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Рассмотрен двухслойный стержень с коробчатым сечением, закручиваемый под дей-
ствием касательных напряжений на угол θ. Предполагается, что деформации в стержне
упругие, его боковая поверхность свободна от напряжений. Слои обладают различными
упругими свойствами и имеют различную толщину. Линия контакта слоев полагается
жесткой, т. е. напряжения на ней совпадают. С помощью законов сохранения построено
точное решение, описывающее напряженное состояние данной конструкции. Напряжен-
ное состояние определяется в каждой точке поперечного сечения с помощью интегралов
по внешним контурам.

Ключевые слова: упругое кручение, многослойный стержень, точное решение, зако-
ны сохранения

Введение. Развертывание крупногабаритных трансформируемых конструкций осно-
вано на использовании упругой энергии, запасаемой в процессе начальной сборки конструк-
ции. Перспективными элементами таких конструкций являются гибкие, упругие стержни,
изготовленные из армированных композиционных материалов. В частности, для выдви-
жения антенн на космических аппаратах используются полые стержни большой длины с

коробчатым сечением, изготавливаемые из многослойных композитных материалов. Под
действием солнечного излучения в стержнях возникают напряжения, закручивающие их
вокруг собственной оси. Кручение стержней оказывает существенное влияние на функцио-
нирование приборов, находящихся на выдвигаемой конструкции. Поскольку масса изделия
должна быть минимальной, а надежность развертывания максимальной, необходимо де-
тальное изучение механики процесса и введение ограничений на технологию изготовления

элементов указанных конструкций.
В настоящее время имеется достаточно много общих точных решений, описываю-

щих напряженно-деформированное состояние упругих тел (см., например, работы [1–3] и
библиографию к ним). Однако “. . . знание общих решений, за редким исключением, ниче-
го не дает для решения важных частных задач, . . .ибо мы получаем при решении этих
частных задач систему столь сложных функциональных соотношений для произвольных

функций, что их отыскание практически невозможно” [4]. Построение точных частных
решений основано, например, на методах группового анализа дифференциальных урав-
нений, а именно на методе симметрии и законах сохранения [5, 6]. Теория симметрий
позволяет строить решения с использованием так называемого полуобратного метода,
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Рис. 1. Двухслойный стержень с коробчатым сечением под действием крутя-
щего момента

когда к построенному тем или иным способом решению подбирается соответствующая

краевая задача. При решении конкретных краевых задач более перспективным, по мне-
нию авторов, является применение законов сохранения, построенных для данной системы
уравнений [7]. Это позволяет разработать численно-аналитический метод, в соответствии
с которым решение получается в виде интегралов по границе заданной области. В данной
работе показано, что законы сохранения, эффективные при решении ряда краевых задач
упругости и пластичности, могут применяться при исследовании многослойных упругих
материалов.

1. Постановка задачи. Рассмотрено упругое состояние двухслойного стержня с ко-
робчатым сечением под действием крутящего момента. Контакт двух упругих слоев из
различных материалов полагается жестким. С помощью построенных законов сохранения
определено напряженное состояние в каждой точке этой конструкции (рис. 1).

В первом слое S1 выполняются уравнения равновесия и совместности деформаций

F1 = ∂xτ
+
1 + ∂yτ

+
2 = 0, F2 = ∂xτ

+
2 − ∂yτ

+
1 = −2G1θ = −D1, (1)

во втором слое S2 — аналогичные уравнения

F3 = ∂xτ
−
1 + ∂yτ

−
2 = 0, F4 = ∂xτ

−
2 − ∂yτ

−
1 = −2G2θ = −D2, (2)

где τ1 = τxz, τ2 = τyz — компоненты тензора напряжений; Gi — модули упругости мате-
риала в соответствующих слоях; θ — угол закручивания поперечного сечения.

Отрезки L2
l , L5

l , L2
d, L5

d, показанные на рис. 2, являются линиями контакта слоев.
В предположении, что конструкция является сплошной, на этих линиях выполняются усло-
вия

τ+
1 = τ−1 , τ+

2 = τ−2 .

Боковые поверхности полагаются свободными от напряжений, поэтому на них выпол-
няются условия

τ+
1 n1 + τ+

2 n2 = 0 (3)



С. И. Сенашов, И. Л. Савостьянова, А. Ю. Власов 163

x

y

l+h8l_h7

Ll
6

Ll
3
Ll
2
Ll
1

Ll
5

Ll
4

l_l+h6

_d_h4

_d+h3

d_h2

d+h1
d

_d

_l_h5 _l

Ld
1 Ld

2 Ld
3 Ld

4 Ld
5 Ld

6

Рис. 2. Сечение двухслойного стержня

для слоя S1 и

τ−1 n1 + τ−2 n2 = 0 (4)

для слоя S2. Здесь n1, n2 — компоненты вектора внешней нормали к боковым поверхно-
стям. В результате из (3), (4) получаем граничные условия

τ+
1 = τ1(x, d + h1) 6 0, τ+

2 = 0 на L1
l , τ−1 = τ1(x, d− h2) > 0, τ−2 = 0 на L3

l ,

τ−1 = τ1(x,−d + h3) 6 0, τ−2 = 0 на L4
l , τ+

1 = τ1(x,−d− h4) > 0, τ+
2 = 0 на L6

l ,

τ+
1 = 0, τ+

2 = τ2(−l − h5, y) 6 0 на L1
d, τ−1 = 0, τ−2 = τ2(−l + h6, y) > 0 на L3

d,

τ−1 = 0, τ−2 = τ2(l − h7, y) 6 0 на L4
d, τ+

1 = 0, τ+
2 = τ2(l + h8, y) > 0 на L6

d,

где l > 0, d > 0, hi > 0 — постоянные.
Кроме того, потребуем выполнения равенства касательных напряжений в угловых

точках:

τ1(−l − h5, d + h1) = τ2(−l − h5, d + h1), τ1(−l − h5,−d− h4) = τ2(−l − h5,−d + h4),

τ1(l + h8, d− h4) = τ2(l + h5, d− h4), τ1(l + h8, d + h1) = τ2(l + h5, d + h1),

τ1(−l − h6, d− h2) = τ2(−l − h6, d− h2), τ1(−l − h6,−d + h3) = τ2(−l − h6,−d + h3),

τ1(l − h7, d− h2) = τ2(l − h7, d− h2), τ1(l − h7,−d + h3) = τ2(l − h7,−d + h3).

2. Законы сохранения для уравнений (1), (2). Сохраняющийся ток в законе
сохранения будем искать в виде

A = α1τ1 + β1τ2 + γ1, B = α2τ1 + β2τ2 + γ2, (5)

где αi, βi, γi — функции x, y. Тогда

∂xA + ∂yB = ω1F1 + ω2F2. (6)

Подставляя (5) в (6), получаем

∂x(α1τ1 + β1τ2 + γ1) + ∂y(α
2τ1 + β2τ2 + γ2) =

= ω1(∂xτ1 + ∂yτ2) + ω2(∂xτ2 − ∂yτ1 + Di), i = 1, 2. (7)
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Замечание. В формулах (6), (7) опущены знаки “+” и “−”, поскольку эти формулы
различаются только постоянными Di.

Из (7) получаем

α1 = β2, α2 = −β1, ∂xβ
1 + ∂yα

1 = 0,

∂xα
1 − ∂yβ

1 = 0, ∂xγ
1 + ∂yγ

2 − β1Di = 0.

(8)

Из (8) следует, что в каждом слое допускается бесконечное число законов сохранения.
3. Вычисление компонент тензора напряжений в слое S1. Пусть точка

(x0, y0) ∈ S1. Рассмотрим решение уравнений (8), которое имеет особенность в этой точке:

α1 = α1+ = α1− =
y − y0

(x− x0)2 + (y − y0)2
,

β1 = β1+ = β1− =
x− x0

(x− x0)2 + (y − y0)2
,

γ1+ =
D1

2
ln

(x− x0)
2 + (y − y0)

2

l2 + (y − y0)2
, γ2 = 0,

γ1− =
D2

2
ln

(x− x0)
2 + (y − y0)

2

l2 + (y − y0)2
, γ2− = 0.

Опишем вокруг точки (x0, y0) ∈ S1 окружность радиусом ε: (x − x0)
2 + (y − y0)

2 = ε2 и

выполним разрез c (рис. 3).
С использованием формулы Грина получаем∫ ∫

S1∪S2

(∂xA + ∂yB) dx dy =

∫
L+

−A dy + B dx +

∫
L−

−A dx + B dy +

+

∫
N+

−A dx + B dy +

∫
N−

−A dy + B dx +

∫
ε

−A dx + B dy = 0,

где

L+ = L− = {L2
l ∪ L5

d ∪ L4
l ∪ L3

d},

c

S2

S1

L+L_

Рис. 3. Определение напряженного состояния в точке (x0, y0) ∈ S1
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направления обхода контуров L+ и L− противоположные:

N+ = {L1
l ∪ L6

d ∪ L6
l ∪ L1

d}, N− = {L3
l ∪ L4

d ∪ L4
l ∪ L3

d}.
Например,∫

L1
l

=

l+h8∫
−l−h5

(−β1τ1 + α1τ2 + γ2)
∣∣
y=d+h1

dx =

= −
l+h8∫

−j−h5

x− x0

(x− x0)2 + (d + h1 − y0)2
τ1(x, d + h1) dx,

∫
L1

d

=

d+h1∫
−d−h4

−(α1τ1 + β1τ2 + γ1)
∣∣
x=−l−h5

dy =

=

d+h1∫
−d−h4

( l + h5 + x0

(y − y0)2 + (l + h5 + x0)2
τ2(−l − h5, y) +

+
Di

2
ln

(l + h5 + x0)
2 + (y − y0)

2

l2 + (y − y0)2

)
dy.

Остальные интегралы вычисляются аналогично.
Рассмотрим интегралы∫

L+

=

∫
L2

l+

+

∫
L5

d+

+

∫
L5

l+

+

∫
L2

d+

,

∫
L−

=

∫
L2

l−

+

∫
L5

d−

+

∫
L5

l−

+

∫
L2

d−

.

Вычисляя их, получаем∫
L2

l+

=

∫
L2

l+

(−β1τ+
1 + α1τ+

2 + γ2+) dx,

∫
L2

l−

=

∫
L2

l−

(−β1τ−1 + α1τ−2 + γ2−) dx.

Так как τ+
1 = τ−1 , τ+

2 = τ−2 на L2
l и γ2+ = γ2− = 0, то

∫
L2

l+

= −
∫

L2
l−

. Аналогично получаем

∫
L5

l+

= −
∫

L5
l−

.

Вычислим интегралы∫
L5

d+

=

∫
L5

d+

(α1τ+
1 + β1τ+

2 + γ1+) dx,

∫
L5

d−

=

∫
L5

d−

(α1τ−1 + β1τ−2 + γ1−) dx.

Так как τ+
1 = τ−1 , τ+

2 = τ−2 на L5
d и γ1+ = γ1− = 0, то

∫
L5

d+

= −
∫

L5
d−

. Следовательно,

∫
L+

= −
∫

L−

.
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∮
ε

−(α1τ1 + β1τ2 + γ1+) dy + (−β1τ1 + α1τ2 + γ2+) dx =

=

∮
ε

−
( y − y0

(x− x0)2 + (y − y0)2
τ1+

x− x0

(x− x0)2 + (y − y0)2
τ2+

D1

2
ln

(x− x0)
2 + (y − y0)

2

l2 + (y − y0)2

)
dy+

+
(
− x− x0

(x− x0)2 + (y − y0)2
τ1 +

y − y0

(x− x0)2 + (y − y0)2
τ2

)
dx.

Пусть x− x0 = ε cos ϕ, y − y0 = ε sin ϕ, 0 6 ϕ 6 2π, тогда∮
ε

= −
2π∫
0

τ2(x0 + ε cos ϕ, y0 + ε sin ϕ) dϕ = −2πτ2(x0, y0).

Последнее равенство получается в результате предельного перехода при ε → 0 с исполь-
зованием теоремы о среднем.

Окончательно получаем

2πτ2(x0, y0) = −
l+h8∫

−l−h5

x− x0

(x− x0)2 + (d + h1 − y0)2
τ1(x, d + h1) dx +

+

l+h8∫
−l−h5

x− x0

(x− x0)2 + (d + h4 + y0)2
τ1(x,−d− h4) dx +

+

d+h1∫
−d−h4

( l + h5 + x0

(y − y0)2 + (l + h5 + x0)2
τ2(−l − h5, y)− D1

2
ln

(l + h5 + x0)
2 + (y − y0)

2

l2 + (y − y0)2

)
dy −

−
d+h1∫

−d−h4

( l + h8 − x0

(y − y0)2 + (l + h8 − x0)2
τ2(−l + h8, y) +

D1

2
ln

(l + h8 − x0)
2 + (y − y0)

2

l2 + (y − y0)2

)
dy +

+

l−h7∫
−l+h6

x− x0

(x− x0)2 + (−d + h3 − y0)2
τ1(x,−d + h3) dx +

+

l−h7∫
−l+h6

x− x0

(x− x0)2 + (d− h2 − y0)2
τ1(x, d− h2) dx +

+

d−h2∫
−d+h3

(
− −l + h6 − x0

(y − y0)2 + (−l + h6 − x0)2
τ2(−l+h6, y)+

D2

2
ln

(−l + h6 − x0)
2 + (y − y0)

2

l2 + (y − y0)2

)
dy−

−
d−h2∫

−d+h3

( l − h7 − x0

(y − y0)2 + (l − h7 − x0)2
τ2(l − h7, y) +

D2

2
ln

(l − h7 − x0)
2 + (y − y0)

2

l2 + (y − y0)2

)
dy.
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Рассмотрим другое решение уравнений (8):

α1 = α1+ = α1− =
x− x0

(x− x0)2 + (y − y0)2
,

β1 = β1+ = β1− = − y − y0

(x− x0)2 + (y − y0)2
,

γ1+ = 0, γ2+ =
D1

2
ln

(x− x0)
2 + (y − y0)

2

d2 + (x− x0)2
,

(9)

γ1− = 0, γ2− =
D2

2
ln

(x− x0)
2 + (y − y0)

2

d2 + (x− x0)2
.

Повторяя предыдущие вычисления, для решения (9) находим

2πτ1(x0, y0) =

= −
l+h8∫

−l−h5

( d + h1 − y0

(x− x0)2 + (d + h1 − y0)2
τ1(x, d+h1)+

D1

2
ln

(x− x0)
2 + (d + h1 − y0)

2

(x− x0)2 + d2

)
dx+

+

l+h8∫
−l−h5

( −d− h4 − y0

(x− x0)2 + (d + h4 + y0)2
τ1(x,−d− h4) +

D1

2
ln

(x− x0)
2 + (d + h1 + y0)

2

(x− x0)2 + d2

)
dx−

−
d+h1∫

−d−h4

y − y0

(y − y0)2 + (l + h5 + x0)2
τ2(−l − h5, y) dy +

+

d+h1∫
−d−h4

y − y0

(y − y0)2 + (l + h8 − x0)2
τ2(l + h8, y) dy −

−
l−h7∫

−l+h6

( −d + h3 − y0

(x− x0)2 + (−d + h3 − y0)2
τ1(x,−d+h3)+

D2

2
ln

(x− x0)
2 + (−d + h3 − y0)

2

(x− x0)2 + d2

)
dx+

+

l−h7∫
−l+h6

( d− h2 − x0

(x− x0)2 + (d− h2 − y0)2
τ1(x, d− h2) +

D2

2
ln

(x− x0)
2 + (d− h2 − y0)

2

(x− x0)2 + d2

)
dx +

+

d−h2∫
−d+h3

y − y0

(y − y0)2 + (−l + h6 − x0)2
τ2(−l + h6, y) dy −

−
d−h2∫

−d+h3

y − y0

(y − y0)2 + (l − h7 − x0)2
τ2(l − h7, y) dy. (10)

Заключение. В работе построены законы сохранения для уравнений, описывающих
напряженное состояние упругого двухслойного стержня с коробчатым сечением под дей-
ствием крутящего момента. С использованием законов сохранения определено напряжен-
ное состояние в каждой точке стержня по формулам (9), (10) с помощью интегралов по

внешней границе стержня.
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