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Реализована методика моделирования турбулентного горения на примере диффузионного факе-
ла пропана. Проведены генерация и последующая проверка достаточности размеров элементов
сетки на предмет их соответствия критериям масштаба турбулентности, необходимого для мо-
делирования методом LES. Приведены результаты численного моделирования распределения

температуры при горении диффузионного факела пропана с использованием подходов RANS и
LES в трехмерной постановке, выполнена валидация расчетной модели по основным и проме-
жуточным продуктам сгорания. Данные LES-расчета по распределению температуры в зоне

горения намного лучше согласуются с экспериментальными данными по сравнению с аналогич-
ными результатами RANS-расчета, а валидация модели на основе LES-подхода подтверждена
посредством анализа расчетных и экспериментальных данных по основным и промежуточным

продуктам сгорания. Осредненные расчетные параметры турбулентного горения диффузионно-
го факела пропана могут быть использованы для определения методом кинетического модели-
рования с детальной химической кинетикой наиболее сложных продуктов неполного сгорания

топлива, например полициклических ароматических углеводородов.
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ВВЕДЕНИЕ

Загрязнение атмосферы Земли оксидами

азота, оксидами углерода и полициклически-
ми ароматическими углеводородами, образо-
ванными при сжигании углеводородного топ-
лива, является одной из глобальных проблем
человечества [1–3]. Эмиссия этих загрязняю-
щих веществ жестко регламентируется раз-
личными российскими и международными ор-
ганизациями [4, 5].

Образование загрязняющих веществ

вследствие горения углеводородных топлив

исследовалось как экспериментальными [6, 7],
так и численными [8–11] методами, наиболее
популярными среди последних являются мо-
дели на основе осредненных по Рейнольдсу

уравнений Навье — Стокса (RANS) и на осно-
ве метода крупных вихрей (LES). Из анализа
данных по основным характеристикам горения

видно, что LES-модели показывают лучшее

по сравнению с RANS-моделями согласование

c© Гураков Н. И., Попов А. Д., Семенихин А. С.,
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с экспериментальными данными по распре-
делению скоростей, температур, давлений, по
коэффициенту избытка воздуха, а также по
основным и промежуточным продуктам сгора-
ния [12, 13]. Однако для расчета концентраций
более сложных химических соединений, таких
как полициклические ароматические угле-
водороды (ПАУ), необходимо использовать

детальные кинетические механизмы [9], ко-
торые в сочетании с подходом LES требуют

на порядок больше вычислительных ресурсов,
что возможно сделать только на упрощен-
ных модельных пламенах и не реализуется в

инженерной практике [14, 15].
Для расчета концентрации ПАУ исполь-

зуются комбинированные методы с детальной

химической кинетикой. Одним из таких ме-
тодов является моделирование сетью химиче-
ских реакторов [16–18], позволяющее довольно
точно прогнозировать эмиссионные характери-
стики камер сгорания за счет использования

детальных кинетических схем. При использо-
вании этой модели информация о внутрика-
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мерных процессах объединяется и включается

в последовательность элементарных реакторов

(реакторная цепочка). Для формирования це-
пи реакторов при определении ПАУ необходи-
мо использовать расчетные данные по распре-
делению температуры, коэффициента избыт-
ка воздуха, пульсаций восстановленной кон-
центрации топлива. Применяемые при этом

расчетные модели должны быть валидирова-
ны по данным соответствующих эксперимен-
тов [19, 20].

Цель настоящей работы — валидация рас-
четной методики на основе LES-подхода по ос-
новным и промежуточным продуктам сгора-
ния, распределению температуры и коэффици-
енту избытка воздуха на примере модельного

пламени диффузионного факела пропана с це-
лью получения данных для определения кон-
центрации ПАУ методом реакторного модели-
рования.

МЕТОДЫ И ИНСТРУМЕНТЫ

Экспериментальное определение парамет-
ров горения диффузионного факела пропана

проводилось в работе [7]. Турбулентный диф-
фузионный факел был образован истекающим

вертикально вверх из сопла пропаном в затоп-
ленное воздушное пространство. В исследова-
ниях применялось сопло с диаметром отвер-
стия d0 = 4 · 10−3 м, с длиной цилиндриче-
ской части l0 = 2.5d0. Толщина стенок топлив-
ного сопла 1 мм. Устанавливался следующий
режим истечения газа: скорость на срезе соп-
ла — U0 = 11 м/с, число Рейнольдса Re = 104.
Конструкция и размеры модели сопла для ис-
следования диффузионного факела показаны на

рис. 1.

Рис. 1. Схема модели сопла

Для расчетного определения характери-
стик турбулентного горения диффузионного

факела пропана была построена геометриче-
ская модель расчетной области в форме цилин-
дра размерами 1 200 × 600 мм, наполненного
воздухом. Для проведения численного модели-
рования процессов горения методом LES была
построена сеточная модель расчетной области.

Для построения объемной сетки выбран

тип ячеек гексаэдр, а в пристеночной обла-
сти сопла — 6-угольная призма с количеством
пограничных призматических слоев 5. В ре-
зультате генерации модели максимальный па-
раметр скошенности составил 0.7973, что при-
емлемо для дальнейших расчетов. Размер яче-
ек в зоне подачи топлива — 0.25 мм, в зоне пе-
рехода от ламинарного течения к турбулентно-
му — 0.5 мм, в зоне турбулентного горения —
1 мм, в оставшемся объеме — 2 ÷ 8 мм. Сум-
марное количество элементов в модели порядка

17 млн.
Расчет проводился методом LES с подсе-

точной моделью kinetic-energy transport. В ка-
честве модели горения использовалась мо-
дель flamelet generated manifold, реализованная
в ANSYS Fluent 2021 R1, с кинетическим меха-
низмом Propane-NOx high temperature (37 ком-
понентов, 296 реакций). В качестве топлива

взят пропан [21].
Для расчета турбулентного течения мето-

дом LES необходимо, чтобы размеры элемен-
тов геометрической модели в расчетной обла-
сти соответствовали критериям масштаба тур-
булентности [22]. В предыдущих исследовани-
ях [23] перечислены основные критерии разме-
ра элементов сетки, которые разделены на две
группы:

– основанные на RANS-решении (мас-
штаб турбулентности Колмогорова [24], мас-
штаб турбулентности Тейлора [25], интеграль-
ный масштаб турбулентности [26]);

– основанные на LES-решении (подсеточ-
ная турбулентная вязкость [27], разрешенная
турбулентная кинетическая энергия [28], нали-
чие закона Колмогорова — Обухова [29]).

Для данного исследования проверялись та-
кие критерии, как подсеточная турбулентная
вязкость (рис. 2,а) и наличие закона Колмого-
рова — Обухова (рис. 2,б).

На рис. 2,а представлено распределение
значений отношения подсеточной турбулент-
ной вязкости к молекулярной (νt/ν). Соглас-
но [27] при проверке достаточности разрешения
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Рис. 2. Проверка геометрической модели на соответствие критериям размера ячеек:

а — критерий разрешенной турбулентной кинетической энергии, б — критерий наличия закона

Колмогорова — Обухова

Рис. 3. Поле температуры при использовании подходов RANS (а) и LES (б)
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размеров ячеек в LES-расчетах необходимо,
чтобы выполнялось неравенство νt/ν 6 20. Как
видно из рис. 2,а, данный критерий выполня-
ется во всей расчетной области. На рис. 2,б по-
казана спектральная мощность пульсаций ско-
рости потока по оси диффузионного факела.
По характеру изменения пульсаций видно, что
моделируемые вихри находятся в инерционном

интервале энергетического спектра (закон 5/3).
Из этого следует, что данная модель может ис-
пользоваться для LES-расчета.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Моделирование турбулентных течений ме-
тодом LES требует больших вычислительных
мощностей по сравнению с подходом RANS, од-
нако дает при этом более детальное разреше-
ние вихревых структур, с учетом характери-
стик турбулентности.

С целью демонстрации преимуществ мето-
да LES проведен сравнительный анализ полей
температуры в зоне горения: результаты LES-
расчетов (осредненные значения параметров,
время осреднения 8 с) сравнивались с резуль-
татами RANS-расчетов и экспериментальны-
ми данными. Полученные распределения тем-
пературы газа представлены на рис. 3.

Результаты численного моделирования из-
менения температуры и коэффициента избыт-
ка воздуха α по оси факела приведены на рис. 4
в сравнении с данными экспериментов [17].

Из рис. 4 видно, что пиковые значения
температуры при LES-моделировании и в экс-
периментах совпадают на расстоянии x/d ≈
110 ÷ 120 калибров от топливного сопла. При
RANS-моделировании пиковые значения сме-
щены ближе к соплу и фиксируются на рас-
стоянии x/d ≈ 80. Таким образом, LES-подход
продемонстрировал лучшее совпадение средней

температуры с экспериментальными данными

по сравнению с RANS-моделированием.
Приведенные на рис. 4 расчетные и экспе-

риментальные значения коэффициента избыт-
ка воздуха α экспоненциально увеличиваются
и достигают значения α = 3 на расстоянии

x/d ≈ 140 ÷ 150. Это свидетельствует о кор-
ректном моделировании смешения топлива и

воздуха в зоне горения.
Была проведена фото- и видеофиксация

диффузионного факела для сравнения с ре-
зультатами численного моделирования мето-
дом LES (рис. 5). Для визуализации пламени в

Рис. 4. Изменение температуры и коэффици-
ента избытка воздуха по оси факела

Рис. 5. Фотофиксация (а) и результат числен-
ного моделирования (б) диффузионного факе-
ла

расчете отображено мгновенное распределение

концентрации OH.
С целью валидации рассматриваемой рас-

четной модели для определения в дальней-
ших исследованиях таких сложных продуктов

неполного сгорания, как ПАУ, эксперименталь-
ными и расчетными методами были получены
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Рис. 6. Объемная доля СО2 по оси факела

Рис. 7. Объемные доли СО и Н2 по оси факела

концентрации основных (СО2) и промежуточ-
ных (СО и Н2) продуктов сгорания.

На рис. 6 представлены расчетные и экс-
периментальные концентрации основных про-
дуктов сгорания. Видно, что пиковые значения
объемной доли СО2 достигаются на расстоя-
нии x/d ≈ 100 ÷ 110 и, следовательно, совпада-
ют с пиковыми температурами в зоне горения.

На рис. 7 приведены расчетные и экспе-
риментальные концентрации промежуточных

продуктов сгорания СО и Н2. Пиковые значе-
ния их объемных долей смещены от пиковых

значений СО2 примерно на 20 калибров— в об-
ласть x/d ≈ 80 ÷ 90. Полученные данные мож-
но считать корректными, так как в этой об-

ласти окислительные реакции еще не заверше-
ны, и, следовательно, СО не переходит в СО2,
а Н2 — в Н2О.

Таким образом, расчетная модель на осно-
ве LES-подхода валидирована по эксперимен-
тальным значениям температуры, основным
продуктам сгорания и продуктам неполного

сгорания. Поэтому при дальнейших исследова-
ниях осреднение параметров, полученных ме-
тодом LES, может быть использовано для рас-
чета эмиссии ПАУ с помощью сети химических

реакторов.

ЗАКЛЮЧЕНИЕ

В данной работе выполнено расчетно-
экспериментальное исследование процесса го-
рения диффузионного факела пропана. Получе-
ны следующие результаты:

1) LES-подход при численном моделиро-
вании диффузионного факела пропана проде-
монстрировал лучшее совпадение средней тем-
пературы с экспериментальными данными по

сравнению с RANS-моделированием;
2) результаты численного моделирования

методом LES эмиссии продуктов сгорания и

изменения коэффициента избытка воздуха хо-
рошо согласуются с данными экспериментов

как по основным (среднее расхождение не более
5 %), так и по промежуточным (среднее рас-
хождение не более 10 %) продуктам сгорания.

Полученные в результате расчетов осред-
ненные значения температуры, восстановлен-
ной концентрации топлива и пульсаций концен-
трации топлива могут быть использованы для

определения методом кинетического реактор-
ного моделирования с детальной химической

кинетикой наиболее сложных продуктов непол-
ного сгорания топлива, например ПАУ.
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