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Представлены решения задач о нестационарной фильтрации к несовершенной скважине
с произвольным углом наклона от вертикали, позволяющие выполнять интерпретацию
данных по результатам гидродинамических исследований скважин и осуществлять про-
гнозирование объемов добычи. Получены решения при различных условиях на кровле и
подошве пласта, при этом для описания забойного давления реализовано два алгорит-
ма: многосегментный и односегментный с определением точки эквивалентного давления.
Вычислительный эксперимент показывает, что результаты расчетов, полученные с ис-
пользованием односегментного и многосегментного алгоритмов, хорошо согласуются.
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Введение. Модель наклонно направленной скважины (ННС) является одной из наи-
более часто используемых в программных комплексах, предназначенных для анализа и
интерпретации результатов гидродинамических исследований скважин.

Ранние модели, описывающие поведение давления на забое ННС, основаны на реше-
нии уравнения пьезопроводности для пласта, вскрытого вертикальной скважиной (ВС).
Отличие давления в ННС от давления в ВС учитывается геометрическим скин-фактором.
Такой подход непригоден при интерпретации результатов гидродинамических исследова-
ний скважин, поскольку на диагностическом билогарифмическом графике не отражаются
особенности ННС. Вследствие этого потребовалось развитие теории фильтрации для ННС.
Модели нестационарного течения жидкости в пласте с ННС представлены в работах [1–7].
Анализ известных аналитико-численных моделей показывает, что в них используются два
алгоритма: точный многосегментный [8] и быстрый односегментный [1, 4, 5].

В данной работе получены решения задач о нестационарной фильтрации к несовер-
шенной скважине с произвольным углом наклона от вертикали, в которых используются
указанные алгоритмы. Решения найдены методом источников, основанным на использова-
нии функций Грина [2, 9], в комбинации с интегральным преобразованием Лапласа [1, 10].
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Рис. 1. Схема участка перфорации наклонной скважины

Для реализации односегментного алгоритма необходимо определить зависимость коорди-
наты точки эквивалентного давления от угла наклона скважины и от положения центра

вскрытой части пласта. Для определения динамики давления используется численный ал-
горитм обратного преобразования Стефеста [11].

Разработанные модели ННС могут быть использованы для расчета притока к ство-
лу как полностью, так и частично вскрывающей пласт скважины. В предельных случаях
отклонения участка перфорации от вертикали (β = 0, 90◦) расчеты по модели ННС согла-
суются с расчетами по моделям вертикальной и горизонтальной скважин соответствен-
но [12].

Оба подхода к расчету забойного давления в ННС реализованы в программном ком-
плексе “РН-ВЕГА” [13], предназначенном для анализа и интерпретации результатов гид-
родинамических исследований скважин.

1. Постановка задачи. Участок перфорации наклонной скважины радиусом rw по-
казан на рис. 1. Угол наклона участка перфорации длиной L, измеренный в направлении
от нормали z к плоскости залегания пласта (x, y), равен β. Направим вспомогательную
ось l вдоль оси скважины. Координаты средней точки C перфорированной части ННС

обозначим (x∗w, y
∗
w, z

∗
w). Пласт полагается горизонтальным с мощностью h, однородным

и анизотропным с горизонтальной и вертикальной компонентами тензора проницаемости

kh и kv соответственно. Предполагается, что пористость пласта ϕ, вязкость флюида µ и
общая сжимаемость пластовой системы ct не зависят от давления и пространственных ко-
ординат. На верхней и нижней границах анизотропного пласта могут быть заданы условия
непротекания или постоянного давления в различных комбинациях. Модели, представлен-
ные в данной работе, построены в пренебрежении гравитационными эффектами.

2. Модель течения в скважине. В зависимости от режима течения изменение дав-
ления в наклонном стволе описывается законом Хагена — Пуазейля или Дарси — Вейс-
баха. Теоретический анализ и эксперименты показывают, что перепад давления вдоль
ННС незначителен по сравнению с перепадом давления при фильтрации флюида в пори-
стой среде. Поэтому наклонный ствол скважины рассматривается как линейный источник
бесконечной проводимости [4].

Начало отсчета совместим с верхней точкой перфорированного участка ствола сква-
жины. Тогда условие отсутствия сопротивления в трубе можно записать в виде

p(t, l) = pw(t), l ∈ [0;L], (1)

где p— давление на перфорированном участке скважины в произвольный момент времени;
pw — регистрируемое забойное давление; t — время работы скважины.
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Условие однородности давления в безразмерных переменных в пространстве изобра-
жений Лапласа [1] принимает вид

p̃D(s, lD) = p̃wD(s), lD ∈ [0;LD], (2)

где lD = l/L; pD = (2πkhh/(µq))(pi − p); q — дебит скважины; pi — начальное пластовое

давление; p̃D, p̃wD — изображения Лапласа соответствующих функций-оригиналов в (1);
s — параметр Лапласа.

3. Модель течения в пласте. В соответствии с методом источников, основанным
на использовании функций Грина [14], давление в любой точке анизотропного пласта,
содержащего ННС, описывается выражением

pfD(tD, xD, yD, zD) =

tD∫
0

LD∫
0

qfD(τ, lD)G(τ, lD, xD, yD, zD) dlD dτ, (3)

где xD = x/L; yD = y/L; zD = (z/L)
√
kh/kv; tD = kht/(ϕµctL

2); qfD(τ, lD) =
qf (τ, lD)/(q/L) — безразмерная интенсивность притока; G(τ, lD, xD, yD, zD) — функция

Грина, описывающая возмущение давления, создаваемое точечным источником в точке с
координатами (xD, yD, zD).

Применяя преобразование Лапласа для (3), получаем

p̃fD(s, xD, yD, zD) =

LD∫
0

q̃fD(s, lD)G̃(s, lD, xD, yD, zD) dlD. (4)

Здесь q̃fD, G̃ — изображения Лапласа соответствующих функций-оригиналов.

Условие непрерывности давления в пласте и на перфорированной части стенки сква-
жины имеет вид

p̃fD(lD, s) = p̃D(lD, s). (5)

Из выражений (2), (4), (5) следует уравнение, связывающее интенсивность притока
q̃fD(s, lD) и забойное давление p̃wD(s):

LD∫
0

q̃fD(s, lD)G̃(s, lD, xD, yD, zD) dlD = p̃wD(s). (6)

В безразмерных переменных закон сохранения массы флюида в ННС в пространстве

Лапласа принимает вид

LD∫
0

q̃fD(s, lD) dlD =
1

s
, (7)

где 1/s — полный безразмерный дебит скважины.
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Рис. 2. Функция плотности притока (а) и ее дискретное представление (б)

4. Метод решения. Аналитический вид зависимости функции плотности притока
q̃fD(s, lD) (рис. 2,а) от осевой координаты априори неизвестен, что вызывает затруднения
при решении системы (6), (7).

В работе [8] в качестве метода решения системы (6), (7) предложен подход, в соответ-
ствии с которым ствол скважины разбивается по длине на N сегментов с равномерным

притоком (рис. 2,б). Система уравнений записывается в дискретном виде для каждого из
N сегментов и решается относительно неизвестных плотностей притока сегментов q̃fD,j ,
j = 1, 2, . . . , N и забойного давления p̃wD. В отличие от работы [8] в данной работе систе-
ма (6), (7) решается относительно безразмерных дебитов (в пространстве Лапласа) q̃D,j ,
j = 1, 2, . . . , N .

Обозначим через LND = LD/N длину сегмента, через lj = [lD,j−1; lD,j ] — координаты

концов сегментов. При этом будем учитывать, что координаты начала и конца участка
перфорации равны lD,0 = 0 и lD,N = LD. Плотность притока из пласта в пределах сегмента
считаем постоянной и связанной с безразмерным дебитом следующим соотношением:

q̃fD,j = q̃D,j/LND.

При использовании этого соотношения решаемая система уравнений для N сегментов при-
нимает вид

N∑
j=1

q̃D,jF̃i,j(s, xwD,i, ywD,i, zwD,i, xwD,j , ywD,j , zwD,j) = p̃wD(s), i = 1, 2, . . . , N ; (8)

N∑
j=1

q̃D,j =
1

s
, (9)

где F̃i,j =
1

LND

lD,j∫
lD,j−1

G̃(s, lD, xwD,i, ywD,i, zwD,i) dlD — функция линейного источника, опре-

деляющая возмущение давления, создаваемое сегментом j в центре сегмента i с коорди-
натами xwD,i, ywD,i, zwD,i. Вид функции F̃i,j зависит от типа границ, заданных на кровле
и подошве пласта.

5. Функция линейного источника. Найдем функцию линейного источника для

случая непроницаемых границ на кровле и подошве анизотропного пласта. В этом случае
функция G̃ для точечного источника имеет вид [2–4, 14]

G̃ = K0(rD
√
s ) + 2

∞∑
n=1

K0(rD
√
sn ) cos

(
πn

zwD

hD

)
cos

(
πn

zD
hD

)
. (10)
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В (10) используются следующие безразмерные величины:

rwD =
rw
L
, xwD =

xw

L
, ywD =

yw

L
, rD =

√
(xD − xwD)2 + (yD − ywD)2 ,

zwD =
zw
L

√
kh

kv
, hD =

h

L

√
kh

kv
, sn = s+

π2n2

h2
D

(11)

(x, y, z — координаты произвольной точки пласта; xw, yw, zw — координаты точечного

источника).
Отклик давления, соответствующий отбору жидкости из j-го линейного источника,

может быть получен путем интегрирования (10) вдоль оси наклонной скважины. Таким
образом, имеем

F̃j =
1

LDN

lD,j∫
lD,j−1

G̃ dlD =

=
1

LDN

lD,j∫
lD,j−1

[
K0(rD

√
s ) + 2

∞∑
n=1

K0(rD
√
sn ) cos

(
πn

zwD

hD

)
cos

(
πn

zD
hD

)]
dlD.

Учитывая, что

dlD =
√

(dxwD)2 + (dzwD)2 ,

и выполняя интегрирование по xwD, получаем

F̃j =
1

LDN

xwD,j+(LDN/2) sin β∫
xwD,j−(LDN/2) sin β

√
1 +

(dzwD

dxwD

)2
×

×
[
K0(rD

√
s ) + 2

∞∑
n=1

K0(rD
√
sn ) cos

(
πn

zwD

hD

)
cos

(
πn

zD
hD

)]
dxwD. (12)

На наклонном линейном источнике должны выполняться условия

zw = zw,j − (xw − xw,j) ctg β, yw = 0, (13)

где zw,j , xw,j — координаты центра сегмента.
Подставляя (11) в (13), получаем

xwD = tg β′(zwD,j − zwD) + xwD,j , tg β′ = tg β
√
kv/kh . (14)

Выражение (12) с учетом (13) принимает вид

F̃j = F̃j,1 + F̃j,2, (15)

где

F̃j,1 =
cosec β

LDN

xwD,j+(LDN/2) sin β∫
xwD,j−(LDN/2) sin β

K0(
√

(xD − xwD)2 + y2
D

√
s ) dxwD,

F̃j,2 =
2 cosec β

LDN

xwD,j+(LDN/2) sin β∫
xwD,j−(LDN/2) sin β

∞∑
n=1

K0(
√

(xD − xwD)2 + y2
D

√
sn ) cos (ψ1) cos (ψ2) dxwD,

ψ1 = πn
zwD,j − (xwD − xwD,j)/ tg β′

hD
, ψ2 = πn

zD
hD

.
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Для вычисления давления, создаваемого j-м источником в центре i-го сегмента с коорди-
натами (xwD,i, ywD,i = rwD, zwD,i), введем переменную nij = |i− j|, тогда

F̃i,j = F̃i,j,1 + F̃i,j,2. (16)

Здесь

F̃i,j,1 =
cosec β

LDN

(nij+1/2)LDN sin β∫
(nij−1/2)LDN sin β

K0(
√
x̃2

wD + r2wD

√
s ) dx̃wD,

F̃i,j,2 =
2 cosec β

LDN

(nij+1/2)LDN sin β∫
(nij−1/2)LDN sin β

∞∑
n=1

K0(
√
x̃2

wD + r2wD

√
sn ) cos (ψ1,i) cos (ψ2,i) dx̃wD,

x̃wD = xwD,i − xwD,

ψ1,i = πn
zwD,j − [(i− j)LDN sin β − x̃wD]/ tg β′

hD
, ψ2,i = πn

zwD,i

hD
.

Аналогично получены формулы для расчета давления, создаваемого j-м источником
в центре i-го источника, при других типах границ на кровле и подошве анизотропного
пласта:

— постоянное давление на кровле и подошве:

F̃i,j =
2 cosec β

LDN

(nij+1/2)LDN sin β∫
(nij−1/2)LDN sin β

∞∑
n=1

K0(
√
x̃2

wD + r2wD

√
sn ) sin (ψ1,i) sin (ψ2,i) dx̃wD;

— непроницаемая граница на кровле и граница с постоянным давлением на подошве:

F̃i,j =
2 cosec β

LDN

(nij+1/2)LDN sin β∫
(nij−1/2)LDN sin β

∞∑
n=1

K0(
√
x̃2

wD + r2wD

√
sn ) sin (ψ3,i) sin (ψ4,i) dx̃wD,

ψ3,i = π(2n− 1)
zwD,j − [(i− j)LDN sin β − x̃wD]/ tg β′

2hD
, ψ4,i = π(2n− 1)

zwD,i

2hD
;

— граница с постоянным давлением на кровле и непроницаемая граница на подошве:

F̃i,j =
2 cosec β

LDN

(nij+1/2)LDN sin β∫
(nij−1/2)LDN sin β

∞∑
n=1

K0(
√
x̃2

wD + r2wD

√
sn ) cos (ψ3,i) cos (ψ4,i) dx̃wD.

Интегралы в формулах для функции линейного источника рассчитываются численно

методом трапеций.
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6. Общий вид системы уравнений. Система уравнений (8), (9) записывается в
матричной форме

AX = B, (17)

где X — вектор-столбец неизвестных переменных:

X =


p̃wD

q̃D,1

...

q̃D,N

 ,

p̃wD — давление в стволе скважины; q̃D,1, q̃D,2, . . . , q̃D,N — образы безразмерных дебитов

N сегментов скважины.
Матрица системы и вектор-столбец в правой части (17) имеют вид

A =


−1 F̃1,1 · · · F̃1,N

...
...

. . .
...

−1 F̃N,1 · · · F̃N,N

0 1 · · · 1

 , B =


0
...

0

1/s

 .

Решение системы (17) позволяет найти изображение забойного давления в ННС в

отсутствие сопротивления течению в трубе. Последующее вычисление безразмерного за-
бойного давления pwD осуществляется численно методом обратного преобразования Сте-
феста [11]. Таким образом, забойное давление определяется по формуле, учитывающей
работу скважины с переменным дебитом:

pw(t) = pi −
µB

2πkh

M∑
j=1

(qj − qj−1)pwD(tD − tD,j).

Здесь B — объемный коэффициент; M — количество замеров дебита.
7. Приближенное решение. Реализованный в программном комплексе “РН-ВЕГА”

приближенный односегментный метод расчета забойного давления в ННС основан на идее,
описанной в [4]. Эта идея заключается в том, что скважина не сегментируется, а представ-
ляется в виде одного линейного источника с равномерным притоком. При этом забойное
давление рассчитывается в точке эквивалентного давления, подобранной таким образом,
чтобы решение для давления в линейном источнике с равномерным притоком наиболее

точно аппроксимировало решение для давления в стволе скважины без сопротивления.
Впервые координаты точки эквивалентного давления для полностью перфорирован-

ной ННС были получены в работе [5]. В [1] приведены формулы для определения координат
точки эквивалентного давления, но не пояснен способ их получения. Корреляционная зави-
симость положения точки эквивалентного давления была представлена в [7]. В работе [4]
координаты точки эквивалентного давления модифицированы для частично перфориро-
ванных ННС (рис. 3):

xD = ±xeq
LD

2
sin β, yD = rwD, zD = z∗wD ∓ xeq

LD

2
cos β.

Здесь xeq = 0,6 — расстояние от центра скважины до точки эквивалентного давления,
выраженное в долях LD/2.

Тестирование решения, полученного в [4], подтвердило его вычислительную эффек-
тивность. При этом точность решения уменьшается при смещении центра участка перфо-
рации вдоль оси z и изменении угла β. Погрешности решения с использованием алгоритма
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Рис. 3. Положение точек эквивалентного давления [4] при симметричном рас-
положении вскрытого участка относительно середины пласта z∗wD = hD/2 и
одинаковых условиях на кровле и подошве

из [4] обусловлены тем, что положение точки эквивалентного давления получено для част-
ного случая непроницаемых границ на кровле и подошве. Эта точка определяется одним
параметром, равным 0,6, т. е. не зависит от ориентации скважины в пространстве и по-
ложения участка перфорации.

Исследования, выполненные авторами данной работы, показали, что параметр xeq

зависит от положения центра перфорированного участка скважины z∗wD и угла наклона β
этого участка.

Для того чтобы определить адекватное расстояние от центра скважины до точки экви-
валентного давления, представим решение для линейного источника с равномерным при-
током (15) в следующем виде:

F̃ = F̃1 + F̃2. (18)

Здесь

F̃1 =
cosec β

LD

( (LD/2) sin β+xD∫
0

K0

(√
x̃2

wD + r2wD

√
s
)
dx̃wD +

+

(LD/2) sin β−xD∫
0

K0

(√
x̃2

wD + r2wD

√
s
)
dx̃wD

)
,

F̃2 =
2cosec β

LD

(LD/2) sin β+xD∫
0

( ∞∑
n=1

K0

(√
x̃2

wD + r2wD

√
sn

)
cos (ψ1) cos (ψ2)

)
dx̃wD +

+
2cosec β

LD

(LD/2) sin β−xD∫
0

( ∞∑
n=1

K0

(√
x̃2

wD + r2wD

√
sn

)
cos (ψ3) cos (ψ2)

)
dx̃wD,

ψ1 = πn
z∗wD − (xD − x̃wD)/ tg β′

hD
, ψ2 = πn

z∗wD − xD/ tg β′

hD
,

ψ3 = πn
z∗wD − (xD + x̃wD)/ tg β′

hD
, xD = xeq

LD

2
sin β.

При выводе (18) учтено, что xwD,j = x∗wD = 0, x̃wD = xD − xwD и yD = rwD.
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Аналогично (18) получаются функции линейного источника для случаев со следую-
щими типами границ на кровле и подошве:

— постоянное давление на кровле и подошве:

F̃ =
2cosec β

LD

(LD/2) sin β+xD∫
0

( ∞∑
n=1

K0

(√
x̃2

wD + r2wD

√
sn

)
sin (ψ1) sin (ψ2)

)
dx̃wD +

+
2cosec β

LD

(LD/2) sin β−xD∫
0

( ∞∑
n=1

K0

(√
x̃2

wD + r2wD

√
sn

)
sin (ψ3) sin (ψ2)

)
dx̃wD;

— непроницаемая граница на кровле и граница с постоянным давлением на подошве:

F̃ =
2cosec β

LD

(LD/2) sin β+xD∫
0

( ∞∑
n=1

K0

(√
x̃2

wD + r2wD

√
sn

)
sin (ψ4) sin (ψ5)

)
dx̃wD +

+
2cosec β

LD

(LD/2) sin β−xD∫
0

( ∞∑
n=1

K0

(√
x̃2

wD + r2wD

√
sn

)
sin (ψ6) sin (ψ5)

)
dx̃wD,

ψ4 = π(2n− 1)
z∗wD − (xD − x̃wD)/ tg β′

hD
, ψ5 = π(2n− 1)

z∗wD − xD/ tg β′

hD
,

ψ6 = π(2n− 1)
z∗wD − (xD + x̃wD)/ tg β′

hD
;

— граница с постоянным давлением на кровле и непроницаемая граница на подошве:

F̃ =
2cosec β

LD

(LD/2) sin β+xD∫
0

( ∞∑
n=1

K0

(√
x̃2

wD + r2wD

√
sn

)
cos (ψ4) cos (ψ5)

)
dx̃wD +

+
2cosec β

LD

(LD/2) sin β−xD∫
0

( ∞∑
n=1

K0

(√
x̃2

wD + r2wD

√
sn

)
cos (ψ6) cos (ψ5)

)
dx̃wD.

При использовании односегментного подхода изображение забойного давления в ННС

вычисляется как произведение дебита скважины и функции линейного источника:

p̃wD(s) = q̃DF̃ (s, xD, yD, zD) (19)

(q̃D = 1/s — полный безразмерный дебит скважины в пространстве Лапласа).
Зависимость xeq(β, z

∗
wD) установлена методом наилучшего совмещения динамики за-

бойного давления, рассчитанной с помощью аппроксимирующего решения (19), и соот-
ветствующей динамики забойного давления, определенной методом сегментации (17). При
использовании многосегментного подхода скважина разбивается на 10 сегментов. Таким
образом, система линейных алгебраических уравнений (17) содержит 11 уравнений, поз-
воляющих определить 10 дебитов сегментов и забойное давление. Для решения системы
уравнений (17) использован матричный метод.

В табл. 1 представлены результаты расчета забойного давления при добыче с дебитом
из ННС при β = 25, 50, 75◦. Другие расчетные параметры имели следующие значения:
толщина пласта — 10 м, пористость — 0,2, радиус скважины — 0,1 м, вязкость — 2 сП,
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Та бли ц а 1

Результаты расчета забойного давления pw для ННС с использованием

односегментного и многосегментного алгоритмов

tD, сут
pw, атм

Многосегментный алгоритм Односегментный алгоритм

β = 25◦ β = 50◦ β = 75◦ β = 25◦ β = 50◦ β = 75◦

0,001 319,9 320,1 320,1 319,8 320,0 320,0
0,004 293,8 295,6 296,4 293,8 295,6 296,3
0,040 269,8 272,9 274,6 269,9 273,1 274,8
0,400 251,6 254,8 256,5 251,7 255,0 256,7

1 244,5 247,7 249,5 244,6 247,9 249,6
2 239,2 242,4 244,1 239,3 242,6 244,3
3 236,0 239,3 241,0 236,2 239,5 241,2
4 233,8 237,1 238,8 234,0 237,3 239,0
5 232,1 235,4 237,1 232,3 235,5 237,3
6 230,7 234,0 235,7 230,9 234,1 235,9
7 229,5 232,8 234,5 229,7 233,0 234,7
8 228,5 231,8 233,5 228,6 231,9 233,7
9 227,6 230,9 232,6 227,7 231,0 232,7
10 226,8 230,0 231,8 226,9 230,2 231,9

сжимаемость — 4,4 · 10−5 атм−1, коэффициент влияния ствола скважины — 10−3 м3/атм,
длина вскрытого участка пласта — 10 м, расстояние от центра вскрытого участка до
подошвы пласта — 5 м, начальное пластовое давление — 350 атм, проницаемость —
12 мД. Кровля и подошва полагались непроницаемыми.

Относительное отклонение приближенного решения, полученного с использованием
односегментного алгоритма, от более точного решения, полученного с помощью много-
сегментного алгоритма, не превышает 0,2 %. Кроме того, вычислительные эксперименты
показали, что использование односегментного алгоритма позволяет значительно (в 100
раз) уменьшить время решения прямой задачи.

Совмещение кривых забойного давления осуществлялось путем варьирования значе-
ния параметра xeq. В результате решения оптимизационных задач получена зависимость
положения точки эквивалентного давления от угла наклона β при различных значениях
координаты z∗wD середины ННС (рис. 4).

В случае непроницаемых границ на кровле и подошве задача определения зависи-
мости xeq(β, z

∗
wD) симметрична относительно середины пласта, поэтому искомая зависи-

мость исследовалась только в диапазоне z∗wD ∈ [0,5hD;hD]. Для интервала z∗wD ∈ [0; 0,5hD]
зависимость может быть установлена путем зеркального отображения рассматриваемой

зависимости относительно середины пласта. Выбор максимального значения z∗wD = 0,625
для представленных на рис. 4 кривых обусловлен тем, что кривые, рассчитанные при
z∗wD > 0,625, совпадают с кривой z∗wD = 0,625.

Эмпирически установлено, что поведение кривых на рис. 4 достаточно точно описы-
вается уравнением

xeq = 0,682− a e−β/b sin
( β
bc

+ d
)
, (20)

где a, b, c, d — неизвестные коэффициенты, зависящие от z∗wD. Исключение составляет
кривая 1 (z∗wD = 0,5hD), которая имеет особенность при β < 5◦, поэтому рассматривается
отдельно и в расчетах аппроксимируется кусочно-постоянной функцией.



Р. Р. Уразов, О. В. Ахметова, И. И. Галлямитдинов и др. 109

0 10 20 30 40 50 60 70 80 90 b, ãðàä
0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

xeq

1

2
3

4
5
6

Рис. 4. Зависимость положения точки эквивалентного давления от угла накло-
на β при различных значениях координаты z∗wD середины перфорированного

участка ННС:
1 — z∗wD = 0,5hD, 2 — z∗wD = 0,505hD, 3 — z∗wD = 0,515hD, 4 — z∗wD = 0,530hD, 5 —
z∗wD = 0,570hD, 6 — z∗wD = 0,625hD

Таб ли ц а 2
Значения коэффициентов эмпирического уравнения (20)

z∗wD a b c d

0,505 0,203 0,266 1,153 2,223
0,515 0,632 0,114 3,350 0,253
0,530 1,574 0,197 9,290 0,123
0,570 1,863 0,273 8,795 0,123
0,625 0,466 0,413 1,840 0,571

Неизвестные параметры уравнения (20) для остальных кривых также найдены путем
решения оптимизационной задачи. В результате получены значения, представленные в
табл. 2. Заметим, что зависимости вида (20) были получены также для случаев, когда
ННС вскрывает пласт с другими типами границ на кровле и подошве.

Полученные решения предоставляют широкие возможности при интерпретации ре-
зультатов гидродинамических исследований наклонно направленных скважин, в том чис-
ле несовершенных, поскольку позволяют достаточно точно описать поведение забойного
давления.

8. Обсуждение результатов. Результаты исследования динамики давления при

различных длине и положении внутри пласта участка перфорации наклонно направленной

скважины позволяют выявить основные закономерности формирования забойного давле-
ния.

На рис. 5–7 приведены результаты расчетов давления с использованием односегмент-
ного и многосегментного алгоритмов при отборе жидкости из ННС в течение 10 сут с
дебитом 50 м3/сут. Расчеты проведены при указанных выше значениях параметров, за
исключением случаев, оговоренных особо.

На рис. 5 приведена зависимость давления на забое скважины от угла наклона пер-
форированного участка к оси z. Видно, что с течением времени депрессия увеличивается.
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Рис. 5. Расчетные зависимости давления от угла β между участком перфора-
ции и нормалью к плоскости залегания пласта, полученные с использованием
односегментного (1, 3, 5, 7, 9) и многосегментного (2, 4, 6, 8, 10) алгоритмов:
1, 2 — t = 0,001 сут, 3, 4 — t = 0,004 сут, 5, 6 — t = 0,04 сут, 7, 8 — t = 2 сут, 9, 10 —
t = 10 сут

Рис. 6. Расчетные зависимости давления от длины участка перфорации, по-
лученные с использованием односегментного (1, 3, 5, 7, 9) и многосегментного
(2, 4, 6, 8, 10) алгоритмов:
1, 2 — t = 0,001 сут, 3, 4 — t = 0,004 сут, 5, 6 — t = 0,04 сут, 7, 8 — t = 2 сут, 9, 10 —
t = 10 сут

Изменение угла β с 5 до 85◦ приводит к уменьшению депрессии на 6,3 % через 10 сут. Из
рис. 5 следует, что результаты моделирования поведения давления в ННС с использова-
нием односегментного и многосегментного алгоритмов достаточно близки.

На рис. 6 показана зависимость давления от длины вскрытого участка L. В расче-
тах принято, что угол β = 30◦, а середина вскрытого участка равноудалена от кровли и
подошвы. Из рис. 6 следует, что с уменьшением длины вскрытого участка и с течением
времени депрессия увеличивается. Сравнение результатов расчетов, выполненных с ис-
пользованием односегментного и многосегментного подходов, показывает, что они хорошо
согласуются.

Относительное различие результатов расчетов, полученных с использованием одно-
сегментного и многосегментного подходов (см. рис. 5, 6), не превышает 0,2 %.

На рис. 7 приведена зависимость забойного давления от расстояния от центра участка
перфорации до подошвы пласта при β = 30◦, L = 4 м. Расчеты показывают, что наимень-
шая депрессия соответствует положению участка перфорации в центре пласта, по мере
удаления участка перфорации по направлению к непроницаемым кровле или подошве она

увеличивается.
Относительное различие результатов расчетов, полученных с использованием одно-

сегментного и многосегментного подходов (см. рис. 7), не превышает 2,1 %.
Решения, полученные в безразмерном виде с использованием односегментного под-

хода, а также решения в безразмерном виде, полученные в работах [1, 5], приведены на
рис. 8.

Из рис. 8 следует, что результаты расчетов с использованием разработанной теории
удовлетворительно согласуются с известными данными.
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Рис. 7. Расчетные зависимости давления от расстояния от центра участка перфо-
рации до подошвы пласта z∗wD, полученные с использованием односегментного (1, 3,
5, 7) и многосегментного (2, 4, 6, 8) алгоритмов:
1, 2 — t = 0,001 сут, 3, 4 — t = 0,004 сут, 5, 6 — t = 0,04 сут, 7, 8 — t = 10 сут
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Рис. 8. Решения, полученные в безразмерном виде с использованием программного
комплекса “РН-ВЕГА” (линии), и данные работ [5] (а) и [1] (б) (точки) при различных
углах отклонения ННС от вертикали:
1 — β = 15◦, 2 — β = 30◦, 3 — β = 45◦, 4 — β = 60◦, 5 — β = 75◦, 6 — β = 85◦, 7 — β = 89◦

Заключение. Найдены аналитико-численные решения задач о нестационарной филь-
трации к скважине с наклонно направленным профилем, учитывающие степень вскрытия
продуктивного участка и тип верхней и нижней границ пласта.

В результате определения зависимости положения точки эквивалентного давления от

угла наклона скважины и от положения центра перфорированного участка ННС уточнено

аппроксимирующее решение.
Полученное решение предоставляет новые возможности при интерпретации резуль-

татов гидродинамических исследований скважин, поскольку позволяет достаточно точно
описать поведение забойного давления.

Сопоставление результатов расчетов изменения давления в ННС, полученных с ис-
пользованием односегментного и многосегментного алгоритмов, показывает, что они хо-
рошо согласуются между собой. В предельных случаях угла отклонения участка перфора-
ции от вертикали β = 0◦ и β = 90◦ эти результаты хорошо согласуются с результатами
расчетов по моделям для вертикальной и горизонтальной скважин соответственно [12].
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Установлено, что уменьшение угла между перфорированным участком ствола сква-
жины и нормалью к плоскости залегания пласта приводит к росту депрессии. Увеличение
длины участка перфорации обусловливает снижение депрессии.

Расположение участка перфорации в центре пласта соответствует наименьшей де-
прессии, которая увеличивается по мере удаления участка перфорации по направлению к
непроницаемой кровле или подошве.
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