$A_{\mathcal{M}}S$ subject classification: 65F10, 15A06

Сравнительный анализ для усовершенствования предобусловленного итерационного метода типа SOR

Х. Сабери Наджафи 1 , С.А. Эдалатпанах 2

Сабери Наджафи X., Эдалатпанах С.А. Сравнительный анализ для усовершенствования предобусловленного итерационного метода типа SOR // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние. — Новосибирск, 2013. — Т. 16, № 1. — С. 71–80.

В данной статье исследуются некоторые предобуславливатели типа (I+S), основанные на методе SOR (successive overrelaxation, последовательной верхней релаксации), с использованием неотрицательных матриц. Кроме того, мы доказываем монотонность спектральных радиусов итерационных матриц по отношению к параметрам в [12]. Дается сравнение некоторых расщеплений и предобуславливателей, которые получаются путем сравнения. Для иллюстрации наших результатов приводится численный пример.

Ключевые слова: предобуславливание, теоремы сравнения, спектральный радиус, SOR, L-, М-матрица.

Saberi Najafi H., Edalatpanah S.A. Comparison analysis for improving preconditioned SOR-type iterative method // Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 2013. — Vol. 16, N 1. — P. 71–80.

In this article, on the basis of nonnegative matrices, some preconditioners from class of (I+S)-type based on the SOR method have been studied. Moreover, we prove the monotonicity of spectral radiuses of iterative matrices with respect to the parameters in [12]. Also, some splittings and preconditioners are compared and derived by comparisons. A numerical example is also given to illustrate our results.

Key words: preconditioning, comparison theorems, spectral radius, SOR, L-, M-matrix.

1. Введение

Стационарные и нестационарные итерационные методы для решения линейной системы:

$$Ax = b, (1)$$

где $A \in \mathbb{R}^{n \times n}$, рассматривались многими исследователями [1–6]. Эти методы часто используются в широком спектре областей, включая численные дифференциальные уравнения, экономические модели, проектирование и компьютерный анализ линий связи, сети энергетических систем, химико-технологические процессы, физические и биологические науки. Мы предлагаем использовать итерационный метод следующим образом:

$$x^{i+1} = M^{-1}Nx^i + M^{-1}b, (2)$$

¹Department of Mathematics, Faculty of Sciences, University of Guilan, Rasht, Iran, P.O.box 41335-1914

²Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran E-mails: hnajafi@guilan.ac.ir (Сабери Наджафи X.), saedalatpanah@gmail.com (Эдалатпанах С.А.)

где x^0 — начальное приближение. Если разбить A как A=M-N, где M невырождена, то основной итерационный метод для решения (1) — это (2). Этот итерационный процесс сходится к единственному решению $x=A^{-1}b$ для значения начального вектора $x^0\in R^n$, если и только если спектральный радиус $\rho(M^{-1}N)<1$, где $T=M^{-1}N$, называется итерационной матрицей. Предположим, например, что $\mathrm{diag}(A)=I$ и A=I-L-U, где L и U — строго нижняя и строго верхняя треугольные части A соответственно. Тогда мы имеем для классического SOR:

$$M_w = 1/w(I - wL), \quad N_w = 1/w[(1 - w)I + wU] \quad \Rightarrow \quad T(w) = M_w^{-1}N_w.$$
 (3)

Основная идея предобусловленных итерационных методов состоит в преобразовании (1) в предобусловленный вид PAx = Pb для ускорения сходимости итерационных решателей, где P — линейный оператор, называемый предобуславливателем. Предобусловленные итерационные методы обсуждались и использовались многими исследователями (см., например, [7–9]). В литературе разными авторами предлагались различные модели предобуславливателя типа (I+S) для вышеупомянутой задачи [10–21]. В 1987 г. Милашевич [11] представил предобуславливатель

$$P = I + S, (4)$$

где элементы первого столбца под диагональю A уничтожаются

$$S = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ -a_{21} & 0 & \cdots & 0 \\ -a_{31} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ -a_{n1} & 0 & \cdots & 0 \end{pmatrix}.$$
 (5)

Автор модифицировал методы Якоби и Гаусса—Зейделя при помощи этого предобуславливателя.

Совсем недавно авторы [12], используя идею [20], представили новый предобуславливатель этого класса. Он имеет следующий вид:

$$\bar{P} = I + \bar{S},\tag{6}$$

$$\bar{S} = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
-(a_{21} + \gamma_2) & 0 & \cdots & 0 \\
-(a_{31} + \gamma_3) & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
-(a_{n1} + \gamma_n) & 0 & \cdots & 0
\end{pmatrix},$$
(7)

где γ_i — вещественный параметр. Тогда $\bar{A}=\bar{D}-\bar{L}-\bar{U}$, где $\bar{D}=I+\bar{D}_1,\,\bar{L}=L-\bar{S}+\bar{L}_1,\,\bar{U}=U+\bar{U}_1$ и $\bar{D}_1,\,\bar{L}_1,\,\bar{U}_1$ — диагональные, строго нижняя и строго верхняя треугольные части $\bar{S}U=-\underbrace{\bar{D}_1}_{\leq 0}+\bar{L}_1+\bar{U}_1\geq 0$ соответственно. Этими авторами также предложены две

различные формы итерационной матрицы SOR, связанные с \bar{A} , где

$$\bar{T}_1(w) = (\bar{D} - w\bar{L})^{-1}[(1 - w)\bar{D} + w\bar{U}],$$
 (8)

$$\bar{T}_2(w) = (I - w\bar{L})^{-1}[(1 - w)I + w(\bar{U} - \bar{D}_1)]. \tag{9}$$

При предположениях относительно A, более слабых чем обычные предположения $(a_{i,i+1}a_{i+1,i} > 0, 0 < a_{1,i}a_{i,1} < 1)$, они представили следующую теорему.

Теорема 1.1. Пусть T(w), $\bar{T}_1(w)$, $\bar{T}_2(w)$ — итерационные матрицы из (3), (8) и (9) метода SOR соответственно. Если $\gamma_q \in (((1-a_{1q}a_{q1})/a_{1q}, -a_{q1}) \cap (0, -a_{q1})), 0 < w \le 1$ и A — неприводимая L-матрица при $a_{1q}a_{q1} > 0$ для $q = 2, 3, \ldots, n$.

Тогда мы имеем:

- 1) $ecnu \ \rho(T(w)) < 1 \Rightarrow \rho(\bar{T}_i(w)) < \rho(T(w)) \ (i = 1, 2),$
- 2) $ecnu \ \rho(T(w)) = 1 \Rightarrow \rho(\bar{T}_i(w)) = \rho(T(w)) \ (i = 1, 2),$
- 3) $ecnu \ \rho(T(w)) > 1 \Rightarrow \rho(\bar{T}_i(w)) > \rho(T(w)) \ (i = 1, 2).$

Статья построена следующим образом. В пункте 2 представлены некоторые обозначения, определения и предварительные результаты. В п. 3 сначала будет проведено сравнение скоростей сходимости двух различных расщеплений предобусловленного метода SOR, а затем будут установлены некоторые теоремы сравнения сходимости предобусловленного итерационного метода SOR для неприводимых L-матриц. Также будет предложена новая теорема с более слабыми предположениями относительно матрицы A, чем в [11, 12]. В п. 4 представлен численный пример для иллюстрации полученных результатов.

2. Предварительные сведения

Начнем с некоторых основных обозначений и предварительных результатов, к которым мы вернемся позднее. Обозначения и определения, используемые в данной статье, являются стандартными (см. [2, 22, 25]).

Для $n \times n$ матрицы A направленный граф $\Gamma(A)$ для A определяется в виде пары (V,E), где $V=\{1,\ldots,n\}$ — множество вершин, а $E=\{(i,j):a_{ij}\neq 0,i,j=1,\ldots,n\}$ — множество дуг. Путь от i до j длины k в $\Gamma(A)$ представляет собой последовательность вершин $\sigma=(i_0,i_1,\ldots,i_k)$, где $i_0=i$ и $i_k=j$, такие что $(i_0,i_1),(i_1,i_2),\ldots,(i_{k-1},i_k)$ являются дугами $\Gamma(A)$. Направленный граф $\Gamma(A)$ является строго связанным, если для любых двух вершин i и j существует путь от i до j в $\Gamma(A)$. Матрица $A_{n\times n}$ называется неприводимой, если $\Gamma(A)$ является строго связанным. Класс от A является множеством вершин строго связанной компоненты $\Gamma(A)$. Мы говорим, что класс Ω_1 имеет доступ к классу Ω_2 в $\Gamma(A)$, если некоторое $i \in \Omega_1$ имеет доступ к некоторому $i \in \Omega_2$. Класс называется тривиальным, если он представляет собой одноэлементное множество, в противном случае он называется нетривиальным. Пусть T — неотрицательная матрица; класс Ω от T называется основным, если $\rho(T[\Omega]) = \rho(T)$ (где $T[\Omega]$ обозначает основную подматрицу T со строками и столбцами, индексированными в Ω), и финальным классом, если Ω не имеет доступа ни к каким другим классам.

Определение 2.1 [2, 22].

- (a) матрица $A = (a_{i,j})$ называется Z-матрицей, если для любого $i \neq j, a_{i,j} \leq 0,$
- (б) Z-матрица является L-матрицей, если $a_{i,i} > 0$,
- (в) Z-матрица является M-матрицей, если A невырожденная и $A^{-1} \ge 0$.

Определение 2.2 [2, 22]. Пусть A — вещественная матрица. Расщепление A = M - N называется:

- (a) сходящимся, если $\rho(M^{-1}N) < 1$,
- (б) регулярным, если $M^{-1} \ge 0$ и $N \ge 0$,
- (в) слабо регулярным, если $M^{-1}N \ge 0$ и $N \ge 0$.

Ясно, что регулярное расщепление является слабо регулярным.

Лемма 2.1 [2, 22]. Пусть A = M - N — регулярное или слабо регулярное расщепление A. Тогда $\rho(M^{-1}N) < 1$, если и только если $A^{-1} \ge 0$.

Лемма 2.2 [23]. Пусть A, B - Z-матрицы, и A есть M-матрица; если $A \leq B$, то B также M-матрица.

Лемма 2.3 [25, теорема 4.5]. Пусть A — неприводимая M-матрица и пусть A = M - N — регулярное расщепление. Тогда класс y от T — единственный основной и финальный класс, где $y = \{i : i\text{-}i\text{-}i\text{-}c\text{-}monfeq} N$ является ненулевым $\}$.

3. Теоретический анализ

Следующая теорема означает, что классическое расщепление SOR для \bar{A} является наилучшим.

Теорема 3.1. Пусть T(w), $\bar{T}_1(w)$ и $\bar{T}_2(w)$ — итерационные матрицы (3), (8) и (9) метода SOR соответственно. Если A есть M-матрица и условия теоремы 1.1 удовлетворяются, тогда мы имеем $\rho(\bar{T}_1(w)) \leq \rho(\bar{T}_2(w)) < \rho(T(w)) < 1$.

Доказательство. Поскольку (3) — регулярное расщепление, то, согласно лемме 2.1, $\rho(T(w)) < 1$.

Мы также имеем для (8), (9):

$$\bar{M}_{1,w} = 1/w(\bar{D} - w\bar{L}), \qquad \bar{N}_{1,w} = 1/w[(1-w)\bar{D} + w\bar{U}],$$
 (10)

$$\bar{M}_{2,w} = 1/w(I - w\bar{L}), \qquad \bar{N}_{2,w} = 1/w[(1 - w)I + w(\bar{U} - \bar{D}_1)].$$
 (11)

Поскольку A есть M-матрица, $\bar{D}_1 \leq 1$ и $0 < w \leq 1$, тогда (10), (11) также являются регулярными расщеплениями. Мы также имеем $I + \bar{D}_1 - w\bar{L} \leq I - w\bar{L}$. Поскольку $\bar{M}_{1,w} \geq \bar{A}$, $\bar{M}_{2,w} \geq \bar{A}$, то, согласно лемме 2.2, $\bar{M}_{1,w}$, $\bar{M}_{2,w}$ являются M-матрицами. Поэтому $(\bar{M}_{1,w})^{-1} \geq (\bar{M}_{2,w})^{-1}$. Таким образом, согласно [2, теорема 3.36] и теореме 1.1, доказательство завершено.

В качестве примера вышеприведенной теоремы см. [12, пример 4.1].

В следующей теореме мы покажем влияние параметров в $\bar{P} = I + \bar{S}$ с точки зрения скорости сходимости для предобусловленного метода.

Теорема 3.2. Пусть T(w) и $\bar{T}(w)$ — итерационные матрицы (3) и (8) метода SOR соответственно. Если A есть M-матрица, $\gamma_q \leq \bar{\gamma}_q$ и условия теоремы 1.1 удовлетворяются. Тогда мы имеем $\rho(\bar{T}_{\gamma_q}(w)) \leq \rho(\bar{T}_{\bar{\gamma_q}}(w)) < \rho(T(w)) < 1$.

Доказательство. Поскольку, согласно (10), $\bar{A}_{\gamma_q} = \bar{M}_{\gamma_q} - \bar{N}_{\gamma_q}$ есть регулярное расщепление, то, согласно [21, лемма 1.5], существует положительный вектор x, такой что $(\bar{M}_{\gamma_q}^{-1}\bar{N}_{\gamma_q})x = \rho(\bar{M}_{\gamma_q}^{-1}\bar{N}_{\gamma_q})x$.

Кроме того, $\bar{N}_{\gamma_q} x \geq 0$, поскольку $\bar{N}_{\gamma_q} \geq 0$. Таким образом,

$$\bar{M}_{\gamma_q} x = \frac{1}{\rho(\bar{M}_{\gamma_q}^{-1} \bar{N}_{\gamma_q})} \bar{N}_{\gamma_q} x \ge 0.$$

Поэтому

$$\bar{A}_{\gamma_q} x = \bar{M}_{\gamma_q} (I - (\bar{M}_{\gamma_q}^{-1} \bar{N}_{\gamma_q})) x = \frac{1 - \rho(\bar{M}_{\gamma_q}^{-1} \bar{N}_{\gamma_q})}{\rho(\bar{M}_{\gamma_q}^{-1} \bar{N}_{\gamma_q})} \bar{N}_{\gamma_q} x \ge 0.$$

Кроме того, мы знаем, что $\bar{A}_{\gamma_a}x=(I+\bar{S}_{\gamma_a})Ax\geq 0$ и поэтому $Ax\geq 0$. Теперь мы имеем

$$\bar{A}_{\gamma_q}x = (I + \bar{S}_{\gamma_q})Ax = (I + \bar{S}_{\gamma_q})Ax + (\bar{S}_{\bar{\gamma}_q} - \bar{S}_{\bar{\gamma}_q})Ax.$$

Тогда

$$\bar{A}_{\gamma_q}x = (I + \bar{S}_{\bar{\gamma}_q})Ax + (\bar{S}_{\gamma_q} - \bar{S}_{\bar{\gamma}_q})Ax \ge (I + \bar{S}_{\bar{\gamma}_q})Ax \ge 0.$$

Поэтому $\bar{A}_{\gamma_q}x\geq \bar{A}_{\bar{\gamma}_q}x$. С другой стороны, по определению $\bar{S}_{\bar{\gamma}_q}U$ и $(\bar{S}_{\gamma_q}-\bar{S}_{\bar{\gamma}_q})U$ неотрицательны. Таким образом,

$$\begin{split} \bar{M}_{\gamma_q} &= I - (\bar{S}_{\bar{\gamma}_q} U)_D - ((\bar{S}_{\gamma_q} - \bar{S}_{\bar{\gamma}_q}) U)_D - w \{ L + (\bar{S}_{\bar{\gamma}_q} U)_L + ((\bar{S}_{\gamma_q} - \bar{S}_{\bar{\gamma}_q}) U)_L + (\bar{S}_{\gamma_q}) \} \\ &\leq I - (\bar{S}_{\bar{\gamma}_q} U)_D - w \{ L + (\bar{S}_{\bar{\gamma}_q} U)_L + (\bar{S}_{\gamma_q}) \} = \bar{M}_{\bar{\gamma}_q}. \end{split}$$

Поскольку \bar{M}_{γ_q} и $\bar{M}_{\bar{\gamma}_q}$ являются M-матрицами, $(\bar{M}_{\gamma_q})^{-1} \geq (\bar{M}_{\bar{\gamma}_q})^{-1}$. Поэтому мы имеем

$$\rho(\bar{M}_{\gamma_q}^{-1}\bar{N}_{\gamma_q})x = (\bar{M}_{\gamma_q}^{-1}\bar{N}_{\gamma_q})x = x - \bar{M}_{\gamma_q}^{-1}\bar{A}_{\gamma_q}x \le x - \bar{M}_{\gamma_q}^{-1}\bar{A}_{\bar{\gamma}_q}x \le x - \bar{M}_{\bar{\gamma}_q}^{-1}\bar{A}_{\bar{\gamma}_q}x$$
$$= (I - \bar{M}_{\bar{\gamma}_q}^{-1}\bar{A}_{\bar{\gamma}_q})x = \bar{M}_{\bar{\gamma}_q}^{-1}\bar{N}_{\bar{\gamma}_q}x.$$

Следовательно, согласно [12, лемма 2.2], доказательство завершено.

Опишем соотношение между скоростью сходимости и спектральным радиусом. Рассмотрим итерационный метод (2). Если векторы ошибок ε^i для векторных итераций (1) определить как $\varepsilon^i = x^i - x$, то

$$\varepsilon^i = M^{-1}N\varepsilon^{i-1} = \dots = M^{-1}N\varepsilon^0, \quad i > 0.$$

Используя матричную и векторную нормы, мы получим

$$\|\varepsilon^{i}\| \le \|(M^{-1}N)^{i}\| \cdot \|\varepsilon^{0}\|, \quad i \ge 0.$$

Тогда $\|(M^{-1}N)^i\|$ дает точную оценку верхней границы для отношения $\|\varepsilon^i\|/\|\varepsilon^0\|$ евклидовых норм $\|\varepsilon^i\|$ и $\|\varepsilon^0\|$ для i итераций. Поскольку начальные векторы ε^0 в практических задачах неизвестны, $\|(M^{-1}N)^i\|$ служит в качестве основы для сравнения различных итерационных методов.

Определение 3.1 [2, определение 3.1]. Пусть A и B — две комплексные матрицы. Если для некоторого положительного целого числа $i \parallel (A)^i \parallel < 1$, то

$$R(A^i) := -\ln[(\|A^i\|)^{1/i}] = \frac{-\ln\|A^i\|}{i}$$

есть средняя скорость сходимости для i итераций матрицы A. Если $R(A^i) < R(B^i)$, то B является итерационно более быстрой для i итераций чем A.

Если обе матрицы A и B являются эрмитовыми или нормальными, то $\|(A^i)\| = (\rho(A))^i$ и $\|(B^i)\| = (\rho(B))^i$. Таким образом, если $\rho(A) < \rho(B) < 1$, то

$$||(A^i)|| < ||(B^i)|| < 1 \ \forall i \ge 1.$$

Теперь, когда $i \to \infty$, мы имеем следующую теорему:

Теорема 3.3 [2, теорема 3.4]. Пусть A - cxoдящаяся комплексная матрица. Тогда средняя скорость сходимости для i итераций удовлетворяет соотношению

$$\lim_{i \to \infty} R(A^i) := -\ln \rho(A) =: R_{\infty}(A).$$

Таким образом, исходя из вышеизложенного, если $0 < \rho(M_1^{-1}N_1) < \rho(M_2^{-1}N_2) < 1$, то $R_{\infty}(M_1^{-1}N_1) > R_{\infty}(M_2^{-1}N_2) > 0$ (для более подробной информации см. [2, пример 4.1]).

Согласно теореме 3.2, заключаем, что средняя скорость сходимости итерационного метода с предобуславливателем Милашевича итерационно выше, чем с предобуславливателем (7). В данном случае вопрос состоит в следующем: можно ли получить характеристику сходимости для предобуславливателя Милашевича путем использования слабых предположений относительно A? В следующей теореме, согласно [19], мы получим ответ на этот вопрос.

Теорема 3.4. Пусть A есть M-матрица и $\hat{A} = (I+S)A$ — предобусловленная матрица c предобуславливателем Милашевича. Тогда для любого $0 < w \le 1$ мы получим $\rho(\hat{T}(w)) \le \rho(T(w)) < 1$. Кроме того, если A — неприводимая матрица и существует по крайней мере одно $k \in \{2,3,\ldots,n\}$, такое что $a_{k1}a_{1k} \ne 0$, то мы имеем $\rho(\hat{T}(w)) < \rho(T(w)) < 1$.

Доказательство. Первое утверждение этой теоремы доказано в [21, теорема 2.7]. Докажем второе утверждение. Пусть A — неприводимая матрица и $a_{k1} \neq 0$. Тогда мы имеем следующее разделение A и L:

$$A = \begin{pmatrix} 1 & (\beta)_{1 \times n - 1} \\ (\alpha)_{n - 1 \times 1} & (A_2)_{n - 1 \times n - 1} \end{pmatrix}; \quad L = \begin{pmatrix} 0 & (0)_{1 \times n - 1} \\ (-\alpha)_{n - 1 \times 1} & (L_2)_{n - 1 \times n - 1} \end{pmatrix}, \tag{12}$$

где $A_2 = D_2 - L_2 - U_2$, $\alpha = [a_{21}, \dots, a_{n1}]^\top$.

Используя предобуславливание, получим

$$\hat{A} = \begin{pmatrix} 1 & (\beta)_{1 \times n-1} \\ (0)_{n-1 \times 1} & (\hat{A}_2)_{n-1 \times n-1} \end{pmatrix}; \quad \hat{L} = \begin{pmatrix} 0 & (0)_{1 \times n-1} \\ (0)_{n-1 \times 1} & (\hat{L}_2)_{n-1 \times n-1} \end{pmatrix}, \tag{13}$$

где $\hat{A}_2 = \hat{D}_2 - \hat{L}_2 - \hat{U}_2$.

Из (12), (13) получим

$$(I - wL)^{-1} = \begin{pmatrix} 0 & (0)_{1 \times n - 1} \\ (-w(I - wL_2)^{-1}\alpha)_{n - 1 \times 1} & ((I - wL_2)^{-1})_{n - 1 \times n - 1} \end{pmatrix}, \tag{14}$$

$$(\hat{D} - w\hat{L})^{-1} = \begin{pmatrix} 1 & (0)_{1 \times n - 1} \\ (0)_{n - 1 \times 1} & ((\hat{D}_2 - w\hat{L}_2)^{-1})_{n - 1 \times n - 1} \end{pmatrix}.$$
 (15)

Таким образом,

$$(\hat{D} - w\hat{L})^{-1}(I + S) - (I - wL)^{-1} = \begin{pmatrix} 1 & (0)_{1 \times n - 1} \\ (\delta)_{n - 1 \times 1} & (\eta)_{n - 1 \times n - 1} \end{pmatrix},\tag{16}$$

где

$$\eta = (\hat{D}_2 - w\hat{L}_2)^{-1} - (I - wL_2)^{-1} \ge 0,$$

$$\delta = -(\hat{D}_2 - w\hat{L}_2)^{-1}\alpha + w(I - wL_2)^{-1}\alpha = \underbrace{[-(\hat{D}_2 - w\hat{L}_2)^{-1}w^{-1} + (I - wL_2)^{-1}]}_{\le 0}\underbrace{w\alpha}_{\le 0} \ge 0.$$

Очевидно, существует по крайней мере одно $k \in \{2, 3, \dots, n\}$, такое что $a_{k1}a_{1k} \neq 0 \Rightarrow \delta_k > 0$.

Теперь пусть $l_w=(I-wL)^{-1}[(1-w)I+U],\; \rho(l_w)=\rho.$ Тогда из [21, лемма 1.5] существует x>0, такое что

$$l_w = \rho x \Rightarrow \rho A x = (1 - \rho)[(1 - w)L + U]x \ge 0.$$
 (17)

Кроме того, из (17) и леммы 2.1, $0<\rho<1$. Тогда $Ax=(I-wL)(I-l_w)x=\frac{1-\rho}{\rho}((1-w)L+U)x\geq 0$.

Очевидно, существует по крайней мере одно $k \in \{2, 3, ..., n\}$, такое что $a_{1k} \neq 0 \Rightarrow$ $(Ax)_k > 0.$

Поэтому

$$(\hat{D} - w\hat{L})\hat{A}x - (I - wL)^{-1}Ax = \underbrace{\begin{pmatrix} 0 & (0)_{1 \times n - 1} \\ (\delta)_{n - 1 \times 1} & (\eta)_{n - 1 \times n - 1} \end{pmatrix} Ax}_{z} \ge 0,$$

$$\Rightarrow (I - \hat{l}_{w})x - (I - l_{w})x = z \ge 0, \qquad \Rightarrow (\rho I - \hat{l}_{w})x = z \& z_{k} > 0. \tag{18}$$

Поскольку A — неприводимая матрица и $a_{1k} \neq 0$, изучая структуру \hat{A} можно показать, что A_2 — неприводимая матрица. Таким образом, мы имеем

$$(\hat{D} - w\hat{L}) = \begin{pmatrix} 1 & (0)_{1 \times n - 1} \\ (0)_{n - 1 \times 1} & ((\hat{D}_2 - w\hat{L}_2))_{n - 1 \times n - 1} \end{pmatrix},$$
$$[(1 - w)\hat{L} + \hat{U}] = \begin{pmatrix} 0 & (\beta)_{1 \times n - 1} \\ (0)_{n - 1 \times 1} & ((1 - w)\hat{L}_2 + \hat{U}_2)_{n - 1 \times n - 1} \end{pmatrix}.$$

Пусть $\rho(\hat{l}_w) = \hat{\rho}$, где

$$\hat{l}_w = \begin{pmatrix} 0 & (\beta)_{1 \times n - 1} \\ (0)_{n - 1 \times 1} & (\hat{l}_{2w})_{n - 1 \times n - 1} \end{pmatrix}, \qquad \hat{l}_{2w} = (\hat{D}_2 - w\hat{L}_2)^{-1} [(1 - w)\hat{L}_2 + \hat{U}_2].$$

Поскольку A есть M-матрица, легко убедиться, что \hat{A} есть тоже M-матрица.

Тогда обе $\hat{A} = (\hat{D} - w\hat{L}) - [(1 - w)\hat{L} + \hat{U}]$ и $\hat{A}_2 = (\hat{D}_2 - w\hat{L}_2) - [(1 - w)\hat{L}_2 + \hat{U}_2]$ имеют регулярное расщепление.

Если $n=2 \to \hat{L}_2=0 \to \hat{\rho}=0 \to \hat{\rho}<\rho.$

Если n > 2, то поскольку \hat{A}_2 есть неприводимая матрица, имеется $k \in \{2, 3, \dots, n\}$, такое что k-й столбец $[(1-w)\hat{L}_2+\hat{U}_2]$ не равен нулю. Пусть

$$au = \{j \in \{2,\dots,n\} \mid \ j$$
-й столбец $[(1-w)\hat{L}_2 + \hat{U}_2]$ не равен нулю $\}.$

Поэтому $k \in \tau$. Тогда, согласно лемме 2.3, класс τ от \hat{l}_{2w} является единственным основным и финальным классом. Тогда из неприводимости $\hat{l}_{2w}[\tau]$ и [21, лемма 1.5] $\exists y > 0$, такое что $y^{\top}\hat{l}_2w = \hat{\rho}y^{\top}$.

Пусть

$$\check{y} = (\check{y}_2, \dots, \check{y}_n)^\top$$
, такое что $\check{y} = \left\{ \begin{array}{ll} y_i, & \text{если } i \in \tau, \\ 0, & \text{если } i \not\in \tau. \end{array} \right.$

Тогда $\check{y} \geq 0$, $\check{y}_k > 0$ и поскольку τ — единственный основной и финальный класс от \hat{l}_{2w} , мы имеем $\check{y}^{\top}\hat{l}_{2w} = \hat{\rho}\check{y}^{\top}$.

Выбрав $\bar{y}^{\top} = (0, \check{y})$, получим

$$\bar{y}^{\top} \begin{pmatrix} 0 & (\beta)_{1 \times n - 1} \\ (0)_{n - 1 \times 1} & (\hat{l}_{2w})_{n - 1 \times n - 1} \end{pmatrix} = \hat{\rho} \bar{y}^{\top} \rightarrow \bar{y}^{\top} \hat{l}_w = \hat{\rho} \bar{y}^{\top}.$$

Умножив на \bar{y}^{\top} левую часть (18), мы получим

$$\bar{y}^{\top}(\rho I - \hat{\rho})\underbrace{\bar{y}^{\top}x}_{>0} = \underbrace{\bar{y}^{\top}z}_{>0}.$$

Тогда, согласно [21, лемма 1.4], $\rho > \bar{\rho}$.

Поскольку

$$T(w) = (I - wL)^{-1}[(1 - w)I + wU], \qquad \hat{T}(w) = (\hat{D} - w\hat{L})^{-1}[(1 - w)\hat{D} + w\hat{U}],$$

легко убедиться, что

$$(I-wL)^{-1}[(1-w)I+wU]=(1-w)I+wl_w, \quad (I-w\tilde{L})^{-1}[(1-w)I+w\tilde{U}]=(1-w)I+w\hat{l}_w,$$
 где $\tilde{L}=\hat{D}^{-1}$ & $\tilde{U}=\hat{D}^{-1}\hat{U}$.

Поэтому для любого 0 < w > 1 $\rho(\hat{T}(w)) < \rho(T(w))$.

4. Численный пример

В данном пункте приводится пример для иллюстрации результатов, полученных в предыдущих пунктах.

Пример 4.1. Матрица коэффициентов A из (1) задается следующим образом:

$$A = (a_{ij})_{n \times n} = \begin{cases} 1, & \text{если } i = j, \\ -0.35, & \text{если } j = 1, i \neq 1, \\ \frac{-1}{2i + 4j} & \text{в противном случае.} \end{cases}$$

Заметим, что A есть M-матрица для n = 10, 100.

В таблице указан спектральный радиус (ρ) и число итераций (Iter) соответствующей итерационной матрицы с различными параметрами w, $\rho(T(w))$ и $\rho(\hat{T}(w))$ — спектральные радиусы метода SOR и предобуславливателя Милашевича соответственно. Кроме того, обозначим спектральный радиус метода SOR с предобуславливателем (7) и параметром $\gamma_q=0.3,0.1$ (q=2:n) как $\rho(\bar{T}_{\gamma 1})$ и $\rho(\bar{T}_{\gamma 2})$ соответственно. Из таблицы видно, что численные результаты показывают правильность нашего теоретического анализа.

n	w	Iter	$\rho(T(w))$	Iter	$\rho(\hat{T}(w))$	Iter	$\rho(\bar{T}_{\gamma 1})$	Iter	$ ho(\bar{T}_{\gamma 2})$
10	0.1	223	0.9524	175	0.9383	217	0.9511	191	0.9439
	0.5	41	0.7311	32	0.6618	40	0.7243	35	0.6890
	0.8	21	0.5145	17	0.4071	21	0.5037	18	0.4490
	1.0	13	0.3180	10	0.1861	13	0.3049	11	0.2384
100	0.1	1216	0.9929	903	0.9900	1173	0.9926	996	0.9910
	0.5	237	0.9564	173	0.9382	228	0.9545	192	0.9449
	0.8	129	0.9159	92	0.8792	124	0.9122	103	0.8929
	1.0	90	0.8777	63	0.8218	87	0.8721	71	0.8429

Таблица. Результат примера 4.1

Кроме того, мы видим, что предобусловленные итерационные методы более совершенны, чем исходные итерационные методы, и что предобуславливатель Милашевича лучше других предобуславливателей.

5. Выводы

Из теорем сравнения и численного примера можно сделать вывод, что предобуславливатели эффективно ускоряют сходимость метода SOR. Мы также показали, что предобуславливатель Милашевича лучше предобуславливателя Дегана и других при слабых предположениях.

Литература

- 1. Hageman L.A., Young D.M. Applied Iterative Methods.—New York: Academic Press, 1981.
- 2. Varga R.S. Matrix Iterative Analysis, second ed. Berlin: Springer, 2000.
- 3. Saad Y. Iterative Methods for Sparse Linear System.—PWS Publishing Company, a Division of International Thomson Publishing Inc., VSA, 1996.
- 4. Saberi Najafi H., Ghazvini H. Weighted restarting method in the weighted Arnoldi algorithm for computing the eigenvalues of a nonsymmetric matrix // Applied Mathematics and Computation. −2006. − № 175. − P. 1279–1287.
- 5. Saberi Najafi H., Refahi A. A new restarting method in Lanczos algorithm for generalized eigenvalue problem // Applied Mathematics and Computation. − 2007. − № 184. − P. 421–428.
- 6. Saberi Najafi H., Zareamoghaddam H. A new computational GMRES method // Applied Mathematics and Computation. −2008. − № 199. −P. 527–534.
- 7. Evans D.J. Preconditioned Iterative Methods.—Gordon and Breach, 1994.
- 8. **Bruaset A.M.** A survey of preconditioned iterative methods // Pitman Research Notes in Mathematics Series. Harlow: Longman Scientific and Technical, 1995. № 328.
- 9. **Benzi M.** Preconditioning techniques for large linear systems: a survey // J. of Computational Physics. -2002. N 182. P. 418-477.
- 10. **Saberi Najafi H., Edalatpanah S.A.** Some improvements in PMAOR method for solving linear systems // J. Info. Comp. Sci. −2011. − № 6. − P. 15–22.
- 11. **Milaszewic J.P.** Improving Jacobi and Gauss Seidel iterations // Linear Algebra and its Applications. −1987. − № 93. − P. 161–170.
- 12. **Dehghan M., Hajarian M.** Improving preconditioned SOR-type iterative methods for *L*-matrices // International J. for Numerical Methods in Biomedical Engineering. −2011. − № 27. − P. 774–784.
- 13. **Gunawardena A.D., Jain S.K., and Snyder L.** Modified iterative methods for consistent linear systems // Linear Algebra and its Application. − 1981. − № 41. − P. 99–110.
- 14. **Kohno T., Kotakemori H., Niki H., and Usui M.** Improving the Gauss–Seidel method for Z-matrices // Linear Algebra and its Application. −1997. −№ 267. −P. 113–123.
- 15. **Usui M., Niki H., and Kohno T.** Adaptive Gauss–Seidel method for linear systems // International J. of Computer Mathematics. − 1994. − № 51. − P. 119–125.
- 16. **Karasozen B., Ozban A.Y.** Modified iterative methods for linear systems of equations // International J. of Computer Mathematics. −1996. − № 770. − P. 179–196.
- 17. **Hadjidimos A., Noutsos D., and Tzoumas M.** More on modifications and improvements of classical iterative schemes for *M*-matrices // Linear Algebra and its Application. − 2003. − № 364. − P. 253–279.
- 18. Li W., Sun W. Modified Gauss–Seidel type methods and Jacobi type methods for Z-matrices // Linear Algebra and its Applications. -2000. N 317. P. 227-240.
- 19. **Li W.** Preconditioned AOR iterative methods for linear systems // International J. of Computer Mathematics. $-2002. \frac{N}{2}$ 79. -P. 89–101.

- 20. **Li Y., Wang Z.** A modified AOR iterative method for preconditioned linear systems // Southeast Asian Bulletin of Mathematics. − 2004. − № 28. − P. 305–320.
- 21. Wang L., Song Y. Preconditioned AOR iterative methods for *M*-matrices // J. of Computational and Applied Mathematics. − 2009. − № 226. − P. 114–124.
- 22. **Berman A., Plemmons R.J.** Nonnegative Matrices in the Mathematical Sciences.—New York: Academic, 1994.
- 23. **Ortega J.M., Rheinboldt W.C.** Iterative Solution of Nonlinear Equations in Several Variables.—New York, London: Academic Press, 1970.
- 24. Climent J.J., Perea C. Some comparison theorems for weak nonnegative splittings of bounded operators // Linear Algebra and its Application. − 1998. − № 275–276. − P. 77–106.
- 25. Li W. On regular splittings M-matrices // Linear Algebra and its Applications. 1989. N 113. P. 159–172.

Поступила в редакцию 2 июня 2011 г., в окончательном варианте 24 октября 2011 г.