
76 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 5

УДК 532.592
DOI: 10.15372/PMTF202415502

СВОБОДНОЕ ДВИЖЕНИЕ ЦИЛИНДРА

ПОД ПОВЕРХНОСТЬЮ ГЛУБОКОЙ ЖИДКОСТИ

А. Е. Голиков, Н. И. Макаренко

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск, Россия
E-mails: a.golikov@g.nsu.ru, makarenko@hydro.nsc.ru

Рассматривается нелинейная задача о неустановившемся движении кругового цилин-
дра в идеальной бесконечно глубокой жидкости под действием возникающих гидроди-
намических нагрузок. Используется метод сведения решения исходной математической
задачи к решению эквивалентной интегродифференциальной системы уравнений для
функции, определяющей форму искомой свободной поверхности, для нормальной и тан-
генциальной составляющих скорости жидкости на ней и для неизвестной траектории
движения цилиндра. Построена начальная по времени асимптотика решения, описыва-
ющего движение цилиндра из состояния покоя.

Ключевые слова: идеальная жидкость, свободная граница, круговой цилиндр, на-
чальная асимптотика движения

Введение. Задача о движении цилиндра в идеальной жидкости является модельной
гидродинамической задачей для изучения взаимодействия тела со свободной поверхно-
стью. Этой задаче посвящено большое количество исследований, выполненных с исполь-
зованием линейной теории волн [1–3]. В нелинейной постановке начальная стадия дви-
жения жидкости, вызванного заданным ускорением погруженного цилиндра, изучалась с
помощью полуаналитических методов в работах [4–9]. Численные методы применялись

при решении этой задачи в работах [10–13], а экспериментальное изучение проводилось в
работах [14–16]. Аналитическому исследованию гидродинамических нагрузок на цилиндр
посвящены работы [17, 18].

В данной работе исследуется совместное движение жидкости и свободноплавающего

цилиндра. Выведена замкнутая система интегродифференциальных уравнений, модели-
рующая движение цилиндра в точной нелинейной постановке. Построена начальная по
времени асимптотика ее решения, описывающего всплытие и погружение цилиндра из
состояния покоя под действием силы плавучести.

1. Уравнения движения жидкости. Рассматривается двумерное нестационарное
безвихревое течение идеальной несжимаемой жидкости в поле силы тяжести. Исходными
являются уравнения Эйлера для вектора скорости u = (U, V ) и давления p, записанные в
безразмерных переменных:

Ut + UUx + V Uy + px = 0, Vt + UVx + V Vy + py = −1,
(1)

Ux + Vy = 0, Uy − Vx = 0.
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Рис. 1. Схема течения

Область течения в плоскости xOy (рис. 1) ограничена искомой свободной поверхно-
стью Γ(t): y = η(x, t) (положение равновесия y = 0) и поверхностью кругового цилиндра
S(t): (x− xc(t))

2 + (y− yc(t))
2 = r2. Поскольку цилиндр движется под действием возника-

ющих гидродинамических нагрузок, траектория центра его сечения xc(t) = (xc(t), yc(t))
также заранее неизвестна и подлежит определению.Масштабы для введения безразмерных
переменных выбираются таким образом, что все линейные размеры отнесены к известному
расстоянию h между осью цилиндра в начальный момент времени t = 0 и невозмущен-
ным уровнем свободной поверхности. При этом в качестве масштабов времени t, скорости
жидкости u и давления p принимаются величины

√
h/g,

√
gh и ρgh соответственно (ρ —

плотность жидкости). Для цилиндра, полностью погруженного в жидкость, отношение
r = R/h размерного радиуса R к начальному заглублению оси h находится в диапазоне
0 < r < 1. На свободной границе Γ(t) должны выполняться кинематическое и динамиче-
ское условия

ηt + Uηx = V, p = pa/(ρgh) = const, (x, y) ∈ Γ(t), (2)

где pa — атмосферное давление. На границе цилиндра требуется выполнение условия
непротекания

(u− ẋc(t)) · n = 0, (x, y) ∈ S(t), (3)

где n — нормаль к поверхности цилиндра. Предполагается, что на бесконечности скорость
жидкости стремится к нулю:

(U, V ) → (0, 0), η → 0, x2 + y2 →∞.

В момент времени t = 0 задаются начальное положение цилиндра xc(0) и его скорость
ẋc(0), форма свободной поверхности и поле скоростей в области течения:

η(x, 0) = η0(x), u(x, y, 0) = u0(x, y).

При этом начальные данные должны удовлетворять условиям согласования

U0x + V0y = 0, U0y − V0x = 0, y < η0(x),

(u0 − ẋc(0)) · n0 = 0, (x, y) ∈ S(0).

Эти условия выполняются автоматически, в случае если цилиндр начинает движение с
нулевой начальной скоростью в первоначально покоящейся жидкости:

η0(x) ≡ 0, u0(x, y) ≡ 0, ẋc(0) = 0 (t = 0).
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2. Редукция задачи к уравнениям на свободной границе. Исходные уравнения
движения жидкости сводятся к равносильной системе граничных интегродифференциаль-
ных уравнений для функции η(x, t), определяющей форму свободной поверхности, а также
для касательной и нормальной скоростей жидкости u и v на кривой Γ:

u(x, t) = (U + ηxV )
∣∣
y=η(x,t)

, v(x, t) = (V − ηxU)
∣∣
y=η(x,t)

.

Давление p исключается из рассмотрения с помощью динамического условия (2) путем
проецирования векторного уравнения импульса в системе (1) на касательное направление
τ = (1, ηx) к свободной границе y = η(x, t). С учетом кинематического условия (2) отсюда
получаем систему дифференциальных уравнений

ηt = v, ut +
1

2

∂

∂x

(u2 − 2ηxuv − v2

1 + η2
x

)
+ ηx = 0. (4)

Систему (4) дополняет граничное уравнение, которое порождается интегральным пред-
ставлением комплексной скорости F (z, t) = U − iV , аналитической по z = x + iy в двух-
связной области течения с границей Γ ∪ S:

2πiF (z, t) =

∫
Γ(t)

F (ζ, t) dζ

ζ − z
+

r2

(z − zc(t))2

∫
Γ(t)

F (ζ, t) dζ

ζ − z∗
+

2πir2żc(t)

(z − zc(t))2
. (5)

Здесь z∗ = zc(t) + r2/(z − zc(t) ) — инверсия точки z относительно окружности S(t) ради-
усом r с центром zc(t) = xc(t) + iyc(t); черта означает комплексное сопряжение. В форму-
ле (5) присутствуют интегралы только по свободной границе Γ(t), которые согласно тео-
реме Милн-Томсона об окружности обеспечивают выполнение условия непротекания (3)
на движущемся цилиндре. Вещественное интегральное уравнение для функций u, v, η
получается из комплексного соотношения (5) в пределе при z → z(x, t) = x + iη(x, t),
ζ(s, t) = s + iη(s, t) ∈ Γ(t) и имеет вид

πv(x, t) + v.p.

∞∫
−∞

A(x, s; t)v(s, t) ds = v.p.

+∞∫
−∞

B(x, s; t)u(s, t) ds + vd(x, t), (6)

где v.p. — главное значение; A, B — ядра сингулярных операторов, задаваемые формулой

A(x, s; t) + iB(x, s; t) =
izx(x, t)

z(x, t)− ζ(s, t)
+

ir2 z̄x(x, t)

[z̄(x, t)− z̄c(t)]2[z∗(x, t)− ζ(s, t)]
,

z∗(x, t) — инверсия точки z(x, t) относительно окружности S(t); функция

vd(x, t) = Re
(2πi żc(t) zx(x, t)

z(x, t)− zc(t)

)
является нормальной компонентой скорости на свободной поверхности, индуцируемой ди-
полем, сосредоточенным на оси цилиндра z = zc(t).

В случае если начальное поле скоростей u0 имеет ненулевую циркуляцию γ 6= 0 во-
круг цилиндра, в правую часть (5) входит дополнительное слагаемое γ/(z − zc) типа
точечного вихря. В отсутствие циркуляции можно ввести потенциал ϕ для касательной

скорости u = ϕx, который является граничным следом ϕ(x, t) = Φ(x, η(x, t), t) для одно-
значной функции — потенциала Φ поля скоростей жидкости U = Φx, V = Φy. Система (4),
рассматриваемая для пары функций (η, ϕ), представляет собой известную гамильтонову
формулировку Захарова [19] задачи о волнах на воде. Аналитическая реализация действия
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нелокального оператора Дирихле — Неймана v = N(η)ϕ (нормальной производной) с по-
мощью интегрального уравнения с ядрами, нелинейно зависящими от формы свободной
поверхности η, предложена Л. В.Овсянниковым [20].Модификация этого подхода примени-
тельно к задаче о погруженном в жидкости цилиндре с использованием представления (5)
подробно обсуждалась в работах [5, 7, 8].

3. Уравнение движения цилиндра. Траектория центра масс x = xc(t) тела, дви-
жущегося в тяжелой жидкости, определяется обыкновенным дифференциальным уравне-
нием

mẍc = fH + fA + mg, (7)

где m — масса тела; fH — вектор гидродинамических реакций; fA — гидростатическая

сила Архимеда; g = (0,−g) — вектор ускорения свободного падения. Для цилиндра, со-
стоящего из однородного материала с плотностью ρc, центр масс m = πρcR

2 совпадает

с центром окружности S(t) радиусом R. Тогда в безразмерных переменных, введенных
ранее для системы (1), уравнение (7) записывается в виде

πr2(βẍc + (β − 1)ey) = fH , fH =

∫
S(t)

pH n ds, (8)

где β = ρc/ρ — коэффициент плавучести цилиндра; pH — негидростатическая часть

полного давления p; ey = (0, 1) — орт оси Oy; n — единичная внешняя нормаль к окруж-
ности S(t). С учетом аналитичности комплексной скорости F (z, t) по переменной z = x+iy
уравнение (8) можно записать в комплексной форме. При нахождении вектора гидродина-
мических нагрузок fH = (X, Y ), действующих со стороны жидкости на цилиндр, исполь-
зуем формулу Седова (формулу (3.5) в [21. Гл. 1, § 3]), согласно которой

X + iY =
i

2

∫
S(t)

F 2(z, t) dz +
d

dt

(
πr2żc(t) + i

∫
S(t)

zF (z, t) dz
)
. (9)

Для вычисления контурных интегралов в формуле (9) применим представление (5) функ-
ции F (z, t), которое содержит интегралы только по свободной границе Γ(t). Раскладывая

величину z∗ = zc(t) + r2/ (z − zc(t)) в ряд по степеням параметра r, запишем соотноше-
ние (5) в виде мультипольного разложения

F (z, t) = H(z, t) +
r2żc(t)

(z − zc(t))2
− r2

(z − zc(t))2

∞∑
n=0

r2n H(n)(zc(t), t)

(z − zc(t))n
, (10)

где

H(n)(z, t) =
1

2πi

∫
Γ(t)

F (ζ, t) dζ

(ζ − z)n+1
, H(z, t)

def
= H(0)(z, t). (11)

Из определения (11) коэффициентов H(n) следует, что функции H(n)(z, t) аналитичны по z
всюду в области под свободной границей Im z < η(x, t). Поэтому согласно теореме о выче-
тах для них справедливы равенства

1

2πi

∫
S(t)

H(z, t)

(z − zc(t))n+2
dz = Res

z=zc(t)

( H(z, t)

(z − zc(t))n+2

)
= H(n+1)(zc(t), t).

Подставляя выражение (10) в формулу (9) и аналогичным образом вычисляя возникающие
при этом интегралы по окружности S(t), получаем формулу для нагрузок

X + iY = πr2
[
− z̈c(t) + 2 H ′

t(zc(t), t) + 2G(zc(t), t)
]
, (12)
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где функция G имеет вид

G(zc(t), t) =
∞∑

n=0

r2nH(n)(zc(t), t) H(n+1)(zc(t), t). (13)

Вторая производная z̈c в формуле (12) учитывает присоединенную массу цилиндра при

его нестационарном движении в неограниченной жидкости. Слагаемое в (12) с производ-
ной H ′

t, соответствующее интегралу с zF (z, t) в формуле Седова (9), также учитывает
неустановившийся характер процесса. Функция G, билинейно зависящая от коэффициен-
тов H(n), представляет собой интеграл от квадрата F 2 в правой части (9), который также
присутствует в известной формуле Блазиуса — Чаплыгина для нелинейных нагрузок в

случае стационарного движения. Основным свойством представления (12) является его
зависимость только от функции η, определяющей мгновенную форму свободной грани-
цы Γ(t), поля скоростей (u, v) на ней и траектории движения центра цилиндра zc(t). Та-
ким образом, уравнение (8), замыкающее систему граничных интегродифференциальных
уравнений (4), (6), принимает окончательную форму

(1 + β) z̈c(t)− 2 H ′
t(zc(t), t)− 2G(zc(t), t) = i(1− β), (14)

где функции H, G определены выше формулами (11), (13). Заметим, что полученная си-
стема уравнений (4), (6), (14) равносильна исходной нелинейной задаче о движении неза-
крепленного цилиндра под свободной поверхностью в точной постановке. При выводе этой
системы не принимались упрощающие предположения.

4. Асимптотика движения из состояния покоя. Рассмотрим совместное движе-
ние жидкости и кругового цилиндра с плавучестью β 6= 1 из состояния покоя при началь-
ных данных

η(x, 0) = u(x, 0) = v(x, 0) = 0, zc(0) = −i, żc(0) = 0.

Решение уравнений (4), (6), (14) будем искать в виде степенных рядов

η = t2η2(x) + t3η3(x) + t4η4(x) + . . . , u = t3u3(x) + t4u4(x) + . . . ,

v = tv1(x) + t2v2(x) + t3v3(x) + t4v4(x) + . . . , zc(t) = −i + c2t
2 + c3t

3 + c4t
4 + . . .

с вещественными функциональными коэффициентами ηn, un, vn и комплексными числовы-
ми коэффициентами cn = an+ibn. В силу дифференциальных уравнений (4) коэффициенты
рядов для функций η, u, v связаны рекуррентными соотношениями

ηn+1 =
vn

n + 1
(n > 1), u3 =

1

6
(v2

1 − v1)x, u4 =
1

4
(v1v2)x −

1

12
v2x, . . .

таким образом, что ряды для функций η, u однозначно определены, если известны коэффи-
циенты разложения нормальной скорости v. В свою очередь, коэффициенты vn находятся

из граничного интегрального уравнения (6), которое дает цепочку интегральных уравне-
ний Фредгольма второго рода

πvn(x) + r2 v.p.

∞∫
−∞

(1− r2p(x))q′(x)− (s− r2q(x))p′(x)

(1− r2p(x))2 + (s− r2q(x))2
vn(s) = fn(x) (15)

с ядрами Пуассона

p(x) =
1

1 + x2
, q(x) =

x

1 + x2
(16)
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и правыми частями

f1(x) = 4r2(q′(x)b2 − p′(x)a2),

fn = fn(v1, . . . , vn−1; a2, b2, . . . , an+1, bn+1), n > 2.

Таким образом, последовательность уравнений (15) является рекуррентной относительно
искомых коэффициентов vn, но не обладает таким свойством по отношению к коэффици-
ентам an, bn разложения функции zc. Однако это не препятствует построению решения,
поскольку интегродифференциальное уравнение (14) для zc(t) имеет второй порядок по t,
что в конечном счете обеспечивает рекуррентность всего процесса. Далее решение vn урав-
нения (15) строится в виде ряда по степеням параметра r (безразмерный радиус цилин-
дра). В результате, пренебрегая членами порядка r6, получаем следующие приближенные
выражения для коэффициентов vn, содержащие ядра Пуассона (16) и неизвестные коэффи-
циенты an, bn разложения функции zc(t):

v1(x) = r2(4− r2)(q′(x)b2 − p′(x)a2), v2(x) =
3

2
r2(4− r2)(q′(x)b3 − p′(x)a3),

v3(x) = r2(4− r2)
[
2q′(x)b4 − 2p′(x)a4 + p′′(x)

(1

6
b2 + a2

2 − b2
2

)
+ q′′(x)

(1

6
a2 − 2a2b2

)]
+

+ r4
[4

9
(p(4)(x)(a2

2 − b2
2)− 2a2b2q

(4)(x)) + p′(x)
(
2a2b2 −

1

3
a2

)
+

+ q′(x)
(
a2

2 − b2
2 +

1

3
b2

)
+

4

3
(a2

2 + b2
2)

(
p′′(x)− 7

4
q′(x)

)]
.

Последующие аналитические преобразования состоят в вычислении в явном виде интегра-
лов H(n)(z, t) вида (11), в которые подставляются найденные асимптотические выражения
для η, u, v, содержащие ядра Пуассона p и q, определенные формулой (16), и коэффици-
енты cn = an + ibn разложения функции zc(t). Фактически данная процедура сводится к
вычислению интегралов мультипольного вида от произведений, степеней и производных
функций p и q, откуда следует асимптотическая формула

H(n)(z, t)

n + 1
= (−1)n+1tr2

(
1− r2

4

)(2c̄2 + 3tc̄3 + 4t2c̄4

(z − i)n+2
+ t2

2(n + 2)(ic̄2 + 3c̄2
2)

3(z − i)n+3

)
+

+ (−1)n+1t3r4
( c̄2 − 3ic̄2

2 + 11i|c2|2

6(z − i)n+2
+

4(n + 2)|c2|2

3(z − i)n+3
+

4(n + 2)(n + 3)(n + 4)c̄2
2

9(z − i)n+5

)
+

+ O(t4 + r6).

Аналогичным образом выводятся асимптотические формулы для производных функции

H(n)(z, t) по z и t, которые могут быть найдены путем формального дифференцирова-
ния полученного выше выражения. В результате с учетом этих вычислений из соотноше-
ния (12) получаем следующую зависимость гидродинамических нагрузок от времени t:

X + iY

πr2
= −z̈c(t)− 4r2

(
1− r2

4

)(c2 + 3tc3 + 6t2c4

(z̄c(t) + i)2
+

2t2(3c2
2 − ic2)

(z̄c(t) + i)3

)
−

− t2r4
(c2 + 3ic2

2 − 11i|c2|2

(z̄c(t) + i)2
+

16|c2|2

(z̄c(t) + i)3
+

64c2
2

(z̄c(t) + i)5
+

16|c2|2

(z̄c(t) + i)3(zc(t)− i)2

)
+

+ O(t3 + r6). (17)

В знаменателях дробей указанного частичного разложения при малых временах t еще со-
держится неизвестная функция zc(t) в конечном виде (т. е. не разложенная по степеням t),
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что обусловлено структурой мультипольных слагаемых. Используя выражения (17) для
нагрузок в уравнении (14) и сравнивая степени в полном разложении по t, находим коэф-
фициенты a2 = a3 = a4 = 0 и

b2 =
1− β

2(1 + β)− r2(1− r2/4)
, b3 = 0, b4 = b2

r2

12

8b2(1− 2r2)− (2− r2)

2(1 + β)− r2(1− r2/4)
(18)

для искомого закона движения цилиндра z = zc(t). Таким образом, процедура построе-
ния решения полностью замыкается, и для неизвестной формы свободной поверхности η
получаем приближенную формулу

η(x, t) = t2r2(4− r2)
((b2 + t2b4)(1− x2)

2(1 + x2)2
+ t2

b2(6b2 − 1)(1− 3x2)

12(1 + x2)3

)
+

+ t4r4
(b2(1− 10b2)(1− x2)

12(1 + x2)2
+

2b2
2(3x

2 − 1)

3(1 + x2)3
− 8b2

2(5x
4 − 10x2 + 1)

3(1 + x2)5

)
(19)

с коэффициентами b2, b4, указанными в (18). При нейтральной плавучести β = 1 соглас-
но (18) имеем b2 = b4 = 0, следовательно, в этом случае цилиндр остается в состоянии
покоя при t > 0, а свободная граница сохраняет положение равновесия η(x, t) ≡ 0.

5. Результаты расчетов и их обсуждение. На рис. 2 представлены полученные
по формуле (19) характерные формы свободной поверхности в фиксированный момент вре-
мени t = 0,75 в случае свободного погружения цилиндра радиусом r = 0,5 при различных
значениях коэффициента плавучести β > 1. Для цилиндра с плавучестью β = 2 видны
две сходящиеся волны, которые скатываются навстречу друг другу при первоначальном
прогибе свободной поверхности, движущейся вниз вслед за телом. Указанный процесс об-
разования сходящихся волн отмечался в работах [7, 8] в случае вынужденного погружения
цилиндра с постоянным ускорением. Формы свободной поверхности, показанные на рис. 2
для значений коэффициента плавучести β = 10, 20, определяют последующие стадии фор-
мирования всплеска над погружающимся телом.

Также представляет интерес сравнение решения (19) с известным решением, получен-
ным в работах [7, 8] для задачи о движении цилиндра с заданным постоянным ускорени-
ем. При построении такого решения в случае вертикального движения тела рекуррентный
процесс, описанный в п. 4, завершается после определения коэффициентов ηn, un, vn. В этом
случае свободная поверхность жидкости имеет форму

η∗(x, t) = t2r2(4− r2)
x2 − 1

2(1 + x2)2
− t4r2 (λ + 6)(3x2 − 1)

3(1 + x2)3
+

+
t4r4

12

((λ + 10)(x2 − 1)

(1 + x2)2
+

(λ + 14)(3x2 − 1)

(1 + x2)3
− 32

5x4 − 10x2 + 1

(1 + x2)5

)
, (20)

где безразмерный параметр λ = 2g/w определяется известным постоянным ускорением w.
На рис. 3 приведены решения (19), (20) в случае, когда заданное ускорение погружа-

емого цилиндра совпадает с собственным начальным ускорением свободного цилиндра с

коэффициентом плавучести β > 1. Увеличивающееся со временем различие развития фаз
нестационарного движения жидкости объясняется неодинаковым действием сил инерции

в случаях постоянного и переменного ускорения тела. Действительно, согласно форму-
лам (17), (18) гидродинамические нагрузки на цилиндр при его ускоренном вертикальном
движении определяются приближенной формулой

X + iY

πr2
=

[
− 1 +

r2

2

(
1− r2

4

)]
z̈c(t) + O(r6).
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Рис. 2. Форма поверхности жидкости при погружении свободного цилиндра

радиусом r = 0,5 в момент времени t = 0,75:
сплошная линия — β = 2, пунктирная — β = 10, штрихпунктирная — β = 20

Рис. 3. Поверхность жидкости при свободном (решение (19)) (сплошные ли-
нии) и вынужденном (решение (20) с λ = 5) (пунктирные линии) погружении
цилиндра радиусом r = 0,5 в различные моменты времени:
1 — t = 0,3, 2 — t = 0,45, 3 — t = 0,75

Как отмечалось при выводе уравнения (14), главный член этой асимптотики учитывает
присоединенную массу цилиндра при его движении в неограниченном объеме жидкости.
Слагаемые r2 и r4 в правой части представляют собой поправку к присоединенной массе в

случае движения тела вблизи свободной границы. Приведенные выше выражения для этих
корректирующих членов хорошо согласуются с известным выражением в работе [22].

Заключение. В работе исследована нелинейная задача о движении идеальной жидко-
сти со свободной границей при наличии полностью погруженного в нее кругового цилин-
дра. Выведена эквивалентная замкнутая система интегродифференциальных уравнений,
описывающая совместное движение жидкости и цилиндра с учетом действующих на те-
ло гидродинамических нагрузок. Построено асимптотическое решение, моделирующее на-
чальную стадию движения в случае всплывания или погружения цилиндра с плавучестью,
отличающейся от нейтральной.
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