УДК 621.762+539.89+538.91

ФАЗОВЫЕ ПЕРЕХОДЫ, РАЗМЕРНЫЕ И МОРФОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ В СИСТЕМЕ «ГИДРООКСИД — ОКСИД АЛЮМИНИЯ» ПРИ УДАРНО-ВОЛНОВОМ ВОЗДЕЙСТВИИ

А. А. Букаемский, Н. А. Соседов, Л. С. Тарасова

Hаучно-исследовательский физико-технический институт КГУ, 660036~K pachospck buksir@nifti.krasnoyarsk.ru

Предложен метод изучения последовательности фазовых переходов в порошковых материалах при ударно-волновом воздействии. Показано, что в системе «гидрооксид — оксид алюминия» последовательность фазовых превращений при ударно-волновом воздействии следующая: байерит \rightarrow бемит $\rightarrow \gamma$ -Al₂O₃ \rightarrow α -Al₂O₃. Установлено отсутствие переходных высокотемпературных модификаций оксида алюминия. Разработан способ получения субмикронного порошка оксида алюминия, позволяющий получать материал с контролируемым фазовым составом, в том числе в термодинамически стабильной α -модификации Al₂O₃. Исследованы особенности морфологического строения, фазовые и структурные характеристики порошков после ударно-волнового возлействия.

Ключевые слова: ударно-волновое воздействие, фазовые переходы, система «гидрооксид — оксид алюминия», размер нанокристаллитов.

ВВЕДЕНИЕ

Фазовые переходы в системе «гидрооксид — оксид алюминия» при термическом воздействии и нормальном давлении исследованы достаточно подробно [1–3]. Фазовая диаграмма системы $Al_2O_3-H_2O$ [1] позволяет анализировать фазовые и химические превращения в гидрооксидах и низкотемпературных (водосодержащих) оксидах алюминия. В [1, 2] для высокотемпературных модификаций Al_2O_3 определены температуры фазовых переходов в зависимости от условий получения порошка. В [3] рассмотрены размерные и морфологические изменения в материале при нагреве.

В работах [4, 5] исследовано воздействие ударно-волновой обработки на γ -модификацию Al_2O_3 . Эксперименты проводились по традиционной ампульной схеме сохранения вещества. Показано, что степень перехода γ -фазы в термодинамически стабильную α -модификацию оксида зависит от амплитуды и длительности ударно-волнового воздействия. Для полной стабилизации фазы α - Al_2O_3 необходим мощный заряд прессованного тротила. Изменение размеров и морфологии отдельных частиц не исследовалось, так как целью работы было получение компактного материала.

Существует ряд работ [6, 7] по синтезу различных модификаций оксида алюминия, образующихся при горении или детонацион-

ном разложении смеси гексогена и гиббсита в толстостенных металлических сосудах (бомбах Бихеля). Показана [6] возможность стабилизации α -Al₂O₃, а также новых фаз оксида, например, у-Аl₂О₃. Использование массивных металлических оболочек вокруг заряда приводит к образованию сложных оксидов [7]. В [8] исследовали ударно-волновое воздействие на гиббсит по ампульной схеме. При использовании заряда октогена не происходило образования α -Al₂O₃, при этом материал стабилизировался в новой модификации оксида алюминия, названной авторами γ_1 -Al₂O₃. Однако приведенные рентгенометрические данные позволяют идентифицировать данную фазу как оксинитрид алюминия.

Другие возможные последовательности фазовых превращений гидрооксидов и оксидов алюминия при импульсных воздействиях практически не изучались. Важность таких исследований обусловлена как практической значимостью данного материала (оксида алюминия), так и возможностью получения новых сведений о поведении вещества при импульсном высоко-энергетическом воздействии. Кроме того, представляет интерес получение порошковых материалов с новыми свойствами при экстремальных (взрывных) условиях синтеза.

Целью данной работы является изучение последовательности фазовых переходов в

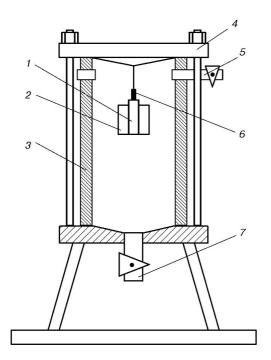


Рис. 1. Схема экспериментальной установки: 1— внутренний цилиндр, 2— внешний цилиндр,

3 — взрывная камера, 4 — крышка, 5, 7 — кран,

6 — заряд

гидрооксидах алюминия (байерит, бемит) при ударно-волновом воздействии и исследование физико-химических свойств синтезированных порошков.

ИСХОДНЫЕ МАТЕРИАЛЫ И СХЕМА ЭКСПЕРИМЕНТОВ

Исходный материал — гидрооксид алюминия — представляет собой порошок белого цвета с насыпной плотностью $\rho=0.75~{\rm r/cm}^3$.

Схема экспериментов приведена на рис. 1. Экспериментальная сборка представляет собой два коаксиальных цилиндра с общим дном. Радиус внутреннего цилиндра во всех сборках был постоянным ($R_{\rm BB}=10~{\rm mm}$), радиус внешнего ($R_{\rm c6}$) изменялся от 11,5 до 22,5 мм. Во внутренний цилиндр засыпали гексоген, который подтрамбовывали до плотности $\rho=1,1~{\rm r/cm}^3$. Во внешний цилиндр помещался исследуемый материал.

Ударно-волновому воздействию подвергался порошок или его смесь с водой в пропорции 3:2. Плотность суспензии $\rho = 1,4 \text{ г/см}^3$.

Экспериментальная сборка помещалась в центр герметичной взрывной камеры из нержавеющей стали объемом 24 дм³, которая закрывалась крышкой. Инициирование взрыва про-

водили электроискровым методом с верхнего торца заряда взрывчатого вещества (ВВ). После подрыва через кран 5 сбрасывалось избыточное давление и осуществлялась вентиляция взрывной камеры. Сбор синтезированного порошка осуществлялся через кран 7 в нижней части взрывной камеры.

Исходный и обработанные взрывом порошки исследовались методами электронной микроскопи (электронный микроскоп JEM-100S со сканирующей приставкой EM-ASID-4), рентгенофазового и структурного анализов (автоматизированный комплекс ДРОН-3), дифференциально-термического анализа (дериватограф фирмы МОМ).

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты электронно-микроскопических исследований свидетельствуют, что исходный порошок состоит из крупных (до 20 мкм) и субмикронных частиц (рис. 2,a). Структура крупных частиц слоистая. Массовое содержание крупной фракции в порошке ≈ 50 %. Субмикронные частицы преимущественно неправильной формы, у некоторых наблюдается огранка.

По данным рентгенофазового анализа исходный порошок представляет собой смесь двух фаз: тригидрооксида алюминия (байерит) и моногидрооксида алюминия (бемит) (рис. 3,a). Ширина дифракционных максимумов для бемита (Бм) больше, чем у байерита (Бр). Это связано с тем, что при отжиге байерита образование бемита происходит при удалении кристаллизационной воды из решетки, что сопровождается дроблением материала [3].

Согласно [1–3] для данных гидрооксидов характерна следующая последовательность фазовых переходов:

Бр
$$\rightarrow$$
 Бм $\rightarrow \gamma$ -Al₂O₃ $\rightarrow \delta$ -Al₂O₃ \rightarrow

$$\rightarrow \theta$$
-Al₂O₃ $\rightarrow \alpha$ -Al₂O₃. (1)

Температуры переходов и наличие промежуточных фаз сильно зависят от метода получения и свойств исходного материала и от условий нагрева [2]. Например, в последовательности (1) возможно отсутствие бемита, но только при длительной выдержке байерита в вакууме при температуре $T=200\,^{\circ}\mathrm{C}$. В этом случае стабилизация γ -Al₂O₃ происходит через

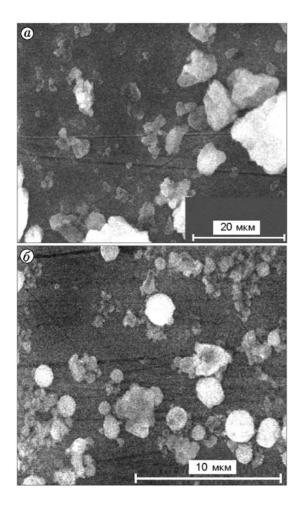


Рис. 2. Типичные фотографии частиц исходного порошка (a) и порошков после ударноволновой обработки при r=1,15 (b)

образование аморфной модификации оксида — ρ -Al₂O₃. При использовании плохо окристаллизованного бемита в последовательности (1) может отсутствовать фаза δ -Al₂O₃.

В работе [3] изучены кристаллографические аспекты образования из гидрооксидов единственной термодинамически стабильной α -фазы Al_2O_3 и теоретически обоснована необходимость формирования промежуточных метастабильных фаз (γ -, δ -, θ - Al_2O_3). Это связано с тем, что наиболее простым переходом от кристаллической структуры бемита является переход к кристаллической решетке типа шпинели, а не к тригональной, характерной для корунда. Структура γ - Al_2O_3 относится к структуре шпинели дефектного типа с незначительным тетрагональным искажением кубической решетки. Модификация δ - Al_2O_3 имеческой решетки. Модификация

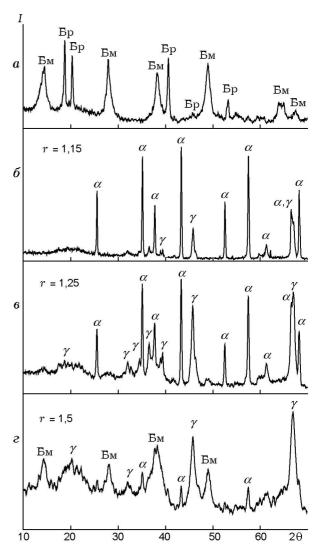


Рис. 3. Рентгенограммы исходного порошка (a) и порошков, обработанных взрывом при $r=R_{\rm c6}/R_{\rm BB}=1.15$ $(\emph{6}),\,1.25$ $(\emph{6}),\,1.5$ $(\emph{2})$

ет кристаллическую решетку, которую можно рассматривать как сверхструктуру трех элементарных ячеек шпинели, а θ -Al₂O₃ кристаллизуется в моноклинной сингонии и обладает деформированной структурой шпинелевого типа.

Многообразие метастабильных модификаций определяется различным распределением катионов алюминия по тетраэдрическим и октаэдрическим пустотам кислородной подрешетки, а последовательность фазовых изменений отражает степень упорядоченности ионов Al^{3+} [9]. Кроме того, превращение материала в α - Al_2O_3 сопровождается перераспределени-

ем атомов кислорода из кубической упаковки в гексагональную.

Зависимость последовательности фазовых превращений от многочисленных факторов определяет необходимость исследовать цепочку превращений в каждом конкретном случае.

При исследовании исходного порошка дифференциально-термическим (ДТА) методом установлено, что на кривой ДТА присутствуют три ярко выраженных эндотермических эффекта — при T = 140, 326, 480 °C. Первый (в интервале $T = 80 \div 240$ °C) связан с удалением из материала влаги адсорбированных газов. При этом масса образца уменьшается на 5,2 %. Второй эндотермический эффект $(T=240 \div 380\ {
m ^{\circ}C})$ связан с отделением кристаллизационной воды и переходом тригидрооксида алюминия в моногидрооксид. При этом уменьшение массы составляет 10,4 %. Третий эндотермический эффект $(T = 380 \div 600 \, ^{\circ}\text{C})$ соответствует переходу моногидрооксида в оксид алюминия $(\gamma - \text{Al}_2 \text{O}_3)$ и сопровождается потерей 9.1~% массы. При $T > 600~^{\circ}$ С на кривой ДТА не наблюдается тепловых эффектов, масса навески уменьшается незначительно (1,7%). Суммарное уменьшение массы образца в исследованном диапазоне температур составляет 26,4 %. Наблюдаемые температуры переходов $\mathrm{Бp} \to \mathrm{Бm}$ и $\mathrm{Бm} \to \gamma\text{-Al}_2\mathrm{O}_3$ хорошо совпадают с данными [1–3].

По результатам ДТА для изучения последовательности фазовых переходов в исходном порошке при нагреве выбраны следующие температуры отжига: 600, 900, 1000, 1200, 1300 °C.

Результаты рентгенофазового анализа порошков свидетельствуют о том, что после отжига при T=600 и 900 °C материал стабилизируется в γ -модификации $\mathrm{Al_2O_3}$. При T=1000 °C наблюдается смесь δ - и γ -фаз оксида. При T=1200 °C фиксируется θ - $\mathrm{Al_2O_3}$, а отжиг при T=1300 °C стабилизирует материал в α - $\mathrm{Al_2O_3}$.

Таким образом, можно утверждать, что в исследуемом материале при термическом воздействии последовательность фазовых переходов полностью совпадает с (1).

Для серии экспериментов с водной суспензией результаты рентгенофазового анализа порошков после ударно-волновой обработки приведены на рис. $3, \delta$ – ϵ . Видно, что порошки состоят из байерита, бемита, γ - и α -Al₂O₃, причем содержание данных фаз в значитель-

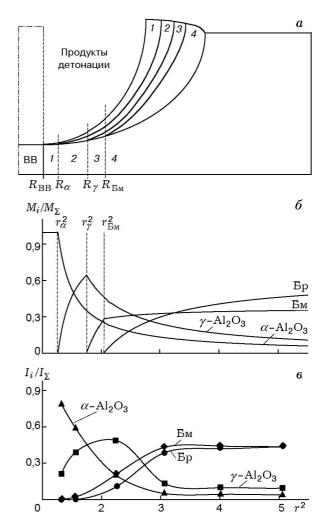


Рис. 4. Схема послойного фазового разделения вещества при ударно-волновом воздействии (a), результаты расчетов по предложенной модели относительно массового содержания (M_i/M_Σ) гидрооксидов и оксидов алюминия (δ) , данные рентгенофазового анализа (ϵ) по относительным интенсивностям I_i/I_Σ линий рентгеновской дифракции для синтезированных порошков

ной степени определяется толщиной слоя суспензии, т. е. зависит от параметров ударноволнового воздействия. Следует отметить, что во всех обработанных взрывом порошках отсутствуют высокотемпературные фазы (δ - и θ -Al₂O₃).

На рентгенограммах исследуемых порошков измерялись амплитуды 100 %-х дифракционных максимумов для наблюдаемых фаз байерита, бемита, γ -Al₂O₃ и α -Al₂O₃ — $I_{\rm Bp}$, $I_{\rm Em}$, I_{γ} , I_{α} соответственно. Далее эти интенсивности нормировались на сумму интенсивностей

 (I_{Σ}) фаз, присутствующих в данном порошке. Результаты обработки рентгенограмм приведены на рис. $4, \epsilon$.

При толщине слоя 1,5 мм ($r=R_{\rm c6}/R_{\rm BB}=1,15$) полученный порошок состоит преимущественно из α -Al₂O₃, содержание γ -фазы незначительно (рис. 3, δ). При r=1,25 содержания фаз γ -Al₂O₃ и α -Al₂O₃ сравнимы (рис. 3, δ). Дальнейшее увеличение слоя суспензии до 5 мм приводит к преимущественной стабилизации γ -Al₂O₃; интенсивности линий бемита и α -Al₂O₃ сравнимы (рис. 3, ε).

В экспериментах с r > 1,75 фазовый состав синтезированных порошков аналогичен составу исходного материала, а при r = 1,75 наблюдается максимальное содержание бемита, которое с увеличением толщины слоя до 10 мм падает и приближается к содержанию в исходном порошке ($c = I_{\rm Bm}/(I_{\rm Bm} + I_{\rm Bp}) = 0,37$).

Состав полученных порошков можно объяснить следующим образом. По схеме эксперимента слой исходной суспензии нагружается от контактирующего с ним заряда BB (рис. 4, a). В граничном с ВВ подслое 1 материала реализуются максимальные значения давления р и температуры ударного сжатия T, которых достаточно для стабилизации α -Al₂O₃. По мере распространения ударной волны по слою материала ее интенсивность затухает. При уменьшении параметров p, T до определенного значения становится энергетически выгодным образование γ -Al₂O₃, что и происходит в подслое 2 суспензии. Последующего уменьшения параметров достаточно только для перехода байерита в бемит (подслой 3). Далее в порошке не происходит каких-либо изменений фазового состава исходного материала (подслой 4).

Таким образом, при динамическом воздействии происходит разделение ударно-сжатого слоя вещества на подслои, отличающиеся фазовым составом. В направлении от контактирующей с ВВ поверхности наблюдается следующая последовательность:

$$\alpha$$
-Al₂O₃ $\rightarrow \gamma$ -Al₂O₃ \rightarrow BM \rightarrow (Bp + BM).

Обозначим внешние радиусы соответствующих подслоев R_{α} , R_{γ} , $R_{\rm Bm}$, $R_{\rm Ep}$ и перейдем к безразмерным параметрам r_{α} , r_{γ} , $r_{\rm Bm}$, $r_{\rm Bp}$, используя в качестве масштаба величину $R_{\rm BB}$. Исходя из цилиндрической симметрии экспериментальной сборки можно получить зависимости массы порошков определенного фазового состава $(M_{\alpha}, M_{\gamma}, M_{\rm Bm}$ и $M_{\rm Bp})$ от относительного

радиуса сборки r:

$$1 < r < r_{\alpha}$$
: $M_{\Sigma} = M_{\alpha}$, $M_{\alpha}/M_{\Sigma} = 1$;

$$r_{\alpha} < r < r_{\gamma}$$
: $M_{\Sigma} = M_{\alpha} + M_{\gamma}$,
 $M_{\alpha}/M_{\Sigma} = (r_{\alpha}^{2} - 1)/(r^{2} - 1)$,
 $M_{\gamma}/M_{\Sigma} = (r^{2} - r_{\alpha}^{2})/(r^{2} - 1)$;

$$\begin{split} r_{\gamma} < r < r_{\rm E_M} \colon & \ M_{\Sigma} = M_{\alpha} + M_{\gamma} + M_{\rm E_M}, \\ & \ M_{\alpha}/M_{\Sigma} = (r_{\alpha}^2 - 1)/(r^2 - 1), \\ & \ M_{\gamma}/M_{\Sigma} = (r_{\gamma}^2 - r_{\alpha}^2)/(r^2 - 1), \\ & \ M_{\rm E_M}/M_{\Sigma} = (r^2 - r_{\gamma}^2)/(r^2 - 1); \end{split}$$

$$\begin{split} r_{\rm BM} < r \colon & \ M_{\Sigma} = M_{\alpha} + M_{\gamma} + M_{\rm BM} + M_{\rm Bp}, \\ & \ M_{\alpha}/M_{\Sigma} = (r_{\alpha}^2 - 1)/(r^2 - 1), \\ & \ M_{\gamma}/M_{\Sigma} = (r_{\gamma}^2 - r_{\alpha}^2)/(r^2 - 1), \\ & \ M_{\rm BM}/M_{\Sigma} = ((r_{\rm BM}^2 - r_{\gamma}^2) + \\ & \ + c(r^2 - r_{\rm BM}^2))/(r^2 - 1), \\ & \ M_{\rm Bp}/M_{\Sigma} = (1 - c) \times \\ & \times (r^2 - r_{\rm BM}^2)/(r^2 - 1), \end{split}$$

где M_{Σ} — полная масса синтезированного порошка, c — массовая доля бемита в исходном материале.

Результаты расчетов приведены на рис. $4, \delta$. Видно, что расчетные зависимости качественно коррелируют с экспериментальными данными. Этот факт подтверждает справедливость высказанного выше предположения о разделении ударно-сжатого вещества на подслои, отличающиеся фазовым составом.

Полученные результаты позволяют восстановить последовательность фазовых переходов в системе «гидрооксид — оксид алюминия» при ударно-волновом воздействии:

$$\mathrm{Bp} \to \mathrm{Bm} \to \gamma\text{-}\mathrm{Al}_2\mathrm{O}_3 \to \alpha\text{-}\mathrm{Al}_2\mathrm{O}_3.$$
 (2)

К сожалению, не представляется возможным экспериментально определить тарировочные зависимости, связывающие отношения $M_{\rm Bp}/M_{\Sigma},~M_{\rm Bm}/M_{\Sigma},~M_{\gamma}/M_{\Sigma},~M_{\alpha}/M_{\Sigma}$ с соответствующими рентгенометрическими данными — $I_{\rm Bp}/I_{\Sigma},~I_{\rm Bm}/I_{\Sigma},~I_{\gamma}/I_{\Sigma},~I_{\alpha}/I_{\Sigma}$. Однако для качественных оценок логично предположить пропорциональность соответствующих величин.

Статистическая обработка экспериментальных данных (см. рис. 4, 6) позволяет оценить значения внешних радиусов подслоев. Для данной серии экспериментов $r_{\alpha}=1,13,\ r_{\gamma}=1,32,\ r_{\rm BM}=1,40.$

В экспериментах с сухим порошком наблюдается аналогичная картина фазового расслоения материала под действием ударной волны. Основное отличие заключается в существенном увеличении толщин подслоев. Например, значение r_{α} возрастает до 1,82, т. е. при толщине слоя исходного материала менее 8,2 мм синтезированный порошок состоит только из α -модификации оксида. Это связано с тем, что в данном случае реализуются более высокие температуры ударного сжатия по сравнению с экспериментами с суспензией порошка.

Сопоставляя последовательности фазовых переходов при отжиге (1) и ударно-волновом воздействии (2), можно заметить, что в последнем случае отсутствуют высокотемпературные δ - и θ -модификации оксида. По-видимому, необходимые перераспределения катионов алюминия и перегруппировка кислородной подрешетки происходят непосредственно во фронте ударной волны за счет деформационного искажения кристаллической решетки.

Таким образом, данную постановку экспериментов можно рассматривать как метод исследования фазовых переходов в веществе при ударно-волновом воздействии. В отличие от существующих ампульных методов появляется возможность проследить последовательность фазовых превращений и расширить класс исследуемых материалов. В частности, можно исследовать гидрооксиды металлов, содержащие в своем составе значительное количество воды, в то время как при использовании ампульных схем необходимо предпринимать специальные меры для сохранения вещества. Следует отметить простоту реализации проводимых экспериментов, а также обработки и интерпретации полученных результатов.

Интересно сравнить полученные нами результаты с данными [4]. В работе [4] исследовался фазовый переход $\gamma \to \alpha$ в оксиде алюминия при взрывной обработке порошка с использованием ампульной схемы экспериментов. Для полного перехода в α -модификацию оксида применялся мощный заряд прессованного тротила толщиной 50 мм, что определяло значительную металлоемкость конструкции сохранения и, вероятно, небольшое количество обработанного материала. В наших экспериментах с сухим порошком при незначительной массе заряда менее мощного ВВ (гексоген, 12 г) масса материала, стабилизированного в

Таблица 1

Порошок	r	$d_{0,5}$, нм	σ
Исходный		236	1,63
	1,15	137	1,74
Обработанный	1,25	145	1,67
взрывом	1,5	157	1,70
	2	193	1,71

 α -модификации, в три раза превысила количество используемого BB и составила ≈ 35 г.

Результаты электронной микроскопии порошков, полученных в экспериментах с водной суспензией, свидетельствуют о том, что в них отсутствуют крупные частицы микронных размеров. По сравнению с исходным материалом частицы более сфероидизированы (см. рис. $2, \delta$). Некоторые частицы имеют правильную сферическую форму и обладают большей электронной плотностью. Это позволяет предположить, что в процессе ударно-волновой обработки они проходят через стадию расплава. Количество сферических частиц максимально для эксперимента с относительным радиусом сборки r=1,15 и уменьшается по мере увеличения толщины слоя суспензии.

На электронно-микроскопических снимках измерялся диаметр частиц и строилось их распределения — логарифмически нормальный для всех исследуемых порошков. Параметры распределений — среднечисленный диаметр $d_{0,5}$ и дисперсия σ — приведены в табл. 1. Для исходного порошка $d_{0,5}=236\,$ нм, $\sigma=1,6.$ Следует отметить, что в данном случае распределение строилось только для субмикронной фракции порошка, так как количество крупных частиц незначительно.

Для обработанных взрывом порошков $(r \leqslant 1.5)$ среднечисленный диаметр частиц меняется незначительно: от 137 нм при r=1.15 до 157 нм при r=1.5, что практически в два раза меньше значения $d_{0.5}$ субмикронной фракции исходного порошка. При толщине слоя суспензии 10 мм (r=2) среднечисленный диаметр частиц возрастает до 193 нм и приближается к значению $d_{0.5}$ исходного порошка.

Видно, что размер области (при $r \leqslant 1,5$), где диаметр частиц практически постоянен и не зависит от интенсивности ударно-волнового воздействия, коррелирует с внешним радиусом

подслоя вещества, претерпевающего фазовый переход тригидрооксида (Бр) в моногидрооксид (Бм): $r_{\text{Бм}} = 1.40$. Это позволяет предположить следующий механизм дробления исходного порошка при ударно-волновом воздействии. Образование моногидрооксида и кристаллических фаз оксида сопровождается выделением из материала кристаллизационной воды, которая за короткое время ударно-волнового сжатия не успевает выделиться из объема материала. При последующей разгрузке и разлете создается высокое давление водяных паров внутри частиц, что и приводит к их разрушению. Аналогичный механизм дробления наблюдали в [3] в процессе превращения тригидрооксидов алюминия в моногидрооксиды при нагреве.

Безусловно, разрушение исходного материала при ударно-волновом нагружении происходит также и за счет других процессов, характерных для импульсных воздействий (выход ударной волны на свободную поверхность частицы, межчастичное взаимодействие и т. д.), но, по-видимому, предложенный механизм является определяющим.

По данным электронно-микроскопических исследований образцов из серии экспериментов, в которых в качестве исходного материала использовался сухой порошок, после ударноволнового нагружения материал также состоит из отдельных субмикронных частиц с характерным размером ≈150 нм, причем значительно возрастает количество частиц правильной сферической формы.

Удивительным и неожиданным фактом оказалось отсутствие в синтезированном материале спеков, хотя в проведенных экспериментах ударно-волновое сжатие сопровождается интенсивным взаимодействием частиц между собой и разогревом материала. По-видимому, после выхода кристаллизационной воды из объема частиц образовавшиеся водяные пары являются своеобразным демпфером, предотвращающим процессы спекания.

Таким образом, данная постановка экспериментов позволяет получать субмикронный ($\approx 150\,$ нм) порошок оксида алюминия с контролируемым фазовым составом. Следует особо отметить возможность синтеза порошков, стабилизированных только в термодинамически стабильной α -модификации оксида (подслой 1 на рис. 4,a), что представляет практический интерес. Такой порошок может использовать-

ся, в частности, при получении мелкозернистых керамик и полировальных паст.

Результаты проведенных исследований позволяют предположить, что частицы правильной сферической формы (рис. $2, \delta$) стабилизированы в α -модификации оксида. Правильная сферическая форма частиц свидетельствует о прохождении материала через расплав, а отсутствие спеков — об их индивидуальном остывании.

Интересен факт стабилизации частиц субмикронных размеров при остывании расплава в α -модификации оксида. Так, например, в работе [10] специально исследовалась возможность получения субмикронного порошка α -Al₂O₃ за счет нагрева газовзвеси частиц до высоких температур. Было показано, что независимо от фазового состава исходного порошка $(\alpha -, \gamma - Al_2O_3)$ при охлаждении частиц размером менее 0,5 мкм, прошедших через расплав, материал стабилизируется в высокотемпературных метастабильных модификациях оксида (θ и δ -Al₂O₃). Аналогичные экспериментальные результаты получены при выращивании нитевидных кристаллов из расплава [11] и при нанесении газотермических покрытий [12]. В последней работе теоретически обосновано, что при быстром охлаждении расплава термодинамически выгоднее образование метастабильных фаз оксида алюминия, а не стабильной фазы α -Al₂O₃.

В нашем случае нагрев частиц до температуры плавления происходит во фронте ударной волны. Последующему быстрому остыванию материала до равновесной температуры способствует малый размер частиц, их изолированность друг от друга и наличие в системе воды. Для частиц диаметром ≈ 200 нм характерное время остывания можно оценить как $t \approx 0.25 d^2/\chi = 10^{-2}$ мкс, где $\chi = 1.1 \cdot 10^{-2}$ см $^2/\mathrm{c}$ [13] — коэффициент температуропроводности. Такие времена значительно меньше длительности ударно-волнового воздействия. Следовательно, кристаллизация вещества происходит еще при высоком давлении, что, по-видимому, и приводит к стабилизации материала в α -модификации оксида.

Рентгеноструктурный анализ обработанных порошков показал, что ударно-волновое воздействие оказывает различное влияние на материал, стабилизированный в α - или γ -модификации оксида алюминия.

Известно, что взрывная обработка порош-

Таблица 2

№ п/п	Условия эксперимента	$a,\mathrm{\AA}$	L, hm	$\langle \varepsilon^2 \rangle^{0,5}, \%$		
Эксперименты с суспензиями						
1	$r=1{,}15$	$7,940 \pm 0,017$	39	0,12		
2	r = 1.25	$7,935 \pm 0,013$	26	0,14		
3	r = 1.5	$7,916 \pm 0,016$	11	0,11		
Эксперименты с сухим порошком						
4	r = 1,25	$7,951 \pm 0,013$	59	0,43		
5	r = 2.0	$7,928 \pm 0,013$	24	0,33		
Эксперименты с отжигом порошков						
600 °C		$7,911 \pm 0,020$	6	0,07		
900 °C		$7,924 \pm 0,015$	9	0,08		
Данные каталога ASTM						
		7,9004				
	•		•	•		

ков в ампулах сохранения [4, 14] приводит к значительному активированию материала. Это проявляется в повышенной скорости усадки взрывного компакта при последующем спекании и, кроме того, в увеличении уровня микродеформаций кристаллической решетки $(\varepsilon^2)^{0.5}$ и уменьшении размера областей когерентного рассеяния (L).

Однако в специально проведенных нами исследованиях по спекаемости порошков, обработанных взрывом и стабилизированных в α-модификации Al₂O₃, не зафиксировано повышения скорости усадки по сравнению со стандартными материалами. Сравнительный анализ рентгенометрических данных для обработанных порошков и порошков после отжига при $T=1\,300~^{\circ}{\rm C}$ показал идентичность характеристик линий рентгеновской дифракции (интегральная полуширина, интенсивность, угловое положение). По-видимому, для порошка, стабилизированного в α -модификации, отсутствие активирования материала в результате ударно-волновой обработки связано с наличием в системе воды, выступающей в качестве демпфера между частицами, а также с прохождением материала через расплав.

Рентгенометрические данные γ -модификации Al_2O_3 исходного порошка после отжига при T=600 °C близки к значениям, приведенным в каталоге ASTM (№ 10-425). γ -Al $_2O_3$ является низкотемпературной кристаллической модификацией и содержит до 2 % структурно-

связанной воды [1, 3] в зависимости от температуры отжига. Поэтому отжиг исходного порошка при $T=900\,^{\circ}\mathrm{C}$, сопровождающийся удалением гидроксильных групп из материала, приводит к смещению дифракционных линий в сторону меньших углов, что соответствует увеличению параметра кристаллической решетки a с 7.911 до 7.924 Å(табл. 2).

Линии рентгеновской дифракции γ -Al $_2$ O $_3$ для всех синтезированных порошков смещены в сторону меньших углов относительно данных каталога ASTM, причем сдвиг может быть значительным. Например, для плоскости [400] ($2\theta=45.9^{\circ}$) сдвиг достигает 0.5° .

Для обеих серий экспериментов характерная полуширина линий рентгеновской дифракции уменьшается, а их сдвиг относительно данных каталога ASTM увеличивается при возрастании интенсивности ударно-волнового воздействия (последовательность экспериментов: $3 \to 2 \to 1$; $5 \to 4$, табл. 2).

Рентгенометрические данные обрабатывались методом Холла — Вильямсона [15], позволяющим разделить вклад микродеформаций кристаллической решетки $\langle \varepsilon^2 \rangle^{0,5}$ и размеров областей когерентного рассеяния L в уширение дифракционных линий. Результаты приведены в табл. 2.

В серии экспериментов с суспензиями уровень микродеформаций практически не зависит от условий синтеза. По-видимому, наличие в системе воды предотвращает межчастичное

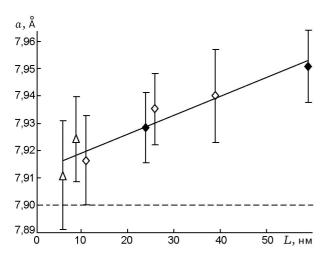


Рис. 5. Зависимость параметра кристаллической решетки a от характерного размера кристаллитов L:

ф — серия экспериментов с сухим порошком; ф — серия экспериментов с водной суспензией; Δ — отжиг, штриховая линия — ASTM

взаимодействие при ударном сжатии.

В экспериментах с сухим порошком значение $\langle \varepsilon^2 \rangle^{0,5}$ возрастает с увеличением интенсивности взрывного воздействия, причем уровень микродеформаций значителен и достигает 0,43 %, что сравнимо с данными для ампульных схем [14]. По-видимому, отсутствие свободной воды и наличие только водных паров хотя и препятствуют спеканию частиц, но не исключают их взаимодействия между собой.

Результаты электронно-микроскопических исследований и рентгеноструктурного анализа свидетельствуют о том, что синтезированные частицы не являются монокристаллами и состоят из нанокристаллитов.

Значения параметра кристаллической решетки a для исследуемых порошков приведены в табл. 2 и на рис. 5. Видно, что параметр кристаллической решетки γ -Al₂O₃ линейно зависит от характерного размера нанокристаллитов (L, нм):

$$a = 6.87 \cdot 10^{-4} L + 7.912$$
 [Å].

Следует отметить, что характерный размер области когерентного рассеяния уменьшается при понижении уровня ударно-волнового воздействия (последовательность экспериментов: $1 \to 2 \to 3$; $4 \to 5$, табл. 2).

Изменение параметра кристаллической решетки γ - $\mathrm{Al_2O_3}$ в результате ударноволнового воздействия, по-видимому, так же

как и при отжиге, связано с удалением гидроксильных групп, но определяющим фактором является размер нанокристаллитов. Данный эффект характерен для наноразмерных материалов и подробно исследован в [16].

выводы

- 1. Предложен новый метод изучения последовательности фазовых переходов в порошковых материалах при ударно-волновом воздействии. Исследованы фазовые переходы в системе «гидрооксид оксид алюминия».
- 2. Установлено, что реализуемая последовательность фазовых превращений: байерит \rightarrow бемит $\rightarrow \gamma$ -Al₂O₃ $\rightarrow \alpha$ -Al₂O₃ характеризуется отсутствием переходных высокотемпературных модификаций оксида алюминия.
- 3. Синтезированы субмикронные порошки оксида алюминия (диаметр частиц ≈ 150 нм) различного фазового состава, в том числе порошки, стабилизированные только в термодинамически стабильной α -модификации.
- 4. Проведены исследования особенностей морфологического строения, фазового состава и структурных характеристик порошков после ударно-волнового воздействия. Установлена линейная зависимость параметра кристаллической решетки γ -Al₂O₃ от характерного размера областей когерентного рассеяния.

ЛИТЕРАТУРА

- 1. Торопов Н. А., Берзаковский В. П., Лапин В. В. и др. Диаграммы состояния силикатных систем: Справочник. Л.: Наука, 1970. С. 18–34.
- 2. **Липпенс Б. К., Стеггерда Й. Й.** Активная окись алюминия // Строение и свойства адсорбентов и катализаторов. М.: Мир, 1973. С. 191–232.
- 3. **Ханамирова А. А.** Глинозем и пути уменьшения содержания в нем примесей. Ереван: Изд-во АН АрмССР, 1983.
- 4. Адаменко Б. Г., Пашков П. О., Тамбовцева Л. Н. Воздействие ударно-волновой обработки на фазовые превращения в окиси алюминия // Порошковая металлургия. 1978. № 10. С. 93–97.
- Адаменко Б. Г., Тамбовцева Л. Н. Фазовые превращения в γ-окиси алюминия при воздействии ударных волн и последующей термической обработке // Физика импульсных давлений. М.: ВНИИОФИ, 1979. № 44 (74).
- 6. Цвигунов А. Н., Хотин В. Г., Кузнецов С. Е. и др. Детонационный синтез взрывом новой модификации оксида алюминия из

- гиббсита // Стекло и керамика. 1998. \mathbb{N}_2 12. С. 16–20.
- 7. Цвигунов А. Н., Хотин В. Г., Васкевич В. В. и др. Синтез новой модификации оксида алюминия, ганита и цинкита при детонации // Стекло и керамика. 2000. № 11. С. 24–26.
- 8. Цвигунов А. Н., Хотин В. Г., Красиков Ф. С. и др. Синтез новой модификации оксида алюминия со структурой шпинели при ударно-волновом воздействии на гиббсит // Стекло и керамика. 1999. № 8. С. 16—18.
- 9. Руксби Х. П. Окислы и гидроокислы алюминия и железа // Рентгеновские методы изучения и структура глинистых минералов. М.: Мир, 1985. С. 415–447.
- Plummer M. The formation of metastable aluminas at high temperatures // J. Appl. Chem. 1958. N 8. P. 35–44.
- 11. **Серов М. М., Егоров О. Н., Вальянов Г. Е. и др.** Оксидные волокна, полученные закалкой расплава // Физика и химия обработки материалов. 1994. № 2. С. 129–131.

- 12. Вурзель Ф. Б., Хмельник В. А., Назаров В. Ф., Косоручкин Г. В. О получении газотермических корундовых покрытий // Физика и химия обработки материалов. 1988. № 3. С. 86–92.
- 13. Wefers K. Nomenclature, preparation, and properties of aluminum oxides, oxide hydroxides, and trihydroxides // Alumina Chemicals Science and Technology Handbook / L. D. Hart (Ed.). The Amer. Ceramic Soc., Inc., 1990. P. 13–22.
- 14. **Прюммер Р.** Обработка порошкообразных материалов взрывом. М.: Мир, 1990.
- 15. **Липсон Г., Стипл Г.** Интерпретация порошковых рентгенограмм. М.: Мир, 1972.
- 16. Морохов И. Д., Трусов Л. И., Лаповок В. Н. Физические явления в ультрадисперсных средах. М.: Энергоатомиздат, 1984.

Поступила в редакцию 20/VIII 2003 г., в окончательном варианте — 16/III 2004 г.