УДК 532.5+536.3

Излучение не серого газа в сочетании с естественной конвекцией внутри квадратной полости с внутренним источником тепла

А. Мазгар¹, Ф. Хажжи², К. Жаррэ², Ф.Б. Нежма²

¹Университет Суса, Сус, Тунис ²Университет Монастира, Монастир, Тунис

E-mail: mazgarakram@yahoo.fr

Исследование направлено на изучение влияния излучения газа на ламинарную естественную конвекцию в квадратной полости с внутренним тепловыделением. Реализовано изотермическое охлаждение стенок полости, в то время как температура внутреннего нагревателя поддерживалась постоянной. Из проведенного анализа следует, что тепловое излучение интенсифицирует вихревое движение в полости, обеспечивая однородность температурного поля. Также показано, что оптимальный уровень энергоэффективности достигается, когда нагреватель расположен в центре нижней части полости при угле её наклона $\pi/4$.

Ключевые слова: тепловое излучение, свободная конвекция, не серый газ, внутренний источник тепла.

Совместный конвективно-радиационный теплоперенос в замкнутых полостях [1-3] является важным процессом и встречается во многих инженерных приложениях, которые включают системы теплоизоляции, проектирование теплообменников, теплопередачу в зданиях, котлы и т.д. В частности, наличие замкнутых областей с внутренним нагревателем [4-6] имеет существенное значение для большинства задач теплообмена в промышленности, где свободная конвекция и тепловое излучение играют первостепенную роль в управлении структурой течения и теплообменом. В таких системах очень важно определить оптимальную конфигурацию, которая обеспечивала бы наилучшие характеристики теплообмена и, следовательно, максимальную энергоэффективность данных систем.

Основная цель настоящей работы — проведение численного исследования влияния излучения газа на ламинарную естественную конвекцию в квадратной полости с изотермическими стенками и внутренним источником тепла. Особое внимание уделяется также анализу энергоэффективности, направленному на выявление оптимальной конфигурации, обеспечивающей наилучшие характеристики теплообмена.

Физическая модель, рассматриваемая в данной работе, представляет собой двумерную квадратную полость, содержащую локальный внутренний источник тепла с серыми диффузно излучающими стенками. Рабочей жидкостью является перегретый водяной пар,

© Мазгар А., Хажжи Ф., Жаррэ К., Нежма Ф.Б., 2022

Рис. 1. Схема области решения.

который можно рассматривать как не серую излучающую/поглощающую нерассеивающую среду (см. рис. 1). Течение предполагается стационарным, ламинарным и сжимаемым. Стены поддерживаются изотермическими при низкой температуре T_c , тогда как источник тепла находится при высокой температуре T_h .

Для изучения характеристик теплообмена и структуры течения использовался коммерческий пакет вычислительной гидродинамики COMSOL Multiphysics. Для итерационных вычислений применялся программный комплекс Matlab.

При учете вышеупомянутых допущений основные уравнения могут быть записаны в следующем виде:

— уравнение неразрывности:
$$\nabla(\rho \vec{u}) = 0;$$
 (1)

— уравнение движения:
$$\rho(\vec{u}\cdot\nabla)\vec{u} = \nabla\left[-P\vec{\mathbf{I}} + \mu\left(\nabla\vec{u} + (\nabla\vec{u})^{\mathrm{T}}\right) - \frac{2}{3}\mu(\nabla\vec{u})\vec{\mathbf{I}}\right] + \rho\vec{g};$$
 (2)

— уравнение энергии:
$$\rho C_{\rm p} \left(\vec{u} \cdot \nabla T \right) = \nabla (\lambda \nabla T) - {\rm div} \left(\vec{q}_{\rm r} \right).$$
 (3)

Уравнение переноса излучения решалось с использованием метода дискретных ординат по направлениям FT₄₀ [2], а радиационные свойства среды рассчитывались с помощью модели SNBcK [2].

С целью оценки эффективности теплообмена будем определять энергоэффективность процесса нагрева как отношение повышения температуры, имеющего место вследствие теплообмена, к тепловому потоку, необходимому для поддержания этого повышения температуры:

$$E = \left(\frac{T_{\rm a} - T_{\rm c}}{T_{\rm h} - T_{\rm c}}\right) / \sum_{j=1}^{4} \left(\overline{\rm Nu}_{\rm coj} + \overline{\rm Nu}_{\rm roj}\right).$$
(4)

На рис. 2 показана структура течения при угле наклона полости $\pi/4$. В этом случае структура течения содержит две рециркуляционные ячейки и демонстрирует идеальную

Рис. 2. Поля скорости (м/с) без излучения (*a*) и с излучением (*b*). $T_c = 400 \text{ K}, T_h = 800 \text{ K}, P = 1 \text{ атм}, L_x = L_y = 0,1 \text{ м}, L_{xx} = L_{yy} = 0,025 \text{ м},$ $P_{xx} = P_{yy} = 0,0375 \text{ м}, \varepsilon_c = \varepsilon_h = 1, \varphi = \pi/4.$

симметрию относительно биссектрисы верхнего угла. Кроме того, рециркуляционные ячейки деформируются в квазиэллипсоидальные структуры, что приводит к появлению застойных зон вблизи нижнего угла полости.

Влияние угла наклона полости на среднюю температуру и энергоэффективность показано на рис. За и 3b. Из представленных зависимостей можно видеть, что максимальные значения величин наблюдаются при угле наклона полости $\varphi = \pi/4$, что является следствием идеальной симметрии рассматриваемой физической задачи при фиксированных граничных условиях. Соответствующие профили симметричны относительно вертикальной медианы и проявляют тенденцию к уменьшению величин параметров при изменении угла наклона полости в обе стороны от этого направления. Следует обратить внимание, что излучение вносит значительный гомогенизирующий вклад в среднюю температуру, заметно повышая значения последней. Отметим, что выбор угла наклона полости, равного $\pi/4$, по-видимому, обеспечивает наилучшую циркуляцию среды, наилучший теплообмен и однородность температурного поля. Зависимости средних конвективных чисел Нуссельта на стенках полости и источника энергии от угла наклона полости показаны на рис. 3с и 3d. Видно, что при увеличении угла наклона увеличиваются значения чисел $\overline{Nu}_{co2,4}$ и \overline{Nu}_{ci3} , а значения чисел $\overline{Nu}_{co1,3}$ и \overline{Nu}_{ci4} , наоборот, уменьшаются. Кроме того, профиль числа \overline{Nu}_{cil} , проявляет сначала тенденцию к увеличению значения этого числа с достижением максимума при угле наклона, примерно равном $\pi/6$, и, далее, тенденцию к его уменьшению при изменении угла наклона полости от $\pi/6$ до $\pi/2$; при этом достигается значение рассматриваемого числа, реализующееся также при угле наклона полости 0°. Аналогично число $\overline{\mathrm{Nu}_{\mathrm{co2}}}$ демонстрирует почти то же поведение, что и число Nucil, но с небольшим смещением, достигая при этом максимума при угле наклона, близком к $\pi/3$. Очевидно, что геометрическая конфигурация, использованная в представленном исследовании, и соответствующие граничные условия делают профили конвективных чисел Нуссельта симметричными относительно средней вертикальной линии. Фактически профиль числа Nu_{col} симметричен профилю числа Nu_{col} относительно

Рис. 3. Влияние угла наклона полости на распределения интегральных параметров при $T_{\rm c} = 400$ K, $T_{\rm h} = 800$ K, P = 1 атм, $L_x = L_y = 0,1$ м, $L_{xx} = L_{yy} = 0,025$ м, $P_{xx} = P_{yy} = 0,0375$ м, $\varepsilon_{\rm c} = \varepsilon_{\rm h} = 1$.

а, с, d: *1* — без излучения, *2* — с излучением; *е, f*: *1* — стенка 1, *2* — стенка 2, *3* — стенка 3, *4* — стенка 4.

вертикальной медианы $\varphi = \pi/4$. Аналогичное поведение наблюдается для следующих пар чисел Нуссельта: ($\overline{\text{Nu}}_{co3}$; $\overline{\text{Nu}}_{co4}$) и ($\overline{\text{Nu}}_{ci3}$; $\overline{\text{Nu}}_{ci4}$). В случае учета теплового излучения значения чисел $\overline{\text{Nu}}_{co1,2}$ и $\overline{\text{Nu}}_{ci1,2}$ заметно увеличиваются и уменьшаются соответственно. Также следует отметить, что для углов наклона полости менее $\pi/4$ излучение вызывает уменьшение и увеличение значений чисел $\overline{\text{Nu}}_{co3}$ и $\overline{\text{Nu}}_{co4}$ соответственно. Это поведение меняется на противоположное при углах наклона, больших $\pi/4$. На рис. 3eи 3f показаны профили средних радиационных чисел Нуссельта в зависимости от угла наклона полости. Здесь снова наблюдается такая же симметрия между кривыми относительно вертикальной медианы $\varphi = \pi/4$.

В заключение отметим, что вклад от переноса тепла излучением может играть значительную роль в управлении структурой течения и теплообменом за счет интенсификации вихревого движения и обеспечения однородного температурного поля. Кроме того, установлено, что наилучший теплообмен достигается при угле наклона полости $\pi/4$.

Список обозначений

C _p — удельная теплоемкость при постоянном	Nuc — среднее конвективное число Нуссельта,
давлении, Дж/(кг·К),	<u>Nu</u> _r — среднее радиационное число Нуссельта,
g — ускорение свободного падения, м/с ² ,	<i>P</i> — давление, атм,
= I — единичная матрица,	P_{xx} — положение источника тепло вдоль оси x,
L_x — длина полости, м,	P_{yy} — положение источника тепло вдоль оси y ,
L _у — ширина полости, м,	<i>T</i> — температура, K,
<i>L_{xx}</i> — длина нагревателя, м,	u — скорость, м/с,
L _{уу} — ширина нагревателя, м,	<i>х</i> , <i>у</i> — декартовы координаты.

Греческие символы

ϕ — угол наклона полости, рад,	arepsilon— коэффициент черноты стенки,
λ — коэффициент теплопроводности, Вт/(м·К),	$\mu-\!\!-$ коэффициент динамической вязкости, Па·с.
ho — плотность, кг/м ³ ,	

Индексы

а — среднее значение,	і — внутренняя поверхности
с — холодный объект,	о — внешняя поверхность,
h — горячий.	1, 2, 3, 4 — стенки 1, 2, 3, 4.

Список литературы

- 1. Mazgar A., Nejma F.B. Combined effect of natural convection and non-gray gas radiation with partial heating // Sādhanā. 2016. Vol. 41. P. 805-815.
- 2. Hajji F., Mazgar A., Sakly A., Nejma F.B. Entropy generation due to combined natural convection and thermal radiation within a rectangular enclosure // Heat Transfer Engng. 2017. Vol. 39, No. 19. P. 1698–1714.
- 3. Sakly A., Nejma F.B. Heat and mass transfer of combined forced convection and thermal radiation within a channel: Entropy generation analysis // Appl. Thermal Engng. 2020. Vol. 171. P. 114903.
- 4. Шеремет М.А. Математическое моделирование турбулентных режимов сопряженной термогравитационной конвекции в замкнутой области с локальным источником тепла // Теплофизика и аэромеханика. 2011. Т. 18, № 1. С. 117–131.
- 5. Мартюшев С.Г., Шеремет М.А. Влияние поверхностного излучения на режимы сопряженной естественной конвекции в замкнутой области с локальным источником энергии // Теплофизика и аэромеханика. 2013. Т. 20, № 4. С. 427–438.
- 6. Sivaraj C., Miroshnichenko I.V., Sheremet M.A. Influence of thermal radiation on thermogravitational convection in a tilted chamber having heat-producing solid body // Int. Commun. Heat Mass Transfer. 2020. Vol. 115. P. 104611-1-104611-11.

Статья поступила в редакцию 24 июля 2019 г.,

после доработки — 20 июля 2020 г.,

принята к публикации 5 августа 2020 г.,

после дополнительной доработки — 20 января 2021 г.