УДК 541.49+548.736

С.М. ЗЕМСКОВА, Л.А. ГЛИНСКАЯ, Р.Ф. КЛЕВЦОВА, М.А. ФЕДОТОВ, С.В. ЛАРИОНОВ

СТРОЕНИЕ И СВОЙСТВА МОНО- И ГЕТЕРОМЕТАЛЛИЧЕСКИХ КОМПЛЕКСОВ КАДМИЯ, ЦИНКА, НИКЕЛЯ, СОДЕРЖАЩИХ ДИЭТИЛДИТИОКАРБАМАТ-ИОНЫ И МОЛЕКУЛЫ ЭТИЛЕНДИАМИНА

Исследована кристаллическая структура моно- и гетерометаллических комплексов состава $[MEn_3]L_2$ $(M=Zn^{2+}, Ni^{2+})$, $[MEn_3][CdL_3]_2$ $(M=Cd^{2+}, Zn^{2+}, Ni^{2+})$, содержащих молекулы этилендиамина (En) и диэтилдитиокарбамат-ионы (L= $(C_2H_5)_2NCS_{\frac{7}{2}}$). Все три гетерометаллических комплекса являются изоструктурными и построены из дискретных моноядерных ионов. В катионах $[MEn_3]^{2+}$ центральный атом M расположен на двойной оси, поэтому из трех металлоциклов MN_2C_2 катиона $[MEn_3]^{2+}$ имеем два независимых. Один из двух независимых металлоциклов имеет гош-конфигурацию. Хелатные углы N—M—N в координированных молекулах En составляют 77,0 и 82,9° ($M = Cd^{2+}$); 80,0 и 80,5° ($M = Zn^{2+}$); 79,7 и 80.8° (M = Ni²⁺). Атомы азота образуют вокруг М искаженный октаэдр. Средние значения длин связей M—N для указанных комплексов составляют 2,35; 2,19 и 2,16 imes для $M = Cd^{2+}$, Zn^{2+} и Ni^{2+} соответственно. Все атомы комплексного аниона $[CdL_3]^-$ располагаются в общей позиции, при этом центральный атом координирует три бидентатноциклических L⁻-лиганда. Атомы S образуют деформированную тригональную призму, расстояния S...S в вертикальных ребрах которой во всех комплексах имеют почти одинаковые величины в интервале 2,94(1)—3,00(2) 1 . Методами ЯМР 1 H, 14 N, 113 Cd показано, что при растворении ионные комплексы $[ZnEn_3]L_2$ и $[CdEn_3][CdL_3]_2$ превращаются в разнолигандные комплексы неэлектролитного типа.

введение

Химия дитиокарбаматов металлов привлекает внимание исследователей в связи с многообразием полезных свойств соединений данного класса. Несмотря на то что синтезу и изучению свойств дитиокарбаматов посвящено несколько обзоров [1-6], многие вопросы реакционной способности этого класса соединений еще не изучены. Нами исследованы реакции взаимодействия диэтилдитиокарбаматов металлов подгруппы цинка как с кислотами Льюиса — галогенидами металлов, так и основаниями Льюиса — азотсодержащими гетероциклами (далее A) [7, 8]. Было показано, что ML_2 ($M = Zn^{2+}$ — кислота промежуточного типа; Cd^{2+} , Hg^{2+} — "мягкие" кислоты по Пирсону, $L = (C_2H_5)_2NCS_{\frac{7}{2}}$), являясь координационноненасыщенными соединениями, взаимодействуют с монодентатными и бидентатно-циклическими A и образуют мономерные разнолигандные комплексы состава ML_2A , в которых центральный атом имеет $K\Psi=5$ (A=имидазол, 3,5-диметилпиразол) или 6 (A=1,10-фенантролин; 2,2'-бипиридил) [7,9 — 12]. Отметим, что HgL_2 проявляет акцепторные свойства только в присутствии наиболее сильного (из исследованных) донора — 1,10-фенантролина. При взаимодействии с 4,4'-бипиридилом образуются биядерный комплекс $[ZnL_2]_2A$, где A — бидентатно-

мостиковый [10], и комплекс состава CdL_2A , имеющий, по-видимому, полиядерное строение подобно $[CdL'_2A]_n$ ($L'=C_2H_5OCS_2^-$) [13].

Первые попытки изучить взаимодействие ML_2 с алифатическим этилендиамином (En) показали, что выделяющиеся продукты имеют состав, зависящий от соотношения исходных реагентов ML_2 и En, что могло быть следствием одновременного осаждения нескольких комплексных форм [7]. В связи с этим нами целенаправленно изучено взаимодействие хелатов ML_2 ($M=Zn^{2+}$, Ni^{2+} — кислоты промежуточного типа; Cd^{2+} — "мягкая" кислота) с донорным бидентатно-циклическим лигандом типа "жесткого" основания (En). Выделенные комплексные соединения охарактеризованы методом РСтА. Поведение комплексов цинка(II) и кадмия(II) в неводных средах изучено методом ЯМР на ядрах 1 H, 14 N 113 Cd.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез комплексов [ZnEn₃]L₂ (I), [CdEn₃][CdL₃]₂ (II), [ZnEn₃][CdL₃]₂ (III) описан в [7, 14]. Синтез [NiEn₃]L₂ (IV) и [NiEn₃][CdL₃]₂ (V) проводили в водноэтанольной среде по аналогии с получением комплексов I, III соответственно. Монокристаллы соединений I, IV и V были выращены при медленном охлаждении теплых (-40 °C) этанольных растворов комплексов в присутствии десятикратного избытка En аналогично методике выращивания монокристаллов соединения II [14].

РСтА проводили на автоматических дифрактометрах Syntex P2₁ и CAD-4. Полученные кристаллографические и экспериментальные данные для соединений II, III, V представлены в табл. 1 (подробные данные для комплексов I, IV приведены в отдельной статье [15]). Уточнение структурных параметров комплекса V было проведено с использованием данных, полученных нами для структур соединений II, III [14] (комплекс программ SHELXL-93). Окончательные значения координат базисных атомов представлены в табл. 2 (а, б) основные межатомные расстояния — в табл. 3. Координаты атомов и межатомные расстояния для комплексов II, III можно получить у авторов.

Таблица 1 *Кристаллографические и экспериментальные данные для* [MEn₃][Cd(S₂CN(C₂H₅)₂)₃]₂, M=Cd, Zn, Ni (II, III, V)

Параметры	M=Cd	Zn	Ni	
Размер, мм	0,1×0,1×0,6	0,2×0,23×0,25	0,3×0,03×0,24	
a, riangle	20,409(7)	20,348(3)	20,332(3)	
c, $ riangle$	28,779(9)	28,744(9)	28,789(4)	
$V, \mathring{\triangle}^3$	11986(1)	11901(1)	11901(1)	
Пр. гр.	I4 ₁ cd	I4 ₁ cd	I4 ₁ cd	
$d_{\rm выч}$, г/см ³	1,56	1,52	1,51	
Z	8	8	8	
Излучение	Mo	Cu	Mo	
μK_{α} , cm ⁻¹	14,5	265,1	14,8	
$2\theta_{max}$	50	115	50	
$N_{\scriptscriptstyle exttt{M3M}}$	5231	4100	3996	
$N_{ m pac4}$	1277	963	1517	
R	0,066	0,077	0,025	

Таблица 2а Координаты базисных атомов ($\times 10^4$) и эквивалентные изотропные тепловые параметры ($\times 10^3$) в структуре комплекса V

Атом	х	у	z	$U_{\scriptscriptstyle { m 9KB}}$
Ni	5000	5000	879(1)	35(1)
N(5)	5707(6)	5793(6)	944(5)	59(3)
C(3)	6180(10)	5598(10)	1289(8)	94(7)
C(4)	6201(11)	5024(13)	1460(11)	127(11)
N(4)	5662(7)	4582(7)	1392(5)	67(4)
N(6)	5516(7)	4557(9)	315(6)	91(5)
C(5)	5138(14)	4679(18)	-105(6)	156(19)
Cd(1)	7410(1)	4854(1)	4436(1)	47(1)
S(1)	7631(2)	3587(2)	4261(1)	53(1)
S(2)	6590(2)	4051(2)	4887(2)	61(1)
S(3)	6616(2)	5542(2)	3954(2)	67(1)
S(4)	7913(2)	5302(2)	3514(1)	59(1)
S(5)	8524(2)	5145(2)	4788(1)	68(1)
S(6)	7384(2)	5642(2)	5328(2)	68(1)
N(1)	6823(6)	2789(5)	4720(4)	45(3)
N(2)	7017(6)	6125(6)	3189(4)	54(3)
N(3)	8629(6)	5619(6)	5628(4)	51(3)
C(11)	7003(7)	3414(6)	4635(4)	40(3)
C(21)	7172(7)	5698(6)	3506(5)	47(3)
C(31)	8209(7)	5479(7)	5292(5)	49(4)
C(12)	7182(8)	2225(7)	4519(6)	58(4)
C(13)	6859(11)	1988(11)	4087(8)	91(7)
C(14)	6265(8)	2634(8)	5026(5)	57(4)
C(15)	6474(11)	2510(10)	5526(6)	78(6)
C(22)	6366(9)	6458(8)	3171(7)	73(5)
C(23)	6361(11)	7089(9)	3413(9)	97(7)
C(24)	7491(12)	6322(9)	2822(6)	78(5)
C(25)	7475(14)	5888(13)	2410(8)	102(7)
C(32)	8412(10)	5888(8)	6071(6)	72(5)
C(33)	8280(13)	5356(12)	6433(6)	96(7)
C(34)	9335(8)	5514(9)	5590(7)	67(5)
C(35)	9686(9)	6067(10)	5351(9)	88(6)

 Π р и м е ч а н и е. $U_{\text{экв}} = 1/3(U_{11} + U_{22} + U_{33})$.

ПМР спектры растворов комплексов сняты на спектрометре TESLA BS-567 с рабочей частотой 100 МГц, погрешность измерения химических сдвигов — 0,01 м.д. Внутренний стандарт — гексаметилдисилан, растворитель CdC1₃, концентрации растворов ~0,1 моль/л. Спектры ЯМР 14 N, 113 Cd сняты на спектрометре CXP-300 Brucker на частотах 21,68; 66,55 МГц. Химические сдвиги в шкале δ приведены относительно внешних стандартов NO $_{3}^{-}$, Cd²⁺/H₂O ([Cd²⁺] \rightarrow 0); в образцы добавляли релаксант Cr(acac)₃ (C~0,03 моль/л).

 $T\ a\ б\ л\ и\ ц\ a\quad 26$ Координаты атомов водорода ($\times 10^4$) в структуре комплекса V

Атом	Atom x		Z		
H(51)	5914(6)	5862(6)	670(5)		
H(52)	5506(6)	6169(6)	1028(5)		
H(31)	6612(11)	5702(11)	1167(9)		
H(32)	6116(11)	5899(11)	1554(9)		
H(411)	6280(12)	5064(13)	1793(11)		
H(421)	6600(12)	4815(13)	1334(11)		
H(41)	5449(7)	4515(7)	1662(5)		
H(42)	5812(7)	4185(7)	1292(5)		
H(61)	5921(8)	4731(11)	288(6)		
H(62)	5562(8)	4119(11)	365(6)		
H(511)	5404(12)	4614(17)	-376(7)		
H(521)	4771(12)	4362(17)	-121(7)		
H(121)	7632(9)	2360(7)	4449(7)		
H(122)	7203(9)	1871(7)	4743(7)		
H(131)	7095(12)	1623(11)	3961(9)		
H(132)	6850(12)	2340(11)	3860(9)		
H(133)	6414(12)	1860(11)	4154(9)		
H(141)	6038(9)	2249(9)	4909(6)		
H(142)	5954(9)	2999(9)	5020(6)		
H(151)	6094(12)	2401(10)	5708(7)		
H(152)	6676(12)	2900(10)	5647(7)		
H(153)	6781(12)	2154(10)	5532(7)		
H(221)	6248(9)	6533(8)	2849(7)		
H(222)	6037(9)	6171(8)	3306(7)		
H(231)	5929(10)	7279(9)	3395(10)		
H(232)	6676(10)	7378(9)	3280(10)		
H(233)	6467(10)	7016(9)	3738(10)		
H(241)	7934(11)	6306(9)	2953(6)		
H(242)	7403(11)	6769(9)	2731(6)		
H(251)	7782(18)	6033(14)	2182(8)		
H(252)	7033(18)	5905(14)	2272(8)		
H(253)	7562(18)	5441(14)	2494(8)		
H(321)	8019(10)	6151(9)	6025(6)		
H(322)	8753(10)	6185(9)	6190(6)		
H(331)	8134(16)	5558(12)	6717(7)		
H(332)	8671(16)	5111(12)	6488(7)		
H(333)	7940(16)	5070(12)	6319(7)		
H(341)	9415(8)	5113(9)	5414(7)		
H(342)	9519(8)	5454(9)	5897(7)		
H(351)	10151(10)	5971(10)	5337(10)		
H(352)	9626(10)	6466(10)	5529(10)		
H(353)	9518(10)	6127(10)	5046(10)		

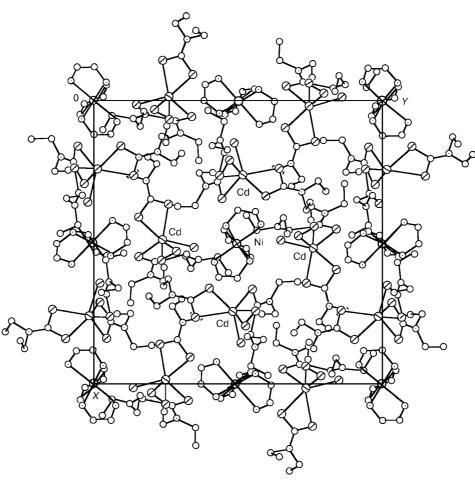
 Π р и м е ч а н и е. Обозначения атомов H приведены в соответствии с атомами углерода.

 $\label{eq: Tabula} Tab лица \ 3$ Основные межатомные расстояния d (Å) и углы ω (град) в структуре комплекса V

Связь	d/ω	Связь	d/ω	
1	2	3	4	
Ni—N(6)	2,13(2)	S(3)—C(21)	1,75(2)	
Ni—N(6)'	2,13(2)	S(4)—C(21)	1,71(2)	
Ni—N(5)	2,17(1)	S(5)—C(31)	1,73(1)	
Ni—N(5)'	2,17(1)	S(6)—C(31)	1,71(2)	
Ni—N(4)	2,17(1)	N(1)—C(11)	1,35(2)	
Ni—N(4)'	2,17(1)	N(1)—C(14)	1,47(2)	
N(5)—C(3)	1,44(2)	N(1)—C(12)	1,48(2)	
C(3)—C(4)	1,27(3)	N(2)—C(21)	1,30(2)	
C(4)—N(4)	1,43(2)	N(2)—C(24)	1,48(2)	
N(6)—C(5)	1,45(3)	N(2)—C(22)	1,49(2)	
C(5)—C(5)'	1,42(7)	N(3)—C(31)	1,32(2)	
Cd(1)—S(3)	2,547(4)	N(3)—C(32)	1,46(2)	
Cd(1)—S(5)	2,549(4)	N(3)—C(34)	1,45(2)	
Cd(1)—S(1)	2,665(4)	C(12)—C(13)	1,49(3)	
Cd(1)—S(2)	2,669(4)	C(14)—C(15)	1,52(2)	
Cd(1)—S(4)	2,987(4)	C(22)—C(23)	1,46(3)	
Cd(1)—S(6)	3,025(3)	C(24)—C(25)	1,48(3)	
S(1)—C(11)	1,71(1)	C(32)—C(33)	1,53(3)	
S(2)—C(11)	1,71(1)	C(34)—C(35)	1,50(3)	
N(6)—Ni—N(6)	81(1)	C(11)—S(1)—Cd(1)	87,3(5)	
N(6)—Ni—N(5)	93,1(5)	C(11)—S(2)—Cd(1)	87,2(5)	
N(6)—Ni—N(5)'	94,5(5)	C(21)—S(3)—Cd(1)	95,3(5)	
N(6)—Ni—N(5)"	94,5(5)	C(21)—S(4)—Cd(1)	81,7(5)	
N(6)—Ni—N(4)	92,7(6)	C(31)—S(5)—Cd(1)	95,5(5)	
N(5)—Ni—N(4)	93,5(5)	C(31)—S(6)—Cd(1)	79,8(3)	
N(5)—Ni—N(4)	79,7(5)	C(11)—N(1)—C(14)	122(1)	
N(4)—Ni—N(4)	94,3(8)	C(11)—N(1)—C(12)	122(1)	
C(3)—N(5)—Ni	107,4(9)	C(14)—N(1)—C(12)	117(1)	
C(4)— $C(3)$ — $N(5)$	123(2)	C(21)—N(2)—C(24)	121(1)	
C(4)—N(4)—Ni	109(1)	C(21)—N(2)—C(22)	123(1)	
C(5)—N(6)—Ni	108(1)	C(24)—N(2)—C(22)	116(1)	
C(5)-C(5)-N(6)	112(2)	C(31)—N(3)—C(32)	122(1)	
S(3)— $Cd(1)$ — $S(5)$	130,7(2)	C(31)—N(3)—C(34)	123(1)	
S(3)— $Cd(1)$ — $S(2)$	102(1)	C(32)—N(3)—C(34)	115(1)	
S(5)—Cd(1)—S(2)	120,3(2)	N(1)—C(11)—S(1)	121(1)	
S(3)—Cd(1)—S(1)	122,3(2)	N(1)—C(11)—S(2)	120(1)	
S(5)—Cd(1)—S(1)	98,6(1)	S(1)—C(11)—S(2)	118,7(7)	
S(1)—Cd(1)—S(2)	66,8(1)	N(2)—C(21)—S(4)	123(1)	
S(3)—Cd(1)—S(4)	64,2(1)	N(2)—C(21)—S(3)	119(1)	
S(5)—Cd(1)—S(4)	88,7(1)	S(4)—C(21)—S(3)	118,3(8)	
S(1)—Cd(1)—S(4)	93,9(1)	N(3)—C(31)—S(6)	123(1)	
S(2)— $Cd(1)$ — $S(4)$	146,3(1)	N(3)—C(31)—S(5)	118(1)	

Окончание табл. 3

1	2	3	4
S(3)—Cd(1)—S(6)	99,35(8)	S(6)—C(31)—S(5)	119,4(9)
S(1)— $Cd(1)$ — $S(6)$	132,40(7)	C(13)— $C(12)$ — $N(1)$	111(1)
S(2)— $Cd(1)$ — $S(6)$	84,19(7)	N(1)—C(12)—C(13)	113,3(7)
S(4)—Cd(1)—S(6)	126,79(6)	N(1)—C(14)—C(15)	113(1)
S(5)— $Cd(1)$ — $S(6)$	63,68(7)	C(23)—C(22)—N(2)	113(2)
N(3)—C(34)—C(35)	113(1)	N(2)—C(24)—C(25)	113(2)
N(3)— $C(32)$ — $C(33)$	113(2)		


РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изучение зависимости состава образующихся продуктов взаимодействия ML_2 и En в водно-этанольной среде от соотношения реагентов показало, что лишь при мольном соотношении $En:ML_2 \ge 10$ воспроизводимо выделяются продукты состава MEn_3L_2 , $CdEnL_2$, $MCd_2En_3L_6$ (M=Zn, Ni).

РСтА монокристаллов комплексов I, IV показал, что они имеют слоистую ионную кристаллическую решетку, образованную искаженными октаэдрическими катионами $[MEn_3]^{2+}$ и L^- -анионами [15]. По данным РСтА комплексы II, III, V являются изоструктурными. Все три соединения [MEn₃][CdL₃]₂ построены из дискретных моноядерных комплексных ионов. Представляло интерес проследить влияние катиона $[MEn_3]^{2+}$ (M= Cd, Zn, Ni) на особенности их строения. На рисунке представлена проекция кристаллической структуры комплекса V. В катионах ${\rm [MEn_3]}^{2+}$ центральный атом расположен на двойной оси. Отсюда следует, что из трех металлоциклов MN₂C₂ имеем два независимых. Углы N—M—N в металлоциклах составляют 77,0; 82,9° для II, 80,0; 80,5° для III и 79,7; 80,8° для V. Атомы азота образуют вокруг М искаженный октаэдр. Средние значения длин связей М—N для II, III, V составляют 2,35(4), 2,19(6), 2,16(1) $\stackrel{\triangle}{\rightarrow}$ соответственно, т.е. уменьшаются в ряду металлов Cd > Zn > Ni. Один из двух независимых металлоциклов имеет гош-конфигурацию, при этом отклонения атомов С от координационной плоскости N—M—N составляют $\pm 0,219, \pm 0,073, \pm 0,312$ $\stackrel{\wedge}{\triangle}$ для II, III, V. Во втором металлоцикле можно отметить лишь асимметричное отклонение атомов С от плоскости NMN и тенденцию к *иис*-конфигурации: 0.160 и -0.021 \triangle ; 0.017 и $0,227 \stackrel{\wedge}{\triangle}$; $0,040 \text{ и} - 0,095 \stackrel{\wedge}{\triangle}$ для II, III, V соответственно.

Все атомы комплексного аниона $[CdL_3]^-$ располагаются в общей позиции, при этом центральный атом координирует три бидентатно-циклических лиганда L^- . Для двух из трех L^- -лигандов имеется значительная асимметричность расстояний Cd—S: 2,548(4) — 3,030(5) \triangle . Несмотря на довольно большой разброс, эти величины укладываются в интервалы длин связей Cd—S для аналогичных комплексов [16]. Атомы S образуют деформированную тригональную призму, расстояния S...S в вертикальных ребрах которой во всех комплексах имеют почти одинаковые величины в интервале 2,94(1) — 3,00(2) \triangle .

Связь ионов в комплексах II, III, V осуществляется электростатическими катион-анионными взаимодействиями. Кратчайшие межионные контакты (меньше 4,1 $\mathring{\triangle}$) приведены в табл. 4. Все они больше суммы радиусов соответствующих комплексных катионов и анионов. Из полученных данных можно сделать вывод о

Проекция кристаллической структуры комплекса V на плоскость (001)

 $\label{eq: T a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n h h a f n$

	•		*
Атомы	M=Cd	Zn	Ni
S(1)—C(3)	3,76(6)	3,79(6)	3,88(2)
S(1)— $C(15)$	3,51(6)	3,57(6)	3,57(2)
S(2)-N(5)	3,51(6)	3,57(6)	3,55(1)
S(2)—N(6)	3,79(6)	3,83(6)	3,78(2)
S(2)— $C(5)$	3,90(4)	3,73(9)	3,74(3)
S(2)— $C(5)$	3,92(4)	3,97(9)	3,92(3)
S(3)— $C(5)$	3,86(5)	3,78(5)	4,07(3)
S(3)— $C(35)$	3,78(6)	3,58(2)	3,79(2)
S(4)—N(5)	3,39(4)	3,32(4)	3,34(2)
S(4)-N(4)	3,56(4)	3,61(6)	3,64(1)
S(4)—N(6)	3,98(4)	3,89(6)	3,93(2)
S(4)— $C(13)$	3,88(5)	3,81(8)	3,83(2)
S(4)—C(15)	4,07(6)	3,95(8)	3,96(2)
S(5)—N(4)	3,50(4)	3,47(6)	3,52(2)
S(5)— $C(22)$	3,91(4)	3,94(5)	3,99(2)
S(6)—N(6)	3,76(4)	3,87(6)	3,82(1)

том, что основой структурного типа для комплексов II, III, V служит упаковка анионов $[CdL_3]^-$, центральные атомы которых располагаются по закону искаженной тетрагональной объемноцентрированной ячейки (например, расстояния Cd...Cd для комплекса V равны 9,82; 10,17; 14,41 $\mathring{\triangle}$; углы близки к 90°). В образовавшихся тетраэдрических пустотах размещаются катионы $[MEn_3]^{2+}$. Расстояния от центрального атома M (M = Cd, Zn, Ni) до вершины тетраэдра (атомы Cd во всех трех комплексах) имеют значения 6,124(4) $\mathring{\triangle}$ × 2 и 6,416(4) $\mathring{\triangle}$ × 2 для II; 6,062(6) $\mathring{\triangle}$ × 2 и 6,467(8) $\mathring{\triangle}$ × 2 для III; 6,089(6) $\mathring{\triangle}$ × 2 и 6,431(6) $\mathring{\triangle}$ × 2 для V. В рассмотренной упаковке каждый катион окружен четырьмя анионами, а каждый анион расположен между двумя ближайшими катионами, образуя гантель с углами 169,3(1)° (Cd₁—Cd₂—Cd₁); 167,6(1)° (Zn—Cd—Zn); 168,3(1)° (Ni—Cd—Ni).

Приведенные нами данные показывают, что замена в катионе $[MEn_3]^{2^+}$ атомов Zn и Ni на Cd — атом с бо́льшим ионным радиусом — приводит лишь к увеличению параметров элементарной ячейки для $[CdEn_3][CdL_3]_2$, не оказывая при этом заметного влияния ни на упаковку ионов, ни на межионные контакты.

Таким образом, взаимодействие ML_2 с En в водно-этанольной среде может быть отнесено к реакциям двух типов:

а) замещения L⁻-анионов на молекулы En:

$$ML_2 + 3En \rightarrow [MEn_3]L_2$$
 (M = Zn, Ni);

б) аутокомплексообразования:

$$3CdL_2 + 3En \rightarrow [CdEn_3][CdL_3]_2$$
.

Совместное протекание обеих реакций в случае использования смесей хелатов приводит к выделению гетерометаллических комплексов:

$$ML_2 + 2CdL_2 + 3En \rightarrow [MEn_3][CdL_3]_2 (M = Zn, Ni).$$

Координация лигандов L^- ("мягкое" основание) и En ("жесткое" основание) в полученных ионных комплексах соответствует принципу "жестких" и "мягких" кислот и оснований Пирсона.

Исходя из строения комплексов I, II в твердой фазе ожидалось, что они будут являться 1:2 электролитами. Однако значение электропроводности водноацетоновых растворов комплексов составило лишь $3-5~{\rm Cm^{-1}\cdot cm^{2}\cdot monb^{-1}}$ [17]. Было предположено, что в отсутствие избытка En происходит превращение ионных комплексов в разнолигандные комплексы, являющиеся неэлектролитами. В связи с этим было изучено поведение некоторых новых и ряда известных комплексов в органических средах методом ЯМР $^{1}{\rm H}$, $^{13}{\rm C}$, $^{14}{\rm N}$, $^{35}{\rm Cl}$, $^{113}{\rm Cd}$ (табл. 5).

В спектре ЯМР ¹⁴N комплекса [ZnEn₃]Cl₂ наблюдается одна линия, смещенная на -6 м.д. по сравнению с линией ЯМР ¹⁴N некоординированного Еп. Известно, что в целом сдвиги ¹⁴N при координации Еп невелики и, например, лежат в диапазоне +12...-53 м.д. от линии свободного Еп для платиновых металлов [18]. По ЯМР ³⁵Cl наблюдается уширенная в 25 раз линия (δ^{35} Cl = 23 ± 8 ; W = 5000), сдвинутая от положения линии ЯМР ³⁵Cl растворов NaCl (δ^{35} Cl = -6; W = 190) и NH₄Cl (δ^{35} Cl = -10; W = 170) в этом же растворителе. По ЯМР ¹³C наблюдается только одна линия δ^{13} C =39,9 м.д. Попытка наблюдать ЯМР ⁶⁷Zп была безуспешной. Для сравнения можно указать, что ЯМР ⁵⁹Cо водного раствора [CoEn₃]³⁺ дает линию шириной 400 Гц. При квадрупольном механизме ядерно-магнитной релаксации ширина линии ЯМР ⁶⁷Zп гексакоординированного комплекса [ZnEn₃]²⁺ должна быть втрое меньше, чем для [CoEn₃]³⁺, с учетом меньших квадрупольного момента и спина ядра ⁶⁷Zn. Сказанное выше позволяет представить состояние Zn(II) в растворе [ZnEn₃]Cl₂ в этаноле как лабильное в масштабе времени ЯМР с обменом лиганда-

Таблица 5 Данные ЯМР 1 Н, 14 N, 113 Cd растворов комплексов

Соединение	Растворитель	δ	H(L)	δ^1 H	H(En)	$\delta^{14}N$		δ^{113} Cd	
		CH_3	CH ₂	CH_2	NH ₂	T,K	δ(W),L	δ(W),En	(W)
En	CHCl ₃	_	_	2,69	1,38	293	_	-356±2(700)	_
	EtOH	-	_	_	-	_	_	-357±3(1600)	_
Nal	EtOH	1,21	3,86-4,06	_	_	293	-210±3(1200)	_	_
						323	-204±2(1800)	_	_
$[ZnEn_3]Cl_2$	EtOH	_	_	2,20	2,77	323	_	-363±3(1300)	_
$ZnEn_3L_2$	CHCl ₃	1,21	3,76–3,98	2,81	1,61	323	-207±2(1500)	-357±1(450)	_
$[CdEn_3]Cl_2$	EtOH	_	_	_	_	323	_	-358±3(1450)	324(60)
CdL_2	CHCl ₃	1,27	3,76–3,97	_	_	295	-191±1(650)	_	333(<100)
$[CdEn_3][CdL_3]_2$	CHCl ₃	1,24	3,76–3,99	2,94	1,83	295	-207±3(1430)	-359±3(1500)	279(<100)

ми Еп и Cl^- и с более низкой, чем октаэдр, симметрией окружения. В растворе $[ZnEn_3]L_2$ в хлороформе ситуация, по-видимому, близка к предыдущей. В этом растворе также не удалось наблюдать линию ЯМР ⁶⁷Zn. Химические сдвиги ЯМР ¹⁴N для L и Еп близки к таковым в свободных лигандах, однако ширина линий для раствора комплекса несколько больше при измерениях при одинаковой температуре.

В растворе [CdEn₃]Cl₂ в этаноле наблюдали одну линию ЯМР ¹¹³Cd. При этом линия ЯМР ³⁵Cl (δ^{35} Cl = -4 ± 3 ; W = 1600) на порядок шире линии свободного хлор-иона в EtOH. Линия ЯМР ¹⁴N для Еп также значительно уширена. По ЯМР ¹³C наблюдается только одна линия δ^{13} C = 41,2. Эти данные указывают на вхождение Cl⁻ в координационную сферу Cd и быстрый в масштабе ЯМР обмен лигандов в составе комплекса в растворе.

Комплекс CdL_2 в растворе, по-видимому, малодиссоциирован, поскольку химический сдвиг линии $\rm SMP^{14}N$ заметно отличается от химического сдвига свободного лиганда. Одна линия $\rm SMP^{113}Cd$ указывает на единственную форму, находящуюся в растворе.

Данные о состоянии в растворе комплекса II указывают или на лабильность комплекса, или на образование комплекса CdL_2En_x (x < 3), поскольку наблюдается одна линия ЯМР ^{113}Cd , отличная от линий ЯМР ^{113}Cd растворов $[CdEn_3]Cl_2$ и CdL_2 ; кроме того, химические сдвиги линий ЯМР ^{14}N лигандов L и En близки к линиям свободных лигандов. Сдвиг в сильное поле линии ЯМР ^{113}Cd в растворе комплекса II по сравнению с положением линии ЯМР ^{113}Cd для CdL_2 свидетельствует о вхождении по крайней мере одной молекулы En в координационную сферу атома Cd.

Таким образом, можно предположить, что при растворении ионный комплекс II превращается в разнолигандный комплекс неэлектролитного типа:

$$[CdEn_3][CdL_3]_2 \rightarrow CdL_2En_x (x < 3).$$

Сравнение положения линий ЯМР ¹H, ¹⁴N в спектрах растворов соединений I и II указывает на сходство комплексных форм, образующихся при растворении:

$$[ZnEn_3]L_2 \rightarrow ZnL_2En_x (x < 3).$$

Очевидно, что подобные превращения при синтезе определяются соотношением концентраций ML_2 и En в растворе и объясняют образование фаз нестехиометрического состава.

Авторы благодарят Л.К. Глухих за съемку ПМР спектров.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 95-03-08916).

СПИСОК ЛИТЕРАТУРЫ

- 1. Coucouvanis D. // Progress. Inorg. Chem. 1970. 11. P. 234 371.
- 2. Coucouvanis D. // Ibid. 1979. 26. P. 301 469.
- 3. *Ларионов С.В.* // Журн. неорган. химии. 1979. **24**. С. 1446 1456.
- 4. *Ларионов С.В.* // Там же. 1993. **38**. С. 1616 1624.
- 5. *Hill J.O.*, *Magee R.J.* // Rev. Inorg. Chem. 1981. **3**. P. 141 197.
- 6. $\mathit{Бырько}\ B.M.\$ Дитиокарбаматы. М.: Наука, 1984. 342 с.
- 7. Ларионов С.В., Кириченко В.Н., Земскова С.М., Оглезнева И.М. // Координац. химия. 1990. **16**. С. 79 84.
- 8. Земскова С.М., Громилов С.А., Ларионов С.В. // Сиб. хим. журн. 1991. № 4. С. 74 77.

- 9. Глинская Л.А., Клевцова Р.Ф., Земскова С.М. // Журн. структур. химии. 1992. **33**, № 1. С. 106 114.
- 10. Земскова С.М., Глинская Л.А., Клевцова Р.Ф. и др. // Там же. 1993. **34**, № 5. С. 157 166.
- 11. Земскова С.М., Глинская Л.А., Клевцова Р.Ф., Ларионов С.В. // Журн. неорган. химии.— 1993. **38**, № 3. С. 466 471.
- 12. Земскова С.М., Глинская Л.А., Клевцова Р.Ф. и др. // Журн. структур. химии. 1995. **36**, № 3. С. 528 540.
- 13. Abrahams B.F., Hoskins B.F., Winter G. // Aust. J. Chem. 1990. **43**. P. 1759 1765.
- 14. Glinskaya L.A., Zemskova S.M., Klevtsova R.F. et al. // Polyhedron. 1992. N 22. P. 2951 2956.
- Глинская Л.А., Земскова С.М., Клевцова Р.Ф. // Журн. структур. химии. 1998. 39, № 2. – С. 353 – 359.
- 16. Alien F., Bellard S., Brice U.D. et al. // Acta Crystallogr. 1979. B35. P. 2331 2337.
- 17. Земскова С.М. Разнолигандные и гетерометаллические комплексные соединения цинка(II), кадмия(II), ртути(II), содержащие диалкилдитиокарбамат-анионы: Дис. канд. хим. наук. Новосибирск, 1994.
- 18. Федотова Т.Н., Федотов М.А., Голованева И.Ф. // Журн. неорган. химии. 1995. **40**, № 8. С. 1355 1362.

Институт неорганической химии CO PAH, 630090 Новосибирск пр. Акад. Лаврентьева, 3 E-mail: borisov@che.nsk.su Статья поступила 21 октября 1997 г.