УДК 532.517.4:536.25

КОНВЕКЦИЯ РЭЛЕЯ — БЕНАРА В ХИМИЧЕСКИ АКТИВНОМ ГАЗЕ, НАХОДЯЩЕМСЯ В СОСТОЯНИИ ХИМИЧЕСКОГО РАВНОВЕСИЯ

И. Б. Палымский¹, В. И. Палымский², П. А. Фомин³

¹Сибирский государственный университет телекоммуникаций и информатики, 630102 Новосибирск palymsky@hnet.ru

²Институт теплофизики им. С. С. Кутателадзе СО РАН, 630090 Новосибирск

³Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

В приближении Буссинеска численно исследуется конвекция Рэлея — Бенара в химически активном газе, находящемся в состоянии химического равновесия. Рассматривается плоский слой с изотермическими и свободными от касательных напряжений горизонтальными границами. Термодинамические параметры газа (водородокислородная смесь) рассчитываются по предложенной ранее модели химического равновесия. Показано, что учет процессов рекомбинации и диссоциации приводит к появлению дополнительного множителя при числе Рэлея. Получено выражение для инкремента нарастания бесконечно малых возмущений и соотношение для критического числа Рэлея как функции температуры. Установлено, что нейтральные кривые состоят из верхней (неустойчивость при подогреве снизу) и нижней (неустойчивость при подогреве сверху) ветвей. Приведены результаты расчетов нелинейного стационарного режима.

Ключевые слова: конвекция Рэлея — Бенара, число Рэлея, число Прандтля, химическое равновесие, рекомбинация, диссоциация.

DOI 10.15372/FGV20170201

ВВЕДЕНИЕ

Конвекция Рэлея — Бенара — классическая область науки, в рамках которой разработаны основанная на приближении Буссинеска математическая модель и численные методы [1–4]. При этом основное внимание уделялось моделированию конвекции химически инертных газов и жидкостей.

В то же время конвективные процессы имеют место и в химически реагирующих газах. Сопровождаемая химическими реакциями конвекция реализуется, например, при сгорании газовых смесей в промышленных реакторах, технических устройствах и экспериментальных установках.

Конвекция в газе, находящемся в состоянии химического равновесия, представляет собой частный (хотя и довольно распространенный) случай конвекции в газах, сопровождаемой химическими реакциями, который реализуется в случае, когда характерное время химической реакции много меньше характерного времени конвективного процесса. Естественные ожидать, что качественные и количественные характеристики конвекции во многом определяются формой зависимости коэффициента температурного расширения среды от температуры, так как она напрямую определяет силу плавучести, обусловливающую конвекцию.

Коэффициент температурного расширения химически инертного газа монотонен и обратно пропорционален температуре, уменьшаясь при ее росте. В случае газа в состоянии химического равновесия зависимость этого коэффициента от температуры меняется качественно и становится немонотонной с четким локальным максимумом. При этом значение температурного коэффициента расширения химически равновесного газа может в несколько раз превышать соответствующее значение для химически инертного газа [5–9]. Такая аномальная зависимость влечет за собой существенное качественное и количественное изменение картины конвективных режимов в химически равновесном газе по сравнению с конвективными процессами в химически инертном газе.

В работах [10-12] впервые сформулиро-

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 15-08-05166) и Российского научного фонда (проект № 16-19-000-10).

[©] Палымский И. Б., Палымский В. И., Фомин П. А., 2017.

вана и численно решена двумерная задача о конвекции Рэлея — Бенара в химически активном газе при химическом равновесии. Молярная масса и термодинамические параметры газа рассчитывались по предложенной ранее модели химического равновесия [5–9]. Полученная нелинейная система уравнений решалась с помощью специального спектральноразностного численного метода, основанного на спектрально-разностном представлении вихря, функции тока и температуры. Сначала использовались аналитические формулы для учета всех линейных членов в спектральном пространстве, а затем в физическом пространстве учитывался нелинейный конвективный перенос по конечно-разностной схеме метода переменных направлений.

В результате двумерных расчетов получены различные нелинейные режимы конвекции в газе с химическими реакциями: стационарный, периодический, квазипериодический и стохастический, определены области их существования и соответствующие числа Нуссельта [10–12].

Однако недавние расчеты, проведенные на существенно более мощных многоядерных компьютерах, показали, что полученные в [10–12] стохастические решения метастабильны, существуют в ограниченном, хотя, возможно, и большом промежутке времени (до 300 000 шагов по времени), после чего выходят на стационарное значение [13]. Результаты линейного анализа [10-12] также нуждаются в уточнении, так как в этих работах не упоминается неустойчивость конвекции химически равновесного газа при подогреве сверху (отрицательная ветвь нейтральной кривой), характерная для более высоких температур. Также отметим, что реализация данной физикоматематической модели в [10-12] довольно сложна и неудобна в использовании, например, для представления коэффициента температурного расширения во всем диапазоне изменения реальной (не безразмерной!) температуры используется полином второй степени с четырьмя константами.

Как показали дальнейшие исследования, предложенная в [10–12] реализация физикоматематической модели может быть значительно упрощена и влияние процессов рекомбинации и диссоциации при данной температуре в газе может быть учтено умножением числа Рэлея на один дополнительный множитель — функцию температуры.

При конвекции газа в лабораторных условиях его сжимаемость несущественна и конвектирующая среда может считаться несжимаемой. В этом случае при специальной геометрии области и не очень высокой надкритичности конвекция развивается как валиковая квазидвумерная [14], что дает основание на первом этапе исследования рассматривать двумерные конвективные течения вязкой несжимаемой жидкости.

Как и в работах [10–13], в настоящей работе исследовалось конвективное двумерное и нестационарное течение вязкой несжимаемой жидкости в горизонтальном слое при подогреве снизу в приближении Буссинеска. Границы слоя предполагались изотермическими и свободными от касательных напряжений. Термодинамические параметры химически равновесного газа вычислялись по модели [5–9]. Для проведения расчетов использовался вариант предложенного ранее спектрально-разностного метода [2, 4].

Цель настоящей работы состоит в описании более простой реализации физикоматематической модели конвекции химически реагирующего газа в состоянии химического равновесия и уточнении результатов расчетов линейных и нелинейных режимов течений.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Для описания характеристик газовой смеси при химическом равновесии используется кинетическая модель высокой точности [5–9]. В соответствии с этим подходом, плотность химически равновесного идеального газа ρ рассматривается как функция абсолютной температуры T и давления p:

$$\rho = \frac{p\mu}{RT}$$

$$\mu = \{B\mu_{\min} - 2\mu_{\max} +$$

+
$$[(B\mu_{\min} - 2\mu_{\max})^2 + 4(B-1)\mu_{\max}^2]^{0.5}]/2(B-1)$$

$$B = \frac{AT^{0.75}}{4K_+} \left[1 - \exp\left(-\frac{\Theta}{T}\right) \right]^{1.5} \times \tag{1}$$

$$\times \exp\left(-\frac{E}{RT}\right) \frac{\mu_{\max}^2}{\mu_{\min}\rho}$$

Здесь E — энергия диссоциации обобщенных продуктов реакции, Θ — эффективная температура возбуждения колебательных степеней свободы молекулы, K_+ — обобщенная константа скорости рекомбинации продуктов реакций, A — обобщенная константа скорости диссоциации продуктов реакций, R — универсальная газовая постоянная, μ — молярная масса, которая может изменяться в пределах $\mu_{\min} \leq \mu \leq \mu_{\max}$, при этом $\mu \to \mu_{\max}$ с уменьшением температуры и $\mu \to \mu_{\min}$ при ее увеличении.

Предполагается, что внешнее давление p (в системе (1)) газовой смеси постоянное. Тогда плотность ρ газа зависит только от температуры T. В данной работе приведены результаты исследования стехиометрической водородокислородной смеси, при этом для корректного сравнения с результатами работ [10–12] линейный анализ выполнен при изменении давления в том же диапазоне (десять порядков), а расчеты нелинейных режимов — при p = 1 атм.

Достоинством используемой модели химического равновесия [5–9] является простота, высокая точность и согласованность со вторым началом термодинамики. Она позволяет учесть существенное изменение молярной массы, теплового эффекта, теплоемкостей и показателя адиабаты вследствие сдвига химического равновесия. Все константы модели имеют ясный физический смысл.

Подобные уравнения используются при расчете химического равновесия в водородовоздушных и углеводородовоздушных газовых смесях [6–8], в гетерогенных смесях типа газ конденсированная фаза при наличии межфазного массообмена [7] и в гетерогенных смесях газов с химически инертными частицами [9, 15]. Предложены также двухстадийные модели химической кинетики детонационного сгорания водородокислородных смесей с добавками перекиси водорода [16] и метановоздушных смесей [17–21].

Отметим несомненную полезность данной модели химического равновесия для решения научных и практических задач, например, при моделировании детонационных процессов в газовых [15–17], газокапельных [18–20], пузырьковых [21–23] и газопленочных [24] смесях, при проектировании установок по детонационногазовому нанесению порошковых покрытий [25], для расчета параметров двигателей, работающих по принципу детонационного сгорания топлива (пульсирующей и непрерывной детонации) [26, 27], для моделирования подавления газовой детонации химически инертными частицами [28–30], для расчета концентрационных пределов воспламенения газовых смесей [31].

Из системы (1) следует соотношение для молярной массы как функции температуры:

$$\mu(T) = \mu_{\max} + (f - \sqrt{f^2 + 4f(\mu_{\max} - \mu_{\min})})/2,$$

$$f = \frac{AR\mu_{\max}^2 T^{1.75}}{4K_+ p\mu_{\min}} \left[1 - \exp\left(-\frac{\Theta}{T}\right)\right]^{1.5} \times \exp\left(-\frac{E}{RT}\right).$$

Рассматривая это соотношение при «малой» и большой температурах и учитывая, что

$$f \sim T^{1.75} \exp\left(-\frac{E}{RT}\right) \sim \exp\left(-\frac{E}{RT}\right)$$
 при $T \to 0$,
 $f \sim T^{0.25}$ при $T \to \infty$,

для «малой» температуры получаем

$$T \to 0: f \to 0, \ \mu_{as1} =$$

= $\mu_{\text{max}} - f^{0.5} (\mu_{\text{max}} - \mu_{\text{min}})^{0.5} + f/2 + O(f^{3/2}),$

для большой температуры —

$$T \to \infty$$
: $f \to \infty$, $\mu_{as2} =$
= $\mu_{\min} - (\mu_{\max} - \mu_{\min})^2 / f + O(f^{-2}).$

Коэффициент теплового расширения β находим по формуле

$$\beta = -\frac{1}{\rho} \frac{\partial \rho}{\partial T} = -\frac{d}{dT} \ln \frac{\mu}{T}.$$
 (2)

Выбраны следующие значения констант: E = 459.2 кДж/моль, $\Theta = 4000$ К, $K_+ = 6 \cdot 10^8$ м⁶/(кмоль² · c), $A = 5.1 \cdot 10^{10}$ м³/(кмоль · c · K^{3/4}), $\mu_{\min} = 6$ кг/кмоль, $\mu_{\max} = 18$ кг/кмоль [5–9]. Если не оговорено противное, то все рассмотрения проводятся при p = 1 атм.

На рис. 1 показана молярная масса μ как функция температуры (линия 1), а также асимптотики, соответствующие «малой» (μ_{as1} , кривая 2) и большой (μ_{as2} , кривая 3) температурам, прямые $\mu = \mu_{max}$ (4) и $\mu = \mu_{min}$ (5). Видно, что асимптотические кривые (1 и 2)

Рис. 1. Молярная масса и ее асимптотики как функции температуры

Рис. 2. Плотность газа как функция температуры

корректно передают значения молярной массы при относительно низкой ($T \leq 3500$ K) и высокой ($T \geq 5000$ K) температурах.

На рис. 2 линией 1 показана плотность химически равновесного газа как функция температуры $\rho = \rho(T)$ при $2 \cdot 10^3 \leq T \leq 6 \cdot 10^3$ К. Приведены также две асимптотики: $\rho_1 = \mu_{as1}p/(RT)$ (кривая 2) и $\rho_2 = \mu_{as2}p/(RT)$ (кривая 3), соответствующие относительно низкой ($T \leq 3500$ К) и высокой ($T \geq 5000$ К) температурам, и для полноты картины — кривые $\rho_3 = \mu_{\max}p/(RT)$ (4) и $\rho_4 = \mu_{\min}p/(RT)$ (5), соответствующие полностью рекомбинирован-

Рис. 3. Коэффициент теплового расширения как функция температуры

ному и диссоциированному состояниям. Рис. 2 демонстрирует достаточную точность асимптотических кривых при относительно малой и высокой температурах.

Для химически активного газа в состоянии химического равновесия характерно существование интервала температуры с аномальной (отличной от обратно пропорциональной) зависимостью коэффициента теплового расширения β от температуры (см. (2)).

На рис. 3 показаны зависимость $\beta = \beta(T)$ (сплошная линия) и асимптотическая кривая $\beta_1 = 1/T$ (штриховая линия) с близкими значениями при $T \leq 2\,000$ К и $T \geq 6\,000$ К. Данные работ [10–12] на рис. 1–3 не приведены, так как они близки данным, показанным сплошными кривыми на рис. 1–3.

Конвекция несжимаемой жидкости в приближении Буссинеска описывается системой уравнений [1]:

$$u_x + v_y = 0,$$

+ $uu_x + vu_y + (p/\rho_0)_x = \nu \Delta u,$ (3)

 $v_t + uv_x + vv_y + (p/\rho_0)_y = \nu\Delta v + g\beta(T)T,$

 u_t

$$T_t + uT_x + vT_y = \chi \Delta T$$

Здесь и и v — скорость в направлениях xи y, ρ_0 — характерное значение плотности, $\Delta f = f_{xx} + f_{yy}$ — оператор Лапласа, v и χ постоянные значения коэффициентов кинематической вязкости и температуропроводности.

Система (3) имеет равновесное решение (подогрев снизу):

$$u_{eq} = v_{eq} = 0,$$

$$T_{eq}(y) = T_h(1 - y/H) + T_c y/H,$$

$$p_{eq}(y) = \rho_0 g \int_0^y \beta(T_{eq}(\eta)) T_{eq}(\eta) d\eta.$$

Здесь T_h и T_c — температура нижней и верхней горизонтальных границ соответственно, Н толщина слоя, индекс еq соответствует равновесному решению, а буквой η обозначена переменная интегрирования.

Перепишем систему (3) в отклонениях от равновесного решения ($T = T_{eq} + Q, p = p_{eq} + Q$ p_1):

$$u_x + v_y = 0,$$

$$u_t + uu_x + vu_y + (p_1/\rho_0)_x = \nu \Delta u,$$

(4)

$$v_t + uv_x + vv_y + (p_1/\rho_0)_y = (4)$$
$$= \nu\Delta v + g(\beta(T)T - \beta(T_{eq})T_{eq}),$$
$$Q_t + uQ_x + vQ_y = \chi\Delta Q + v\frac{T_h - T_c}{H}.$$

Второй член в правой части третьего уравнения системы (4) можно с первым порядком точности по $Q = T - T_{eq}$ представить при $T \approx (T_c + T_h)/2$ в виде

$$g(\beta(T)T - \beta(T_{eq})T_{eq}) = g\frac{d}{dT}(\beta(T)T)Q.$$

Выберем толщину слоя Н как характерное значение длины, \ddot{H}^2/ν — времени, χ/H скорости, $\rho\nu\chi/H^2$ — давления, $\delta T = T_h - T_c$ температуры. После обезразмеривания и введения функции тока ψ и вихря ω формулами $u = \psi_u, v = -\psi_x$ и $\omega = v_x - u_u$, получаем следующую систему вместо (3):

$$\omega_t + \frac{1}{\Pr} \left(\psi_y \omega_x - \psi_x \omega_y \right) = \Delta \omega + C \operatorname{Ra} Q_x,$$
$$\Delta \psi = -\omega$$

$$Q_t + \frac{1}{\Pr} \left(\psi_y Q_x - \psi_x Q_y \right) = \frac{1}{\Pr} \Delta Q - \frac{1}{\Pr} \psi_x,$$

$$C = \frac{1}{\beta} \frac{d}{dT} \left(\beta T \right) = 1 + T \frac{d}{dT} \ln(\beta).$$

(5)

Рис. 4. Множитель C как функция температуры

Здесь Ra = $g\beta H^3 \delta T/\chi \nu$ — число Рэлея, Pr = ν/χ — число Прандтля.

Вид силы плавучести в первом уравнении системы (5) показывает, что интенсивность конвекции определяется произведением CRa. При этом критерий Рэлея есть отношение силы плавучести к силе вязкости и определяется градиентом температуры или степенью подогрева, а безразмерный множитель С определяется процессами рекомбинации и диссоциации при данной температуре.

На рис. 4 приведена зависимость C(T). Видно, что в области 1 (2000 \leqslant T \leqslant 4053 К) неустойчивость развивается при подогреве снизу, а в области 2 (4053 $\leq T \leq$ 8000 К) — при подогреве сверху. Аналогия с расчетами конвекции воды при температуре вблизи точки инверсии теплового расширения $(T = 4\,053 \text{ K} \text{ при } p = 1 \text{ атм})$ позволяет сделать вывод, что если кривая, где C = 0, лежит внутри слоя газа, то неустойчивость наблюдается при подогреве как снизу, так и сверху [32]. При понижении температуры (T < 2000 K) или повышении $(T > 8\,000 \text{ K})$ интенсивность конвекции уменьшается до нуля. Отметим, что протяженность (по температуре) области 2 примерно в два раза больше аналогичной характеристики области 1.

Максимальная интенсивность конвекции реализуется в точках локального экстремума множителя $C = C_u(0) = 3.864$ при T = 3.364 К (подогрев снизу) и $C = C_l(0) = -5.040$ при T = 4786 K (подогрев сверху), а с увеличением давления значения локальных экстремумов стремятся к нулю практически линейно:

`.

$$C_u(p) = 3.864 - 0.7558 \lg(p/1 \operatorname{atm}) +$$

+ $0.01927 \lg(p/1 \operatorname{atm})^2$,
 $C_l(p) = -5.040 + 1.155 \lg(p/1 \operatorname{atm}) -$
- $0.04351 \lg(p/1 \operatorname{atm})^2$.

Система (5) решается в области $G = \{(x, y) | 0 \leq$ $x \leq L, 0 \leq y \leq 1$ с граничными условиями $\psi = \omega = Q = 0$ для y = 0,1 и $0 \leqslant x \leqslant L$ (на горизонтальных границах), $\psi_x = \omega_x = Q = 0$ при x = 0, L и $0 \leq y \leq 1$ (на вертикальных границах). Здесь $L = \pi$ — отнесенная к H безразмерная длина области. Число Прандтля во всех расчетах выбрано равным 0.71.

ЛИНЕЙНЫЙ АНАЛИЗ

Рассмотрим линейный аналог системы (5):

$$\omega_t = \Delta \omega + C \operatorname{Ra} Q_x,$$
$$\Delta \psi = -\omega, \tag{6}$$

$$Q_t = \frac{1}{\Pr} \Delta Q - \frac{1}{\Pr} \psi_x.$$

Семейство решений системы (6):

$$\omega(t, x, y) = \Omega \exp(-\lambda t) \cos(\alpha x) \sin(m\pi y),$$

$$\psi(t, x, y) = \Omega \exp(-\lambda t) \cos(\alpha x) \sin(m\pi y)/S,$$

$$Q(t, x, y) = \Theta \exp(-\lambda t) \cos(\alpha x) \sin(m\pi y),$$

$$S = \alpha^2 + m^2 \pi^2.$$

(7)

Здесь λ — собственное значение, $\lambda > 0$ соответствует затуханию, $\lambda < 0$ — нарастанию амплитуд гармонических решений, α и $m\pi$ — волновые числа в горизонтальном и вертикальном направлениях, Ω и Θ — постоянные, m — номер гармоники в вертикальном направлении.

Подставляя (7) в (6), после стандартных вычислений [1, 2] находим

$$\lambda_{1,2} = \frac{1 + \Pr}{2\Pr} S \pm \sqrt{\left(\frac{1 - \Pr}{2\Pr}\right)^2 S^2 + \frac{C \operatorname{Ra} \alpha^2}{S\Pr}}, (8)$$

где, как и выше, $S = \alpha^2 + m^2 \pi^2$.

Рис. 5. Нейтральная кривая на плоскости *T*-Ra

Полагая $\lambda = 0$, из соотношения (8) определяем число Рэлея, соответствующее нейтральной кривой:

$$\operatorname{Ra} = \frac{(m^2 \pi^2 + \alpha^2)^3}{C \alpha^2}$$

Критическое число Рэлея (минимум по а при m = 1) находим по формуле

$$\operatorname{Ra}_{cr} = \frac{27}{4C} \pi^4 = \frac{657.511}{C}, \quad \alpha_{cr} = 2.221.$$

Здесь множитель 657.511 равен критическому значению числа Рэлея для конвекции в химически инертной среде [1], а множитель 1/C, являющийся функцией температуры и внешнего давления, обусловлен протеканием реакций рекомбинации и диссоциации.

На рис. 5 критическое число Рэлея показано как функция температуры при p = 0.1, 1,10 атм. Видно, что с ростом давления области неустойчивости сдвигаются с расширением в сторону более высокой температуры, что сильнее выражено для отрицательной ветви числа Рэлея, соответствующей неустойчивости при подогреве сверху. Отметим, что в работах [10– 12] отрицательная ветвь числа Рэлея не рассматривалась.

Подчеркнем относительно слабую зависимость критического числа Рэлея (минимум по T) от давления:

для верхней ветви

$$\operatorname{Ra}_{cr} = 3\,068.8 \cdot (7.098 - p/1 \text{ atm})^{-1.472},$$

для нижней —

Рис. 6. Область неустойчивости на плоскости $p\!-\!T$

$$\operatorname{Ra}_{cr} = 2965.0 \cdot (6.604 - p/1 \text{ atm})^{-1.652}$$

Для сравнения приведем зависимость для верхней ветви из работы [12]:

$$\operatorname{Ra}_{cr} = 2255.8 \cdot (7.562 - p/1 \text{ atm})^{-1.355}$$

Последняя формула качественно правильно передает поведение критического числа Рэлея при изменении давления на 10 порядков, но с некоторым монотонно увеличивающимся уменьшением, а именно: от 7 % при $p = 10^{-5}$ атм до 38 % при $p = 10^5$ атм.

На рис. 6 представлена область неустойчивости в плоскости *p*-*T*: нижняя граница области неустойчивости (кривая 1), критическое число Рэлея для верхней ветви (кривая 2), кривая смены устойчивости, где C = 0 (кривая 3), критическое число Рэлея для нижней ветви (кривая 4), верхняя граница области неустойчивости (кривая 5). В работах [10–12] кривые 4 и 5, характеризующие область неустойчивости при подогреве сверху, не рассматривались. Данные работ [10–12] для критического числа Рэлея на верхней ветви (кривая 2) на рис. 6 не приведены ввиду их близости к результатам настоящей работы. Из рис. 6 видно, что наибольший рост температуры (в 197 раз) наблюдается на верхней границе области неустойчивости при подогреве сверху (кривая 5), в то время как на остальных кривых изменение температуры существенно меньше, например, на нижней границе области неустойчивости при подогреве снизу оно меньше на два порядка.

ЧИСЛЕННЫЙ МЕТОД

Кратко опишем специальный спектрально-разностный численный метод, хорошо зарекомендовавший себя при расчете различных конвективных режимов, в том числе и турбулентных. Более подробное описание численного метода, результаты линейного и нелинейного анализа и детального тестирования можно найти в [2, 4]. Так как все режимы и характеристики конвективных течений химически равновесного газа могут быть получены из соответствующих характеристик химически инертного заменой Ra на *C*Ra, все расчеты проведены при C = 1.

Искомые величины ω, ψ и Q разыскиваются в виде:

$$\omega(t, x, y) =$$

$$= \sum_{k=0}^{N} \sum_{m=1}^{M-1} \omega_{km}(t) \rho_k \cos(\alpha kx) \sin(\pi my)$$

 $\psi(t, x, y) =$

$$=\sum_{k=0}^{N}\sum_{m=1}^{M-1}\frac{\omega_{km}(t)}{\alpha^{2}k^{2}+\pi^{2}m^{2}}\rho_{k}\cos(\alpha kx)\sin(\pi my),$$

$$Q(t, x, y) = \sum_{k=1}^{N-1} \sum_{m=1}^{M-1} Q_{km}(t) \sin(\alpha kx) \sin(\pi my).$$

Здесь $\alpha = \pi/L, k$ — номер гармоники в направлении x, ω_{km} и Q_{km} — амплитуды гармоник с номерами k и $m, \rho_k = \{0.5 \pmod{k} = 0, N)$ и 1 (при $1 \leq k \leq N - 1\}$.

Следуя общей идеологии метода расщепления, переход от n-го к n+1-му шагу по времени при численном решении системы (5) происходит за два дробных шага.

На первом дробном шаге учитывается линейное развитие возмущений без учета их взаимодействия:

$$\omega_t = \frac{1}{2}\Delta\omega + \operatorname{Ra}Q_x, \quad \Delta\psi = -\omega,$$

$$Q_t = \frac{1}{2\operatorname{Pr}}\Delta Q - \frac{1}{\operatorname{Pr}}\psi_x.$$
(9)

Для эффективного решения нелинейных уравнений конвективного переноса для вихря ω и температуры Q половина вязких членов учитывается на втором дробном шаге. Подставляя выражения для искомых величин, систему (9) приводим к системе из двух обыкновенных дифференциальных уравнений для двух неизвестных амплитуд ω_{km} и Q_{km} при k = 0, 1, ..., N и m = 1, 2, ..., M-1 (точка над функцией означает производную по времени):

$$\dot{\omega}_{km} = -\frac{S}{2}\omega_{km} + \operatorname{Ra}\alpha kQ_{km},$$
$$\dot{Q}_{km} = -\frac{S}{2\operatorname{Pr}}Q_{km} + \frac{\omega_{km}\alpha k}{\operatorname{Pr}S}, \qquad (10)$$
$$S = \alpha^2 k^2 + \pi^2 m^2.$$

Система (10) решается аналитически, без использования каких-либо аппроксимаций по времени. Соответствующие формулы были выведены и вставлены в компьютерную программу.

На втором дробном шаге учитывается нелинейный конвективный перенос, или, другими словами, взаимодействие гармоник:

$$\omega_t + \frac{1}{\Pr} \left(\psi_y \omega_x - \psi_x \omega_y \right) = \frac{1}{2} \Delta \omega,$$

$$Q_t + \frac{1}{\Pr} \left(\psi_y Q_x - \psi_x Q_y \right) = \frac{1}{2\Pr} \Delta Q.$$
(11)

Система (11) решается конечно-разностным методом переменных направлений в модификации В. И. Полежаева. Ранее этот метод успешно использовался для расчета турбулентных конвективных течений с боковым подогревом [3]. Искомые функции пересчитываются из спектрального пространства в физическое и обратно с помощью стандартной программы быстрого преобразования Фурье по косинусам и синусам.

Методическими расчетами установлено, что для корректного описания структуры конвективного течения при $\alpha = 1$ и Pr = 0.71 достаточно следующей пространственной разрешимости: $129 \cdot 33$ гармоник при 1 < r < 25; $257 \cdot 65$ при $25 \leq r \leq 50$; $513 \cdot 129$ при $50 < r \leq$ 100. Здесь и ниже надкритичность r определена как

$$r = \frac{\text{Ra}}{\text{Ra}_{cr}} = \frac{\text{Ra}}{657.511} = 1.521 \cdot 10^{-3} \text{Ra}.$$

В численных расчетах вычислялось число Нуссельта на нижней Nu_0 и верхней Nu_1 горизонтальных границах, а также их среднее значение Nu:

$$\mathrm{Nu}_0 = \frac{\alpha}{\pi} \int_0^{\pi/2} Q_y(t, x, 0) dx - 1,$$

Nu₀
$$\approx \sum_{k=1}^{N-1} \sum_{m=1}^{M-1} (1 - (-1)^k) Q_{km} \frac{m}{k} - 1,$$

$$\mathrm{Nu}_1 = \frac{\alpha}{\pi} \int_{0}^{\pi/\alpha} Q_y(t, x, 1) dx - 1,$$

Nu₁
$$\approx \sum_{k=1}^{N-1} \sum_{m=1}^{M-1} (1 - (-1)^k)(-1)^m Q_{km} \frac{m}{k} - 1,$$

$$\mathrm{Nu} = (\mathrm{Nu}_0 + \mathrm{Nu}_1)/2.$$

Как известно [13, 33], при Pr < 1 все двумерные режимы стационарны, а нестационарные режимы всегда метастабильны и существуют только на конечном, хотя возможно и большом (до 300 000 шагов по времени) промежутке времени. Поэтому все представленные в настоящей работе стационарные режимы конвекции получены по непрерывности движением по надкритичности.

СТАЦИОНАРНЫЕ РЕЖИМЫ КОНВЕКЦИИ

В расчетах установлены следующие стационарные режимы конвекции:

– с одни вихрем (4 $\leqslant r \leqslant$ 100, рис. 7,
a при r=5, Nu = 1.243 · $r^{0.3438},$ kor = 0.9982),

- с двумя ($1.5 \leq r \leq 92$, рис. 7,6 при r = 5, Nu = $1.721 \cdot r^{0.3441}$, kor = 0.9985),

- с тремя $(1.5 \leq r \leq 29,$ рис. 7,6 при r = 5),

– с четырьмя ($5 \leq r \leq 20$, рис. 7,*г* при r = 5). Такая множественность режимов типична для стационарных режимов конвекции [10–12].

Достаточно большой диапазон существования по надкритичности одно- и двухвихревых стационарных режимов позволил определить степенные законы для числа Нуссельта как функции надкритичности, при этом значение kor является величиной корреляции выписанных степенных законов с расчетными данными. Видно, что для одно- и двухвихревой моды стационарного режима число Нуссельта с высокой точностью следует степенному закону с показателем степени 0.344.

Рис. 7. Стационарная конвекция с одним вихрем (a), двумя (b), тремя (b), четырьмя (c)

Рис. 8. Волновое число в направлении *x* как функция надкритичности

Рис. 9. Число Нуссельта как функция надкритичности

На рис. 8 представлено среднее волновое число K_x в направлении x, где кривые, соответствующие различным модам, обозначены цифрами по числу вихрей. В соответствии с результатами работы [34] устойчивость стационарного режима возрастает с ростом его масштаба, поэтому при достижении предельного для выбранной моды значения надкритичности происходит перескок на более крупномасштабную ветвь стационарного режима $(4 \rightarrow 2, 3 \rightarrow 2, 2 \rightarrow 1)$.

На рис. 9 приведено число Нуссельта Nu как функция надкритичности r для различных мод стационарного режима конвекции (обозначения как на рис. 8).

Рис. 10. Кинетическая энергия как функция надкритичности

На рис. 10 показана кинетическая энергия E_k как функция надкритичности r для различных мод стационарного режима конвекции (обозначения как на рис. 8, 9). Эта зависимость с высокой точностью описывается степенными зависимостями $E_k = 9.868 \cdot r^{1.242}$ при одновихревом и $E_k = 10.81 \cdot r^{1.307}$ при двухвихревом режиме конвекции. Отметим, что для кинетической энергии различие показателей степенных законов более выражено, чем для числа Нуссельта.

Значения числа Нуссельта, кинетической энергии и волнового числа в направлении x для химически реагирующего газа в состоянии химического равновесия получаются из соответствующих характеристик химически инертной среды при надкритичности

$$r = \frac{\operatorname{Ra}}{\operatorname{Ra}_{cr}} = \frac{C\operatorname{Ra}}{657.511},$$

где значение C найдено по рис. 4 (при p = 1 атм) или определено вычислением молярной массы μ из системы (1) и последовательным использованием формул

$$\beta = -\frac{d}{dT} \ln \frac{\mu}{T},$$
$$C = \frac{1}{\beta} \frac{d}{dT} \left(\beta T\right) = 1 + T \frac{d}{dT} \ln(\beta)$$

по заданным значениям Т и р.

Подчеркнем еще раз, что в представленных здесь расчетах стационарный режим конвекции устанавливается только в конечном итоге, при этом время жизни метастабильного режима может быть значительным (до 6.6 характерных времен), а динамика установления очень сложной [13].

ХАРАКТЕРНЫЕ ВРЕМЕНА КОНВЕКЦИИ И ВОССТАНОВЛЕНИЯ ХИМИЧЕСКОГО РАВНОВЕСИЯ

В работе обсуждается конвекция химически равновесного газа. В то же время известно, что любое изменение давления и/или температуры влечет за собой нарушение химического равновесия, которое затем восстанавливается. Таким образом, в рамках данной работы восстановление химического равновесия полагается мгновенным. В этой связи сравним характерное время конвективного процесса и время восстановления химического равновесия после малых возмущений параметров системы, чтобы убедиться, что второе из них существенно меньше первого.

Характерное время конвекции может быть оценено через характерную ширину H и кинематическую вязкость ν по формуле $\tau_{conv} = H^2/\nu$. Для оценки рассмотрим воздух. Для него $\nu \approx 1.3 \cdot 10^{-5} \ (T/273)^{1.7} \ \text{m}^2/\text{c} \ [35, 36]$. Принимая H = 0.1 м, для температуры порядка 3000 К получаем $\tau_{conv} \approx 10^{-2} \ \text{m}^2/(7.3 \cdot 10^{-4} \ \text{m}^2/\text{c}) \approx 14$ с. Характерное время восстановления химического равновесия $\tau_{eq} \approx 10^{-4} (1 \ \text{атм}/p)^2 \ \text{c} \ [6]$. При p = 1 атм это время порядка $\tau_{eq} \approx 10^{-4} \ \text{c}$. Итак, в рассмотренном примере $\tau_{eq} \ll \tau_{conv}$. Нетрудно убедиться, что и при любых других температурах и давлениях, превышающих 1 атм и 273 К, это неравенство будет выполняться. Таким образом, предположение данной работы о мгновенном восстановлении химического равновесия вполне обосновано.

ЗАКЛЮЧЕНИЕ

Предложена новая физико-математическая модель конвективных течений реагирующего газа при химическом равновесии. Течение рассматривается в горизонтальном слое при подогреве снизу, газ считается вязким, а конвективное течение — двумерным и нестационарным. Границы слоя предполагаются изотермическими и свободными от касательных напряжений. Термодинамические параметры газа при химическом равновесии (водородокислородная смесь) рассчитываются по предложенной ранее модели химического равновесия. Показано, что учет процессов рекомбинации и диссоциации приводит к появлению дополнительного множителя C = C(T) при числе Рэлея в системе уравнений, описывающей конвекцию.

Для химически равновесного газа получены выражение для инкрементов нарастания бесконечно малых возмущений и формула, описывающая зависимость критического числа Рэлея от температуры при заданном давлении. Показано, что нейтральная кривая на плоскости *T*-Ra состоит из верхней (неустойчивость при подогреве снизу) и нижней (неустойчивость при подогреве сверху) ветвей. Критическое число Рэлея (минимум по T) сравнительно слабо зависит от давления, однако область неустойчивости на плоскости *p*-*T* существенно расширяется при увеличении давления в сторону более высокой температуры, что особенно выражено для нижней ветви нейтральной кривой.

При числе Прандтля $\Pr < 1$ устойчивы только стационарные режимы двумерной конвекции, а все нестационарные метастабильны. Все режимы и характеристики конвективных течений химически равновесного газа могут быть получены из соответствующих характеристик конвекции химически инертной среды переопределением числа Рэлея. С учетом этих факторов для различных мод стационарного режима двумерной конвекции химически инертного газа были установлены зависимости числа Нуссельта, кинетической энергии и волнового числа в направлении x от надкритичности.

В качестве следующих шагов планируется исследование конвекции химически равновесного газа с химически инертными микрочастицами различной массовой концентрации и моделирование трехмерной конвекции химически равновесного газа. Предполагается, что наличие дополнительной степени свободы обусловит большее разнообразие режимов конвекции.

ЛИТЕРАТУРА

- Гершуни Г. З., Жуховицкий Е. М. Конвективная устойчивость несжимаемой жидкости. — М.: Наука, 1972.
- Палымский И. Б. Турбулентная конвекция Рэлея — Бенара. Численный метод и результаты расчетов. — Германия: LAP, 2011.

- Пасконов В. М., Полежаев В. И., Чудов Л. А. Численное моделирование тепло- и массообмена. — М.: Наука, 1984.
- 4. Палымский И. Б. Линейный и нелинейный анализ численного метода расчета конвективных течений // Сиб. журн. вычисл. мат. 2004. Т. 7, № 2. С. 143–163.
- 5. Николаев Ю. А. Модель кинетики химических реакций при высоких температурах // Физика горения и взрыва. — 1978. — Т. 14, № 4. — С. 73–76.
- Николаев Ю. А., Фомин П. А. О расчете равновесных течений химически реагирующих газов // Физика горения и взрыва. — 1982. — Т. 18, № 1. — С. 66–72.
- 7. Николаев Ю. А., Фомин П. А. Приближенное уравнение кинетики в гетерогенных системах типа газ — конденсированная фаза // Физика горения и взрыва. — 1983. — Т. 19, № 6. — С. 49–58.
- Николаев Ю. А., Зак Д. В. Согласование моделей химических реакций в газах со вторым началом термодинамики // Физика горения и взрыва. — 1988. — Т. 24, № 4. — С. 87–90.
- 9. Фомин П. А., Троцюк А. В. Приближенный расчет изоэнтропы химически равновесного газа // Физика горения и взрыва. 1995. Т. 31, № 4. С. 59–62.
- Palymskiy I., Fomin P. A., Hieronymus H. Rayleigh-Benard convection in chemical equilibrium gas // Prog. in Comput. Heat and Mass Transfer. — 2005. — V. 1. — P. 116–122. — (Proc. of the Fourth Intern. Conf. on Computational Heat and Mass Transfer (ICCHMT'05), 17– 20 May 2005, Paris, France).
- Палымский И. Б., Фомин П. А., Хиронимус Х. Конвекция Рэлея — Бенара в газе с химическими реакциями // Сиб. журн. вычисл. мат. — 2007. — Т. 10, № 4. — С. 371–383.
- Palymskiy I., Fomin P. A., Hieronymus H. Rayleigh-Benard convection in a chemical equilibrium gas (simulation of surface detonation wave initiation) // Appl. Math. Model. — 2008. — V. 32, iss. 5. — P. 660–676.
- 13. Палымский И. Б., Палымский В. И., Трилис А. В., Трифанов А. В. Численное моделирование конвективных течений в реагирующих газовых смесях // Материалы XIX Междунар. конф. по вычислительной механике и современным прикладным системам, ВМСППС'2015, 24–31 мая 2015 г., г. Алушта, Крым. — С. 506–508.
- Гетлинг А. В. Конвекция Рэлея Бенара. Структуры и динамика. — М.: Эдиториал УРСС, 1999.
- 15. Воронин Д. В. Неидеальная детонация в гладкой трубе // Физика горения и взрыва. — 1989. — Т. 25, № 2. — С. 116–124.

- 16. **Троцюк А. В.** Численное моделирование структуры двумерной газовой детонации смеси H₂—O₂—Ar // Физика горения и взрыва. 1999. Т. 35, № 5. С. 93–103.
- 17. Васильев А. А., Троцюк А. В. Экспериментальное исследование и численное моделирование расширяющейся многофронтовой детонационной волны // Физика горения и взрыва. — 2003. — Т. 39, № 1. — С. 92–103.
- Николаев Ю. А., Фомин П. А. Модель стационарной гетерогенной детонации в газокапельной среде // Физика горения и взрыва. — 1984. — Т. 20, № 4. — С. 97–105.
- Воронин Д. В. О детонации в криогенной водородокислородной смеси // Физика горения и взрыва. — 1984. — Т. 20, № 4. — С. 105–112.
- Ждан С. А., Прохоров Е. С. Расчет ячеистой структуры детонации распылов в системе H₂—O₂ // Физика горения и взрыва. — 2000. — Т. 36, № 6. — С. 111–118.
- 21. Fomin P. A., Mitropetros K. S., Hieronymus H. Modeling of detonation processes in chemically active bubble systems at normal and elevated initial pressures // J. Loss Prev. Process Ind. — 2003. — V. 16, N 4. — P. 323–331.
- Ждан С. А. Детонация столба химически активной пузырьковой среды в жидкости // Физика горения и взрыва. 2003. Т. 39, № 4. С. 107–112.
- Fomin P. A., Chen J.-R. Shock induced condensation in a fuel-rich oxygen containing bubble in a flammable liquid // Chem. Eng. Sci. 2008. V. 63, N 3. P. 696–710.
- 24. Фомин П. А. Модель стационарной гетерогенной детонации в системе газ пленка для переобогащенных горючим смесей // Динамика сплошной среды. Вып. 73: Механика быстропротекающих процессов. — Новосибирск, 1985. — С. 122–136.
- Gavrilenko T. P., Grigoriev V. V., Zhdan S. A., Nikolaev Yu. A., Boiko V. M., Papyrin A. N. Acceleration of solid particles by gaseous detonation products // Combust. Flame. 1986. V. 66, N 2. P. 121–128.

- 26. Ждан С. А., Митрофанов В. В., Сычев А. И. Величина реактивного импульса от взрыва газовой смеси в полуограниченном пространстве // Физика горения и взрыва. 1994. Т. 30, № 5. С. 90–97.
- Ждан С. А., Быковский Ф. А. Непрерывная спиновая детонация. Новосибирск: Издво СО РАН, 2013.
- Fomin P. A., Chen J.-R. Effect of chemically inert particles on thermodynamic characteristics and detonation of a combustible gas // Combust. Sci. Technol. — 2009. — V. 181, iss. 8. — P. 1038– 1064.
- Fedorov A. V., Fomin P. A., Fomin V. M., Tropin D. A., Chen J. R. Mathematical Analysis of Detonation Suppression by Inert Particles. — Taiwan: Kao Tech Publishing, Kaohsiung, 2012.
- Fomin P. A., Fedorov A. V., Chen J.-R. Control of explosions in silane-air mixtures by means of chemically inert microparticles // Proc. of the Tenth Intern. Symp. on Hazards, Prevention and Mitigation of Industrial Explosions (X ISHPMIE), Bergen, Norway, 10–14 June 2014. P. 951–958.
- Fomin P. A., Chen J.-R. New simple method for calculation flammability limits of mixtures of flammable fuels // IChemE Symp. Ser. — 2007. — N 153, Paper 104. — (12th Intern. Symp. on Loss Prevention and Safety Promotion in the Process Industries).
- Надолин К. А. О приникающей конвекции в приближении изотермически несжимаемой жидкости // Изв. РАН. МЖГ. — 1996. — Вып. 2. — С. 40–52.
- Бабенко К. И., Рахманов А. И. Численное исследование двумерной конвекции. — М., 1988. — (Препр. / ИПМ АН СССР им. М. В. Келдыша; № 118).
- 34. Палымский И. Б. Об асимптотическом режиме конвекции Рэлея — Бенара // Вестн. Южно-Уральского гос. ун-та. Сер.: Математика, механика, физика. — 2015. — Т. 7, № 4. — С. 61–67.
- Таблицы физических величин: справочник / под ред. И. К. Кикоина. — М.: Атомиздат, 1976.
- 36. http://www.highexpert.ru/content/gases/air. html.

Поступила в редакцию 12/IV 2016 г.