, описывающее сохраняющуюся физи-
ческую величину; p1 > 0, p2 > 0 — весовые параметры модели, такие что p1 + p2 = 1;
ϕ — функция нелокального влияния, некоторая нормированная положительная функция в
области S′(x) c максимумом в центре этой области; x′ — точка в области S′(x), в кото-
рой вычисляется влияние поля на значение поля в точке x; S′(x) — область нелокального

влияния с центром в точке x; S — область, занимаемая рассматриваемым телом. Опре-
деления функции ϕ и области S′(x) связаны между собой. Обычно функция ϕ строится

на основе метрических функций, определенных в области S′(x), поэтому в качестве S′(x),
как правило, выбираются простые выпуклые области, например области, ограниченные
окружностью или эллипсом, однако можно выбрать любую односвязную область.

Следует отметить, что для каждого физического процесса F и материала можно опре-
делить собственный оператор (1) с набором весовых констант p1 и p2, а также с функцией
нелокального влияния ϕ и областью S′(x). В данной работе, не теряя общности подхо-
да, примем гипотезу, согласно которой для тепловых и механических постановок задачи
применяется один и тот же оператор с одним и тем же набором параметров.

Запишем уравнения стационарной теплопроводности и равновесия:

∇ · q = 0, ∇ · σ̂ = 0. (2)

Здесь вектор плотности теплового потока q и тензор напряжений σ̂ определены c помощью
гипотезы Био — Фурье и закона Дюамеля — Неймана и с использованием оператора (1)
[24]:

q(x) = N (−λ̂ · ∇T ), σ̂(x) = N (Ĉ · ·(ε̂− α̂т∆T )),
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λ̂ = λijei ⊗ ej — тензор теплопроводности; Ĉ = Cijkl ei ⊗ ej ⊗ ek ⊗ el — тензор коэф-
фициентов упругости; ε̂ = εij ei ⊗ ej — тензор деформации; α̂ = αij ei ⊗ ej — тензор

температурных коэффициентов линейного расширения; ∆T = T − T0 — разность между

текущей температурой T и начальной температурой T0; i, j, k, l = 1, 2.
Будем считать, что деформации малы, поэтому для определения тензора деформации ε̂

используем соотношение Коши

ε̂ =
1

2
(∇u + (∇u)т) =

1

2
(ui,j + uj,i) ei ⊗ ej .

Также будем учитывать, что рассматриваемый случай соответствует линейному упругому
изотропному материалу в плоском напряженном состоянии. Тогда компоненты тензора

упругости Ĉ можно определить следующим образом:

Cijkl =
νE

1− ν2
δijδkl +

E

2(1 + ν)
(δikδjl + δilδjk).

Здесь E — модуль Юнга; ν — коэффициент Пуассона; δij — дельта Кронекера. Также бу-
дем считать, что тепловое расширение происходит одинаково в любом направлении, поэто-
му тензор температурных коэффициентов линейного расширения является диагональным

и имеет только один коэффициент αт:

α̂т = αтÎ

(Î = δij ei ⊗ ej — единичный тензор). Тензор теплопроводности также имеет только один
коэффициент λ:

λ̂ = λÎ.

Для уравнений теплопроводности и равновесия (2) будем рассматривать граничные
условия первого и второго рода, которые можно записать следующим образом:

T
∣∣
Γ1

= TΓ(x), n · q
∣∣
Γ2

= f(x), u
∣∣
Γ3

= d(x), n · σ̂
∣∣
Γ4

= p(x).

Здесь Γ1 ∪ Γ2 = Γ3 ∪ Γ4 = ∂S; Γ1 ∩ Γ2 = Γ3 ∩ Γ4 = ∅; TΓ(x), f(x) — некоторые функции,
задающие температуру и плотность теплового потока на границах Γ1 и Γ2 соответственно;
d(x) = di(x)ei — вектор перемещения, заданный на границе Γ3; p = pi(x)ei — вектор

плотности поверхностного нагружения на границe Γ4. Будем полагать, что функции TΓ,
f , d, p равны нулю в тех областях, в которых они не определены.

В качестве численного метода решения выбран метод конечных элементов [14, 15], в
результате применения которого получены системы уравнений

(p1K̂
L
T + p2K̂

NL
T ) · T = F ; (3)

(p1K̂
L
E + p2K̂

NL
E ) ·U = p1E

L + p2E
NL + P , (4)

где K̂L
T , K̂NL

T — матрицы локальной и нелокальной теплопроводности; T — вектор иско-
мых узловых значений температуры; F — вектор дискретизированных внешних источни-
ков и стоков теплоты; K̂L

E , K̂NL
E — матрицы локальной и нелокальной жесткости; U —

вектор искомых узловых перемещений; EL, ENL — векторы локального и нелокального

линейного теплового расширения; P — вектор дискретизированной плотности поверхност-
ных сил. Более подробно конечно-элементная аппроксимация при решении нелокальных
задач описана в работах [16, 25, 26]. Алгоритмы сборки матриц реализованы в рамках

программного комплекса “NonLocFEM” [27].
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2. Переход к безразмерным переменным. Для изучения различий между класси-
ческой (локальной) и нелокальной теориями введем безразмерные величины

q̄ =
q

q0
, λ̄ =

λ

λ0
, σ̄ =

σ̂

σ0
, Ē =

E

σ0
, x̄ =

x

L
, ū =

u

L
, ᾱт =

αт

T0
,

где q0 — нормализующий множитель для вектора теплового потока; λ0 — нормализую-
щий множитель для теплопроводности; σ0 — нормализующий множитель для напряжений;
L — характерный размер пластины. Были выбраны следующие расчетные параметры:
безразмерная теплопроводность λ̄ = 1, коэффициент Пуассона ν = 0,3, безразмерный мо-
дуль Юнга Ē = 400, безразмерный температурный коэффициент линейного расширения
ᾱт = 2,5 · 10−3.

При вариации весового параметра p1 будем рассматривать четыре основных случая:
1) нелокальные эффекты отсутствуют (p1 = 1); 2) локальное слагаемое существенно боль-
ше нелокального (p1 = 0,75); 3) локальное и нелокальное слагаемые имеют одинаковый вес
(p1 = 0,5); 4) нелокальное слагаемое существенно больше локального (p1 = 0,25). Случай,
когда локальное слагаемое отсутствует (p1 = 0), приводит к некорректно поставленным
краевым задачам [28].

Для вычисления нелокальных матриц теплопроводности (3) и жесткости (4) необ-
ходимо выполнить достаточно ресурсоемкие операции, поэтому для упрощения расчетов
следует ограничить область S′(x), так чтобы она покрывала не всю поверхность рассмат-
риваемого тела. В силу изотропности рассматриваемого материала можно предположить,
что область S′(x) ограничена окружностью с фиксированным радиусом области нелокаль-
ного влияния r. Затем необходимо определить функцию нелокального влияния ϕ, которая
должна удовлетворять всем заданным выше свойствам. Таких функций может быть беско-
нечное множество, но в силу ресурсоемкости операции сборки матриц выберем функцию ϕ
в виде квадратичной параболы, так как ее вычисление достаточно простое, при этом она
удовлетворяет всем необходимым условиям, а выбор других функций не приводит к ка-
чественному изменению свойств получаемых решений [16]. Таким образом,

ϕ(x, x′) =


1

πr2

(
1− |x− x′|2

r2

)
, |x− x′| 6 r,

0, |x− x′| > r.

Заметим, что при r → 0 функция нелокального влияния стремится к дельта-функции
Дирака, при подстановке которой в (1) получаем обыкновенный единичный оператор. По-
этому далее в случае r = 0 будем считать, что проводился локальный расчет. В расчетах
будем использовать также безразмерный радиус области нелокального влияния r̄ = r/L.

Расчеты проводились в области S = {x: −1 6 x1, x2 6 1}. В центре области распола-
гается эллиптический вырез. Полуоси эллипса сонаправлены с главными осями системы
координат, центр которой находится в центре выреза, а их длины вдоль осей x1, x2 рав-
ны R1 и R2 соответственно. В задачах длину полуоси R1 будем варьировать, а длину
полуоси R2 будем считать постоянной и равной 0,1. В области введена сетка конечно-
элементной модели Sh, состоящая из квадратичных серендиповых элементов с характер-
ным размером h = 0,005.

Наибольший интерес представляет исследование распределения полей напряжений и

тепловых потоков на кромке выреза. Выделим дугу AB и введем угловую координату θ
(рис. 1). Тогда можно записать параметрические координаты дуги AB

x1(θ) = R1 cos θ, x2(θ) = R2 sin θ,
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o R1 A

R2

B

n
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1j
=

-1
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1j
=

1
--

Рис. 1. Область с эллиптическим вырезом и заданными нагрузками

где угол θ принимает значения в диапазоне от 0 до π/2. Затем вычисляем длину дуги l
в зависимости от угла θ:

l(θ) =

θ∫
0

√(∂x1

∂ϕ

)2
+

(∂x2

∂ϕ

)2
dϕ.

Введем безразмерный параметр l̄(θ) = l(θ)/l(π/2). Дальнейшие результаты, получаемые
на кромке AB, будем рассматривать в координатах безразмерного параметра длины l̄(θ).

3. Задача Кирша. Рассмотрим задачу Кирша с обобщением на эллиптические вы-
резы. Для этого в области S зададим граничные и геометрические условия (см. рис. 1):

nj σ̄1j

∣∣
x1=−1

= −1, nj σ̄1j

∣∣
x1=1

= 1, ū1

∣∣
x1=0

= 0, ū2

∣∣
x2=0

= 0.

Известно, что максимальные значения компоненты тензора напряжений σ̄11 находят-
ся в верхней и нижней точках эллипса и линейно зависят от отношения длин полуосей

эллипса R2/R1 и величины приложенной нагрузки σ0 [22, 23]:

σ̄max
11 = (1 + 2R2/R1)σ0.

Однако в нелокальном случае максимальное напряжение уменьшается и зависит также от

весового параметра p1 (табл. 1). Из результатов, представленных в табл. 1, следует, что
величина σ̄11 линейно зависит от параметра p1:

σ̄max
11 = (1 + κR2/R1)σ0.

Здесь κ = κ(p1) — некоторый множитель, зависящий от p1. Такая зависимость получена
эвристическим путем и не имеет теоретического обоснования, однако достаточно точно
аппроксимирует полученные значения и может быть использована при проведении оце-
ночных расчетов, когда не требуется очень высокая точность. Значение параметра κ для

конкретного значения p1 можно подобрать на основе нескольких расчетов при различных

значениях R1. Заметим, что подобное уменьшение максимального напряжения наблюда-
лось при проведении исследований с использованием моментной теории упругости [10].
Также методами молекулярной динамики можно моделировать ситуации, когда дефекты
структуры материала ослабляют концентратор [9].
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Таб ли ц а 1

Максимальные значения напряжения σ̄11 в зависимости от длины полуоси R1

и весового параметра p1 при r̄ = 0,05, R2 = 0,1

R1

σ̄11

p1 = 1,00 p1 = 0,75 p1 = 0,50 p1 = 0,25

0,100 3,052 2,691 2,299 1,938
0,075 3,692 3,262 2,782 2,215
0,050 4,976 4,399 3,742 2,913

0,2 0,4 0,6 0,8 1,0 l0

0,002

0,004

0,006

0,008

0,010

0,012

e11
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Рис. 2. Распределение деформации ε11 на кромке AB при p1 = 1, r̄ = 0 (a),
p1 = 0,5, r̄ = 0,05 (б) и различной длине полуоси R1:
1 — R1 = R2, 2 — R1 = 0,75R2, 3 — R1 = 0,5R2

При уменьшении длины полуоси эллипса R1 наряду с напряжением σ̄11 увеличивает-
ся максимальная деформация ε11 (рис. 2). Из рис. 2 следует, что максимальная деформа-
ция ε11 резко увеличивается вблизи точки B (см. рис. 1). В нелокальном случае дефор-
мация также увеличивается вблизи точки B, при этом вблизи концентратора появляется
область с отрицательными значениями. Такой же эффект можно наблюдать при решении
нелокальных задач в других областях с концентраторами [29] и в экспериментах [30].

При уменьшении параметра p1 деформация ε11, в отличие от напряжения σ̄11, в зоне
концентрации увеличивается. Также увеличивается зона с отрицательными значениями
деформации, при этом сами значения деформации в ней увеличиваются по модулю. При
увеличении радиуса области нелокальности r̄ деформация также увеличивается, но ме-
нее существенно (рис. 3). Следует отметить, что изменение величины r̄ практически не
оказывает влияния на максимальное значение напряжения σ̄11.

4. Температурные деформации. Рассмотрим задачу в той же области с учетом
температурных деформаций. Для этого пропустим через область S тепловой поток, задав
граничные и геометрические условия (рис. 4):

n · q
∣∣
x1=−1

= 1, n · q
∣∣
x1=1

= −1, ū2

∣∣
x2=0

= 0.

Для выполнения условия единственности решений добавим интегральные условия∫ ∫
S

T dS = 0,

∫ ∫
S

u1 dS = 0.

Данная постановка позволяет качественно оценить поведение температурных напряжений

без учета влияния концентрации напряжений, обусловленных геометрией области или гра-
ничными условиями.



Г. Н. Кувыркин, А. А. Соколов 199

0,4 0,6 0,8 1,00,20 l

-

0,4 0,6 0,8 1,00,20

0

0,002

0,004

0,006

0,008

-0,002

0

0,002

0,004

0,006

0,008

-0,002
l

-

e11 e11
à á

1 2
3
4

1 2
3
4

Рис. 3. Распределение деформации ε11 на кромке AB при R1 = R2 и различных

значениях p1 и r̄:
а — r̄ = 0,05 (1 — p1 = 1, 2 — p1 = 0,75, 3 — p1 = 0,5, 4 — p1 = 0,25), б — p1 = 0,5
(1 — r̄ = 0, 2 — r̄ = 0,025, 3 — r̄ = 0,05, 4 — r̄ = 0,1)
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Рис. 4. Область с эллиптическим вырезом и заданным тепловым потоком

Сначала исследуем поведение теплового потока при вариации основных параметров

модели. Будем рассматривать первую компоненту потока, так как при данной постанов-
ке задачи она представляет наибольший интерес. Поведение этой компоненты подобно

поведению компоненты тензора напряжений σ̄11 в задаче Кирша. Максимумы находятся
в верхней и нижней точках выреза и зависят от отношения длин радиусов и проходящего

потока:

q̄max
1 = (1 + R2/R1)q0,

где q0 — проходящий через границы поток. Аналогично задаче Кирша при увеличении
вклада нелокального влияния максимальная величина потока в концентраторах уменьша-
ется и линейно зависит от отношения длин полуосей эллипса и проходящего через границы

области теплового потока. Максимальные значения q̄1 при различных значениях весового

параметра и длины полуоси R1 приведены в табл. 2.
Определим температурные напряжения, возникающие при тепловой постановке зада-

чи. С использованием интегральных условий получены симметричные решения, в которых
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Максимальные значения компоненты теплового потока q̄1 в зависимости от длины полуоси R1

и весового параметра p1 при r̄ = 0,05, R2 = 0,1
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Рис. 5. Распределения напряжений σ̄11 (а) и σ̄22 (б) на кромке AB при r̄ = 0,
p1 = 1 и различных значениях длины полуоси R1:
1 — R1 = R2, 2 — R1 = 0,75R2, 3 — R1 = 0,5R2

все напряжения сконцентрированы на кромке выреза. Заметим, что относительно оси x1

функции решения четные, а относительно x2 — нечетные. На рис. 5 видно, что макси-
мальные значения компоненты σ̄11 находятся не в верхней и нижней точках, как в задаче
Кирша, а вблизи центра дуги AB. При уменьшении длины полуоси R1 максимальные зна-
чения σ̄11 смещаются к верхней и нижней точкам, увеличиваясь. Компонента σ̄22 имеет

максимальные значения в левой и правой вершинах выреза. При уменьшении длины R1

максимальное значение начинает уменьшаться и решение монотонно убывает вдоль кром-
ки выреза.

На рис. 6 показано влияние весового параметра модели p1 на напряжения σ̄11, σ̄22.
В данном расчете, как и в проведенных выше расчетах, уменьшение значения p1 приводит

к уменьшению максимального напряжения.

Заключение. Проведенные в работе расчеты показали, что наличие нелокальных эф-
фектов может привести к уменьшению концентрации напряжений вокруг эллиптического

отверстия, а также к увеличению деформации. Этот результат хорошо согласуется с экспе-
риментальными и расчетными данными, полученными с помощью моделей молекулярной
динамики.

Проведено исследование влияния отношения длин полуосей эллиптического выреза на

концентрацию напряжений. Несмотря на нелокальность постановки задачи, максимальные
значения напряжения линейно зависят от отношения длин полуосей и прикладываемой

нагрузки, при этом появляется зависимость от весового параметра модели p1. Полученные
результаты могут быть использованы при оценке возможных максимальных нагрузок для

объектов с наноструктурой.
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Рис. 6. Распределения напряжений σ̄11 (а) и σ̄22 (б) на кромке AB при r̄ = 0,05,
R1 = R2 и различных значениях весового параметра p1:
1 — p1 = 1, 2 — p1 = 0,75, 3 — p1 = 0,5, 4 — p1 = 0,25

Следует отметить, что параметры нелокальности могут быть определены в экспе-
риментах с многослойными пленками, например в эксперименте по лазерному нагреву
многослойного покрытия, нанесенного на подложку [31]. Кроме того, сопоставление ре-
зультатов, полученных с использованием макромасштабных моделей (нелокальных, гра-
диентных и др.), с результатами, полученными на основе моделей атомарного масштаба
(молекулярной динамики и др.), позволяет не только установить связь между параметра-
ми макро- и микроуровней [32], но и выбрать значения параметров нелокальности.
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