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Представлены результаты методической работы по моделированию пространствен-
но неоднородной линии перехода с помощью созданного программного модуля для

CFD-пакета и блока прогноза ламинарно-турбулентного перехода на основе eN -метода.
Выполнено численное моделирование гибридного ламинарно-турбулентного перехода,
в случае когда на разных участках течения в пограничном слое на стреловидном крыле
реализуются обходной и регулярный сценарии перехода.

Ключевые слова: ламинарно-турбулентный переход, eN -метод определения положе-
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При инженерном моделировании ламинарно-турбулентного обтекания (ЛТО) в трех-
мерных пограничных слоях (ПС) вблизи тел сложной геометрии [1, 2] необходимо прове-
сти численное моделирование обтекания тела с заданной границей раздела ламинарной

и турбулентной зон и определить положение ламинарно-турбулентного перехода (ЛТП)
известными методами в процессе итераций. В настоящей работе выполняется численное
моделирование обтекания стреловидного крыла с использованием предложенного авторами

вычислительного метода [3] и пакета вычислительной гидрогазодинамики (CFD-пакета)
ANSYS Fluent с подключаемым оригинальным модулем ЛТП, разработанным на основе
eN -метода и на базе оригинального программного комплекса LOTRAN 3.

Одной из проблем, возникающих при применении базовой версии LOTRAN 3, явля-
ется невозможность учесть ЛТП, не имеющий линейной стадии нарастания возмущений
(так называемый обходной сценарий ЛТП). В пограничном слое стреловидного крыла та-
кой сценарий реализуется, например, при наличии различных локальных неоднородностей
обтекаемой потоком поверхности, приводящих к образованию турбулентных клиньев [4].
Ранний переход к турбулентности также может быть обусловлен загрязнением передней

кромки, что приводит к образованию турбулентных клиньев, не связанных с распреде-
ленной шероховатостью поверхности. В данной работе проведено моделирование процесса
ЛТО, в случае когда на различных участках течения в пограничном слое реализуются
обходной (не имеющий линейной стадии нарастания возмущений), регулярный (описыва-
емый линейной теорией устойчивости) и гибридный (комбинация обходного и регулярного)
сценарии перехода.
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Рис. 1. Линии тока над стреловидным крылом, цвет которых соответствует
значениям N -фактора НВПТ (U∞ = 33 м/с, α = −5◦):
а — вариант 1, б — вариант 2, в — вариант 3, г — вариант 4; штриховая кривая —
граница между областями ламинарного и турбулентного течений

Скользящее крыло с углом стреловидности 45◦ и длиной хорды крыла C = 0,7 м скон-
струировано на основе профиля NACA 67 1-215 и располагается в виртуальной аэродина-
мической трубе под углом атаки α = −5◦ (см. [5]). При таком угле атаки доминирующим
механизмом ЛТП является неустойчивость вихрей поперечного течения (НВПТ). Следует
отметить, что форма крыла, его положение и угол стреловидности, размеры виртуальной
аэродинамической трубы соответствуют установке, в которой проводятся эксперименты
по определению положений ЛТП (подробнее об этом см. [6–8]). Используется левая декар-
това система координат, в которой горизонтальная ось x направлена параллельно стенкам
виртуальной трубы, оси y и z направлены вертикально и по размаху крыла соответствен-
но. Начало системы координат расположено в точке на передней кромке крыла, ближайшей
к входной границе расчетной области.

Результаты, полученные при расчете ламинарно-турбулентного обтекания различных
тел с помощью ANSYS Fluent совместно с модулем LOTRAN 3 [3, 5, 9], позволили сформу-
лировать несколько принципов, необходимых для моделирования основного течения с це-
лью получения решения высокой точности при высокой скорости сходимости. Одним из
этих принципов является проведение стационарного расчета основного течения с предва-
рительным разбиением области течения на ламинарную и заведомо турбулентную. При та-
ком разбиении области границу задает создаваемый пользователем специальный модуль,
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с помощью которого перемежаемость в ламинарной области задается нулевой, а в обла-
сти турбулентности — равной единице. Если граница гладкая или ее можно осреднить,
используя статистические подходы [6], то она задается гладкой линией. В процессе ите-
раций эта граница смещается в положение, соответствующее критическому N -фактору
(штриховая линия на рис. 1,а). В данной работе возможности пользовательского модуля,
задающего границу раздела ламинарной и турбулентной зон, распространены на случай
обходного сценария перехода, когда часть границы не является регулярной (например,
могут присутствовать единичные турбулентные клинья) и ее положение сохраняется в
процессе итераций. Например, если на теле имеются заклепки, локальные шероховатости
или выступы, турбулизующие течение, то форма границы между областями ламинарно-
го и турбулентного течений должна учитывать турбулентные клинья, идущие от этих
неоднородностей поверхности (рис. 1,б,в). Такой подход позволяет оценить воздействие
указанных факторов на аэродинамические характеристики крыла. Если имеются экспе-
риментальные данные о положении ЛТП, то граница раздела областей ламинарного и
турбулентного течений может быть задана в соответствии с экспериментальными данны-
ми о границе, замыкающей область ЛТП (рис. 1,г), например для оценки силы трения

крыла.
Расчеты процесса ЛТО модели стреловидного крыла выполнены для четырех вари-

антов формы границы раздела при скорости набегающего потока U∞ = 33 м/с:
1) прямая линия, параллельная передней кромке крыла;
2) прямая линия с одним клином;
3) прямая линия с двумя клиньями различной длины;
4) зигзагообразная линия, заданная в соответствии с экспериментальными данными

о границе, замыкающей область ЛТП.
Сначала в рамках CFD-пакета ANSYS Fluent проводится численное моделирование

обтекания модели на основе решения трехмерных, осредненных по Рейнольдсу уравнений
Навье — Стокса с использованием (k−ω)-SST-модели турбулентности. Далее полученные
данные об основном течении на стреловидном крыле передаются в блок прогноза ЛТП

LOTRAN 3 с использованием специально созданного модуля импорта данных из ANSYS
Fluent. В основе блока прогноза ЛТП LOTRAN 3 лежит физически обоснованный метод
N -фактора (eN -метод) [10, 11], реализованный для прогнозирования ЛТП в вязких сжимае-
мых и несжимаемых трехмерных течениях. Основным результатом работы блока прогноза
ЛТП является распределение N -факторов нарастания амплитуд возмущений на обтекае-
мой поверхности, по которым может быть определено положение ЛТП на основе данных
о пороговых N -факторах.

На рис. 1,а приведен пример регулярного сценария перехода, на рис. 1,б–г — приме-
ры комбинаций регулярного и обходного сценариев перехода. На рис. 1 помимо границы
раздела между областями ламинарного и турбулентного течений приведены 120 линий то-
ка над стреловидным крылом, цвет которых соответствует значениям N -фактора НВПТ,
для каждого из четырех вариантов задания границы раздела между областями ламинар-
ного и турбулентного течений. Обнаружено, что в рассмотренных вариантах линии тока
и распределения N -факторов НВПТ идентичны независимо от формы границы раздела

в области перед этой границей. На рис. 2 приведены распределения N -факторов НВПТ на
отдельных линиях тока (центральной z ≈ −0,5 м, где различие границ раздела наиболее
существенное, и линии тока z ≈ −0,15 м, где граница раздела гладкая во всех вариантах).
Результаты расчетов N -факторов, полученные с помощью блока перехода LOTRAN 3,
показали, что на линиях тока, где граница раздела гладкая, распределения N -факторов
идентичны. На центральной линии тока распределения N -факторов НВПТ также совпа-
дают, но только до границы раздела областей ламинарного и турбулентного течений.
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Рис. 2. Распределения N -факторов НВПТ на выбранных линиях тока (U∞ =
33 м/с, α = −5◦):
а — варианты 1 и 2, б — варианты 1 и 3, в — варианты 1 и 4; сплошные линии —
вариант 1, пунктирные — варианты 2–4; 1 — центральная линия тока z ≈ −0,5 м, 2 —
линия тока z ≈ −0,15 м

Таким образом, численное моделирование обходного сценария с образованием про-
странственно неоднородной линии перехода можно выполнять с помощью созданного про-
граммного модуля для CFD-пакета и блока прогноза ЛТП на основе eN -метода. Впервые
проведено численное моделирование гибридного ЛТП, в случае когда на различных участ-
ках течения в пограничном слое реализуются обходной и регулярный сценарии перехода.

Следует отметить, что предложенный метод расчета ЛТО с границей между областя-
ми ламинарного и турбулентного течений различного типа можно использовать не только

для стреловидного крыла, но и для других тел сложной геометрии.
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