УДК 536.413: 669.14.018.44

Тепловое расширение и фазовые переходы стали 16X12B2ФТаР в интервале температур 20–1000 °C*

Ю.М. Козловский, С.В. Станкус, О.С. Яцук, А.Ш. Агажанов, С.Г. Комаров, И.С. Ануфриев

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: stankus@itp.nsc.ru

Представлены результаты исследования теплового расширения стали марки $16X12B2\Phi TaP$ в интервале температур 20-1000 °C. Измерения проведены дилатометрическим методом с погрешностью $(1,5\div2)\times10^{-7}$ K $^{-1}$. Получены температурные зависимости термического коэффициента линейного расширения стали в ферритомартенситном и феррито-перлитном состояниях, рассчитаны справочные таблицы. Показано влияние скорости охлаждения образцов на образование мартенситной фазы.

Ключевые слова: коэффициент теплового расширения, фазовые превращения, сталь 16X12B2ФТаР, твердое состояние, высокие температуры.

Сталь марки 16X12B2ФТаР (ЭК-181) относится к новому поколению оболочечных жаропрочных комплексно-легированных 12 %-х хромистых сталей, которые предполагается использовать для изготовления ТВЭЛов реакторов на быстрых нейтронах с глубиной выгорания топлива свыше 16 % [1]. Широкий температурный интервал эксплуатации предполагает знание областей фазовой стабильности стали и изменения свойств при фазовых превращениях.

Цель настоящей работы состояла в экспериментальном исследовании теплового расширения и фазовых превращений стали марки $16X12B2\Phi TaP$ в интервале температур от 20 до 1000 °C.

Измерения выполнены дилатометрическим методом на установке DIL-402C (Германия) с использованием держателей и толкателей из плавленного кварца и спеченного корунда в атмосфере аргона высокой чистоты (99,998 об. %). Скорость нагрева-охлаждения печи составляла 2 °C /мин. Температура измерялась платина-платинородиевой термопарой (тип S), расположенной в непосредственной близости от образца. Система автоматической регистрации данных опрашивала датчики температуры и удлинения каждые три секунды.

Нулевой ход дилатометра определялся на образцах длиной 25 мм и диаметром 6 мм из платины Пл 99,93 и спеченного корунда для держателей из SiO_2 и Al_2O_3 соответственно в условиях, идентичных условиям основных экспериментов [2, 3].

© Козловский Ю.М., Станкус С.В., Яцук О.С., Агажанов А.Ш., Комаров С.Г., Ануфриев И.С., 2014

^{*} Работа выполнена при финансовой поддержке Минобрнауки (соглашение № 8073) и РФФИ (проект № 11-08-00785).

Результаты основных измерений представлялись в виде температурной зависимости относительного удлинения образцов (ε) при нагреве или охлаждении:

$$\varepsilon(T) = \frac{L - L_{20}}{L_{20}},\tag{1}$$

где L — длина образца при температуре T, L_{20} — при 20 °C. Наличие зависимости $\varepsilon(T)$ позволяет рассчитать термический коэффициент линейного расширения (ТКЛР):

$$\alpha(T) = \frac{1}{L_{20}} \left(\frac{\partial L}{\partial T} \right)_P = \left(\frac{\partial \varepsilon}{\partial T} \right)_P, \tag{2}$$

где P — давление. Значения α (T) определялись численным дифференцированием относительного удлинения:

$$\alpha(T_i) = \frac{1}{2} \left(\frac{\varepsilon_{i+1} - \varepsilon_i}{T_{i+1} - T_i} + \frac{\varepsilon_i - \varepsilon_{i-1}}{T_i - T_{i-1}} \right),\tag{3}$$

где $\varepsilon_i = \varepsilon(T_i)$ — относительное удлинение стали при температуре T_i . Реальный интервал определения ТКЛР ($T_{i+1} - T_{i-1}$) не превышал 1,5°C, поэтому расчет по формуле (3) можно было применять даже в области сильного изменения коэффициента расширения. Погрешность определения ТКЛР определялась в экспериментах со стандартным образцом нержавеющей стали марки SRM 738 (NETZSCH). Измерения показали, что отличие наших и справочных данных при температуре выше 100 °C составляет не более $(1,5\div2)\times10^{-7}\,\mathrm{K}^{-1}$ и возрастает при приближении к комнатной температуре.

Образец стали имел форму цилиндра диаметром около 3,5 мм и длиной 25 мм с плоскопараллельными шлифованными торцами. Было выполнено две серии измерений: одна — с держателем из плавленного кварца до $800\,^{\circ}$ С и вторая — с держателем из корунда до $1000\,^{\circ}$ С. На рис. 1 представлены типичные данные для первой серии. Всего было проведено три термических цикла нагрева-охлаждения. За вычетом первого нагрева все результаты согласуются между собой в пределах случайных погрешностей измерений. Температура минимума на зависимости коэффициента теплового расширения $T_C = 728\,^{\circ}$ С воспроизводилась в пределах $2\,^{\circ}$ С и была близка к температуре Кюри для сплава системы Fe-Cr с содержанием хрома $12\,^{\circ}$ Мас. $96\,^{\circ}$

α, 10⁻⁶ K⁻¹

15
14
13
11
10 0 200 400 600 T, °C

зависимости ТКЛР данные для всех циклов были объединены и обработаны методом наименьших квадратов полиномами вида:

$$\alpha(T) \times 10^6 = \sum_{i=0}^k A_i T^i,$$
 (4)

где T — температура в градусах Цельсия. Из-за сложного характера зависимости $\alpha(T)$ температурный интервал был разбит на две области: 60-450 °C и 450-650 °C. Соотвествующие им уравнения представлены ниже:

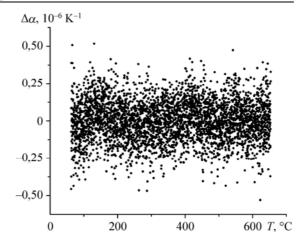

$$\alpha_1(T) = 10,59 + 0,003125 T + 4,786 \times 10^{-6} T^2$$
, (5)

Рис. 1. Результаты измерений ТКЛР стали марки 16X12B2ФТаР, полученные при нагреве образца в первой серии экспериментов.

Рис. 2. Отклонение экспериментальных значений ТКЛР стали марки 16Х12В2ФТаР от аппроксимирующих зависимостей (5), (6).

$$\alpha_2(T) = 5.875 +$$

+ 0.02411 $T - 1.856 \times 10^{-5} T^2$ (6)

Для данных при более высоких температурах обработка полиномами не дает удовлетворительных результатов ввиду резкого изменения $\alpha(T)$. Отклонение первичных данных от сглаживающих зависимостей приведено на рис. 2. Случайная погрешность ТКЛР по уравнениям (5), (6)

для доверительной вероятности 95 % составляет $0.06 \div 0.15$ % $(0.7 \times 10^{-8} \div 1.5 \times 10^{-8} \text{ K}^{-1})$ для первой области и $0.1 \div 0.2 \% (1.2 \times 10^{-8} \div 2.6 \times 10^{-8} \text{ K}^{-1})$ — для второй. В табл. 1 приведены рекомендуемые значения термического коэффициента линейного расширения и относительного удлинения стали 16Х12В2ФТаР, рассчитанные по уравнениям (5), (6). Зависимость $\varepsilon(T)$ получена интегрированием уравнений (5) и (6), а данные ниже 60 °С экстраполяцией.

На рис. З представлены типичные результаты измерений для второй серии. В ней также было проведено три термических цикла нагрева-охлаждения. Видно, что образец испытывал фазовые превращения с заметным изменением своих размеров. Определенные по максимуму и минимуму относительного удлинения стали в области переходов характерные температуры составили:

$$T_{1C^{-}} = 704 \text{ °C}, \ T_{C^{+}} = 751 \text{ °C}, \ T_{1H^{-}} = 848 \text{ °C}, \ T_{1H^{+}} = 880 \text{ °C},$$

а изменения ε между ними — $\delta \varepsilon_{1C} = 0,12~\%,~\delta \varepsilon_{1H} = -0,11~\%,$

$$\delta \varepsilon_{1C} = 0.12 \%, \ \delta \varepsilon_{1H} = -0.11 \%,$$

что соответствует изменению плотности 0,36 % и 0,33 % соответственно. Следует заметить, что результаты измерений плохо воспроизводились при температурах ниже 130 °C, где наблюдались нерегулярные изменения относительного удлинения. Данные по ТКЛР,

Таблица 1 Рекомендуемые значения термического коэффициента линейного расширения и относительного удлинения стали марки 16Х12В2ФТаР в феррито-мартенситном состоянии

T, °C	$\alpha \times 10^6$, K ⁻¹	$\varepsilon \times 10^6$
20	10,65	0
50	10,76	321
100	10,95	864
150	11,17	1417
200	11,41	1981
250	11,67	2558
300	11,96	3148
350	12,27	3754
400	12,61	4375
450	12,96	5015
500	13,29	5671
550	13,52	6342
600	13,66	7022
650	13,71	7707

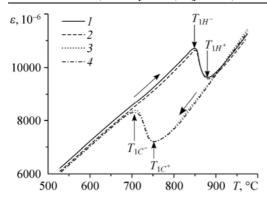


Рис. 3. Результаты измерений относительного удлинения стали марки 16X12B2ФТаР, полученные в циклах нагрева-охлаждения во второй серии экспериментов.

1, *2* — при нагреве, *3*, *4* — при охлаждении.

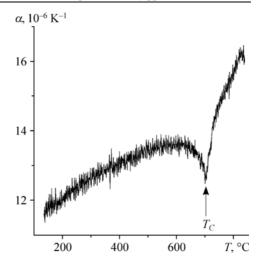


Рис. 4. Результаты измерений ТКЛР стали марки 16X12B2ФТаР, полученные при нагреве образца во второй серии экспериментов.

полученные при нагреве (рис. 4), были обработаны аналогично первой серии измерений в двух областях — 130-510 °C и 510-650 °C:

$$\alpha_1(T) = 10.71 + 0.007663 \ T - 4.725 \times 10^{-6} \ T^2,$$
 (7)

$$\alpha_2(T) = 5,677 + 0,02674 \ T - 2,277 \times 10^{-5} \ T^2.$$
 (8)

Случайная погрешность ТКЛР по уравнениям (7), (8) для доверительной вероятности 95 % составляет $0.12 \div 0.28$ % $(1.4 \times 10^{-8} \div 3.2 \times 10^{-8} \text{ K}^{-1})$ для первой области и $0.16 \div 0.40$ % $(2.0 \times 10^{-8} \div 4.5 \times 10^{-8} \text{ K}^{-1})$ — для второй. В табл. 2 приведены рекомендуемые значения термического коэффициента линейного расширения и относительного удлинения стали $16X12B2\Phi$ TаР, рассчитанные по (7), (8). Зависимость $\varepsilon(T)$ получена интегрированием уравнений (7) и (8), а данные ниже 130 °C — экстраполяцией.

Как видно из рис. 5, термический коэффициент линейного расширения стали для первой и второй серии измерений заметно отличается: до $6.5 \times 10^{-7} \text{ K}^{-1}$, что превышает

Таблица 2
Рекомендуемые значения термического коэффициента
линейного расширения и относительного удлинения стали
марки 16X12B2ФТаР в феррито-перлитном состоянии

T, °C	$\alpha \times 10^6$, K ⁻¹	$\varepsilon \times 10^6$
20	10,86	0
50	11,08	329
100	11,43	892
150	11,75	1472
200	12,05	2067
250	12,33	2677
300	12,58	3300
350	12,81	3935
400	13,02	4581
450	13,20	5236
500	13,36	5900
510	13,39	6034
550	13,49	6572
600	13,52	7248
650	13,44	7922

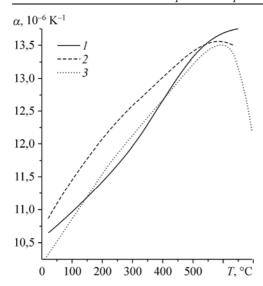


Рис. 5. Температурные зависимости термического коэффициента линейного расширения, рассчитанные по аппроксимационным уравнениям.

1, 2 — сталь марки $16X12B2\Phi$ ТаР (первая и вторая серии экспериментов соответственно), 3 — сталь марки ЧС-139 [2].

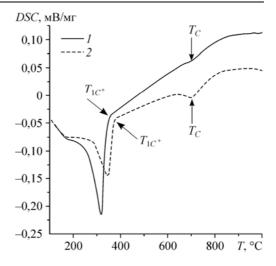


Рис. 6. Сигнал дифференциального сканирующего калориметра (DSC), полученный при охлаждении образцов стали марки 16X12B2ФТаР.

1 — масса образца 84,34 мг, 2 — 167,23 мг.

оцениваемые погрешности измерений. Температура Кюри стали во второй серии измерений составила 699 °C, что на 29 °C ниже, чем для первой. Заметное отличие результатов измерений, полученных в первой и второй серии измерений, свидетельствует о существенном изменении фазового состояния стали. Исходный образец стали в основном состоял из мартенсита и был получен быстрым охлаждением от высокой температуры с последующим отпуском при 800 °C. Во второй серии тот же образец нагревался до 1000 °C и медленно (2 °С/мин) охлаждался. В этом случае из-за малой скорости охлаждения первичный аустенит не переохлаждался до температур образования мартенсита и, по-видимому, изменение фазового состава стали происходило практически в соответствии с равновесной фазовой диаграммой [4]. В результате при комнатной температуре сталь представляла смесь феррита и перлита. На это указывает близость температур T_{1C^+} и T_{1C^-} к области перехода аустенита в феррит и эвтектоидной реакции, продуктом которой является смесь феррита и цементита (перлит). Определяющее влияние скорости охлаждения на структуру 16Х12В2ФТаР подтверждается измерениями частей образца стали после второй серии экспериментов методом дифференциальной сканирующей калориметрии при охлаждении от 1000 °C со скоростью 20 °С/мин. (рис. 6). Видно, что при таких режимах температура фазового перехода T_{C^+} составила 340÷365 °C, что лежит в области образования мартенсита [5].

В пределах оцениваемых погрешностей данные первой серии измерений совпадают с ТКЛР феррито-мартенситной стали ЧС-139, которая имеет близкий к 16X12B2ФТаР химический состав. Исходя из вышеизложенного можно предположить, что уравнения (7), (8) описывают тепловое расширение стали 16X12B2ФТаР в феррито-перлитном состоянии, а (5), (6) — в феррито-мартенситном состоянии.

Список литературы

- 1. Шкабура И. Время быстрых // РОСЭНЕРГОАТОМ. 2009. № 12. С. 6–11.
- **2.** Станкус С.В., Козловский Ю.М., Яцук О.С., Верба О.И. Тепловое расширение стали ЧС-139 в интервале температур 20–720 °С // Теплофизика и аэромеханика. 2013. Т. 20, № 3. С. 363–366.
- **3.** Станкус С.В., Яцук О.С., Жмуриков Е.И., Tecchio L. Тепловое расширение искусственных графитов в интервале температур 293–1650 К // Теплофизика и аэромеханика. 2012. Т. 19, № 5. С. 637–642.
- **4.** Диаграммы состояния двойных металлических систем: справочник / Под общей редакцией Н.П. Лякишева; Т. 2. М.: Машиностроение, 1997. 1024 с.
- 5. Гуляев А.П. Металловедение. М.: Оборонгиз, 1963. 464 с.

Статья поступила в редакцию 27 марта 2013 г.