2017. Том 58, № 5

Июнь – июль

C. 1003 – 1008

УДК 546.881.4:548.73:541.49

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СПЕКТРЫ ЭПР (Bu₄N)₂[V(dmit)₃]

Я.С. Фоменко¹, А.Л. Гущин^{1,2}, В.А. Надолинный¹, П.А. Абрамов¹, М.Н. Соколов^{1,2}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: gushchin@niic.nsc.ru

²Новосибирский национальный исследовательский государственный университет, Россия

Статья поступила 22 декабря 2016 г.

Трис-хелатный комплекс ванадия(IV) (Bu₄N)₂[V(dmit)₃] получен из VCl₃ и (Bu₄N)₂[Zn(dmit)₂] (dmit = изотритиондитиолат $C_3S_5^{2-}$) и охарактеризован методами PCA и масс-спектрометрии. Полученный комплекс кристаллизуется в пространственной группе *Pna2*₁ и имеет искаженное октаэдрическое окружение вокруг ванадия. Комплекс парамагнитен и дает характерный спектр ЭПР как в растворе, так и в твердом теле. Определены значения *g*-факторов и констант сверхтонкого взаимодействия.

DOI: 10.15372/JSC20170515

Ключевые слова: ванадий, дитиолатные комплексы, кристаллическая структура, спектры ЭПР.

введение

Комплексы переходных металлов с редокс-активными дитиолатными лигандами $S_2C_2R_2^{2-}$ известны с 1960-х годов и используются для получения проводящих молекулярных материалов [1—8]. Чаще всего образуются бис- и трис-хелатные комплексы. Трис-хелатные комплексы могут иметь октаэдрическое или тригонально-призматическое строение в зависимости от электронной конфигурации центрального атома [9]. Тригонально-призматические комплексы характерны для конфигураций d^0 и d^1 . В качестве примеров можно привести нейтральные комплексы Re(VI) [Re^{VI}(S₂C₂Ph₂)₃], Mo(VI) [Mo^{VI}(S₂C₂Ph₂)₃] и комплекс V(IV) [V^{IV}(S₂C₂Ph₂)₃]. С увеличением заселенности *d*-орбиталей октаэдрическая геометрия становится более предпочтительной. К примеру, Mo(IV) с d^2 -конфигурацией образует октаэдрический комплекс [Mo(S₂C₂(CN)₂)₃]²⁻, комплекс V(IV) [V(S₂C₂(CN)₂)₃]²⁻ также имеет октаэдрическое строение [10].

Богатые серой дитиоленовые лиганды, такие как 4,5-димеркаптоизотритион (dmit) и 4,5димеркаптотритион (dmt) (рис. 1), образуют многочисленные бис-хелатные комплексы со многими металлами (Fe, Co, Rh, Cu, Au, Ni, Zn и др.) [11]. Напротив, примеров трис-хелатных комплексов не так много: $[V(dmit)_3]^{2-}$ [11—14], $[Ti(dmit)_3]^{2-}$ [11, 14], $Tl(dmit)_3^-$ [11, 12] и $[In(dmit)_3]^{3-}$ [11, 12]. Известны также трис-хелатные комплекса Mo(IV) состава $[Mo_3Q_7(dmit)_3]^{2-}$

[©] Фоменко Я.С., Гущин А.Л., Надолинный В.А., Абрамов П.А., Соколов М.Н., 2017

(Q = S, Se), в которых три бидентатных лиганда координируются к трем атомам металла треугольного кластера $\{Mo_3Q_7\}$ [15—18]. Следует отметить, что для трис-хелатных комплексов с лигандами типа dmit^{2–} правильный выбор катиона для осаждения представляется очень важным критерием для получения кристаллического образца, в отличие от комплексов с другими дитиоленовыми лигандами.

Комплексы переходных металлов на основе dmit²⁻ привлекают внимание как строительные блоки для получения проводящих молекулярных материалов (молекулярных металлов) из-за сильной делокализации электронной плотности, широкого диапазона устойчивых степеней окисления, а также склонности к образованию линейных цепочечных структур (бис-хелатные комплексы) и трехмерных сетей (трис-хелатные комплексы) [4, 19]. К примеру, бис-хелатные комплексы Ni(II), Pd(II) и Pt(II) с dmit²⁻ обладают высокой проводимостью, а комплекс [TTF][Ni(dmit)₂]₂ претерпевает сверхпроводящий переход при 1,62 К и гидростатическом давлении 7 кбар. Использование трехмерных строительных блоков открывает новые перспективы для синтеза молекулярных проводников [20].

Для комплексов ванадия с dmit²⁻ известны трис-хелатные комплексы с катионами тетрабутиламмония (Bu₄N, TBA) [12, 13], бис-N-метилакридиния (NMA) [13], N-метилфенанзиния (NMP) [13], бис-(этилендитио)тетратиофульвалена (ET) [13], тетраметилтетраселенофульвалена (TMTSF) [20] и тетрафенилфосфония (Ph₄P) [14]. Кроме того, описаны комплексы с металлсодержащими катионами: [Cp₂Fe][V(dmit)₃], [Cp₂Ni][V(dmit)₃], Fe[V(dmit)₃]·3H₂O, Co[V(dmit)₃]·3H₂O [21]. При этом кристаллическая структура определена лишь для комплексов (NMP)₂[V(dmit)₃] [13], (Ph₄P)₂[V(dmit)₃] [14], (ET)₃[V(dmit)₃]₂ и (TMTSF)₃[V(dmit)₃]₂ [20]. В данной работе мы приводим модифицированную методику синтеза трис-хелатного комплекса V(IV) (TBA)₂[V(dmit)₃], по которой удалось получить пригодные для PCA кристаллы. В работе также обсуждаются кристаллическая структура и ЭПР спектры полученного соединения в растворе и для поликристаллического образца.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы и оборудование. Все эксперименты проводили на воздухе. Комплекс $(TBA)_2[Zn(dmit)_2]$ получали по известной методике [22]. VCl₃ является коммерчески доступным. Растворители CH₂Cl₂ и CH₃CN очищали перегонкой над P₂O₅, а C₆H₁₄ — перегонкой над Na.

ИК спектр в области 4000—400 см⁻¹ записывали на спектрометре Scimitar FTS 2000 в таблетке KBr. Электроспрей масс-спектры были получены на жидкостном хроматографе — массспектрометре фирмы Agilent (6130 Quadrupole MS, 1260 infinity LC). Анализ проводили в диапазоне 300—3000 а.е.м., в качестве источника ионизации использовали электроспрей ESI. В качестве подвижной фазы использовали ацетонитрил марки ОСЧ (скорость подачи 0,4 мл/мин). Температура газа-осушителя 250 °С; скорость потока газа-осушителя 5 л/мин; давление на распылителе 60 psig (фунты на кв. дюйм); напряжение на капилляре 2000 В. При анализе вводили 5 мл раствора анализируемого соединения с концентрацией порядка 10—4 г/мл в подвижную фазу. Время записи хроматограммы по общему ионному току 5 мин. ЭПР спектры снимались на ЭПР спектрометре фирмы Varian E-109 в *X*-диапазоне частот при температуре 77 и 300 К.

Синтез (TBA)₂[V(dmit)₃] (I). К смеси VCl₃ (84 мг, 0,53 ммоль) и (TBA)₂[Zn(dmit)₂] (500 мг, 0,53 ммоль) добавили 18 мл CH₃CN. Полученную суспензию красно-коричневого цвета перемешивали при комнатной температуре в течение 3 ч, при этом цвет раствора изменился на зеленый. Раствор ярко-зеленого цвета профильтровали от небольшого количества осадка и упарили в вакууме; остаток растворили в 7 мл CH₂Cl₂. Кристаллы, пригодные для рентгеноструктурного анализа, были получены путем наслаивания гексана на раствор в CH₂Cl₂. Образовавшиеся кристаллы промывали гексаном и диэтиловым эфиром и сушили на воздухе. Выход монокристаллического продукта составил 20 %.

ИК (КВг, v, см⁻¹): 2962 оч. с., 2874 с., 1650 сл., 1484 с., 1382 ср., 1244 ср., 1152 сл., 1065 сл., 998 с., 883 ср., 799 сл., 737 сл., 600 ср.

Электроспрей масс-спектр (—, CH₃CN): m/z = 638,5 ([M]⁻).

ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ. 2017. Т. 58, № 5

Связь		Невалентные контакты		Угол		<i>транс</i> -Угол	
V—S4	2,3754(1)	S4S5	3,1881(2)	S4—V—S5	83,959(3)	S5—V—S7	166,267(3)
V—S5	2,3910(1)	S4S6	3,6123(2)	S6—V—S7	85,371(2)	S4—V—S12	163,965(5)
V—S6	2,3752(1)	S4S7	3,1680(2)	S11—V—S12	86,090(3)	S6—V—S11	161,623(3)
V—S7	2,3827(1)	S4S11	3,4972(2)	S4—C3—C2	122,174(4)		
V-S11	2,3852(1)	S5S6	3,4029(2)	S5—C2—C3	122,803(6)		
V—S12	2,3686(1)	S5S11	3,7292(3)	S6—C4—C5	123,386(4)		
C2—S5	1,7337(1)	S5S12	3,0683(2)	S7—C5—C4	121,509(4)		
C3—S4	1,7095(1)	S6S12	3,1837(2)	S11—C7—C8	123,352(5)		
C4—S6	1,6975(1)	S6S7	3,2257(3)	S12—C8—C7	122,579(4)		
C5—S7	1,7489(1)	S7S11	3,1866(2)				
C7—S11	1,7522(1)	S7S12	3,9501(2)				
C8—S12	1,7001(1)	S11S12	3,2448(2)				

Основные длины связей (Å), невалентные контакты (Å) и углы (град.) в анионе [V(dmit)₃]²⁻

Рентгеноструктурный анализ. Строение соединения (TBA)₂[V(dmit)₃] установлено методом рентгеноструктурного анализа монокристалла. Все измерения проводили по стандартной методике на дифрактометре Bruker X8 Apex при температуре T = 296 K (Mo K_a , $\lambda = 0.71073$ Å). Интенсивности отражений измерены методом θ и ω сканирования узких (0,5°) фреймов до $2\theta = 20.8^{\circ}$. Поглощение учтено эмпирически по программе SADABS [23]. Структура расшифрована прямым методом и уточнена полноматричным МНК в программе ShelXle [24] с использованием алгоритма SHELX 2014/7 [25]. Код ССDС 1521387; орторомбическая сингония *Pna2*₁; параметры кристаллической решетки *a* = 19,1287(16), *b* = 16,4215(13), *c* = 18,4320(13) Å, V = 5789,9(8) Å³, Z = 4; F(000) = 2380; $\mu = 0,74$ мм⁻¹; размеры кристалла $0,20 \times 0,01 \times 0,01$ мм; $T_{\min} = 0,593, T_{\max} = 0,745;$ число измерений, независимых и наблюдаемых $[I > 2\sigma(I)]$ отражений 17778, 5822, 3501; $R_{\text{int}} = 0,119$; $(\sin\theta/\lambda)_{\text{max}} = 0,500$ Å⁻¹; диапазон $h, k, l: -19 \le h \le 15, -16 \le k \le 13, -18 \le l \le 17$; $R[F^2 > 2\sigma(F^2)] = 0,062, wR(F^2) = 0,169, S = 0,98$; число независимых отражений 5822, уточняемых параметров 527, ограничений 1; весовая схема $w = 1/[\sigma^2(F_0^2) + (0.0791P)^2]$, где $P = (F_0^2 + 2F_c^2)/3$; $\Delta \rho_{\text{max}} = 0,51 \text{ e}/\text{Å}^3$, $\Delta \rho_{\text{min}} = -0,37 \text{ e}/\text{Å}^3$; параметр абсолютной структуры 0,01(6). В кристалле наблюдается ориентационное разупорядочение терминальных C и S атомов одного из координированных лигандов $C_3S_5^{2-}$. Кроме того, наблюдается ориентационное разупорядочение терминальных метильных групп катионов ТВА. Атомы водорода уточнялись в геометрически рассчитанных позициях только для атомов углерода с полной занятостью. Основные длины связей и углы приведены в таблице.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Комплекс состава (TBA)₂[V(dmit)₃] был получен взаимодействием трихлорида ванадия с (TBA)₂[Zn(dmit)₂] в CH₃CN на воздухе при комнатной температуре по слегка модифицированной методике [13]. Поликристаллический продукт зеленого цвета выделен из смеси CH₂Cl₂/гексан с выходом 20 %. Альтернативная методика синтеза данного соединения заключается в использовании 4,5-дибензоилтио-1,3-дитиол-2-тиона, который гидролизуется в присутствии NaOMe в метаноле, в качестве источника лиганда dmit^{2–} [12]. При добавлении к этому раствору сначала VCl₃ (соотношение V/dmit = 1/3), а затем TBABr образуется поликристаллический (TBA)₂[V(dmit)₃] с выходом 59 %.

Электроспрей масс-спектр раствора комплекса в CH₃CN показывает наличие одного пика при m/z = 638,5, соответствующего по массе и изотопному распределению псевдомолекулярному иону [V(dmit)₃]⁻. ИК спектр показывает наличие характерных полос колебаний связей C=C (1484 см⁻¹), C=S (1065 см⁻¹), C—S (998 см⁻¹), что хорошо согласуется с известными данными для комплексов с dmit^{2–} [12, 22].

Puc. 2. Строение комплексного аниона $[V(dmit)_3]^{2-}$

Рис. 3. Спектр ЭПР комплекса (Bu₄N)₂[V(dmit)₃] (I) в растворе при комнатной температуре

Степень окисления ванадия в данном соединении 4+, что подтверждается спектрами ЭПР, в которых наблюдается характерный сигнал, состоящий из восьми линий (см. ниже).

Пригодные для рентгеноструктурного анализа кристаллы были получены путем наслаивания гексана на раствор I в CH₂Cl₂. Строение комплексного аниона $[V(dmit)_3]^{2-}$ представлено на рис. 2. Наиболее важные межатомные расстояния и углы аниона $[V(dmit)_3]^{2-}$ приведены в таблице. Среднее значение для *транс*-углов S—V—S (S4—V—S12, S5—V—S7, S6—V—S11) в узле VS₆ составляет 163,9°, что меньше значения 175,1°, рассчитанного для правильного октаэдра, образованного жесткими хелатными лигандами со средним значением *цис*-угла S—V—S 85,1° [9], но значительно меньше значения 136°, характерного для тригональной призмы. Таким образом, ядро VS₆ имеет искаженную октаэдрическую геометрию. Искаженная октаэдрическая геометрия также наблюдается в комплексах (NMP)₂[V(dmit)₃] (*транс*-угол S—V—S 161,8°) [13], (Ph₄P)₂[V(dmit)₃] (S—V—S 164,6°) [14]. Эти величины близки между собой, что свидетельствует о том, что геометрия узла VS₆ определяется внутренними причинами, а не эффектами упаковки. Шесть донорных атомов серы расположены вокруг атома ванадия на среднем расстоянии 2,379 Å, что хорошо согласуется с литературными данными для комплексов (NMP)₂[V(dmit)₃] (*d*(V—S) = 2,378 Å) [13], (Ph₄P)₂[V(dmit)₃] (*d*(V—S) = 2,386 Å) [14].

В структуре (TBA)₂[V(dmit)₃] отсутствуют межмолекулярные невалентные взаимодействия S...S. Расстояния между атомами серы соседних молекул составляют около 4 Å, в отличие от комплекса (NMP)₂[V(dmit)₃], где аналогичные расстояния варьируют в пределах 3,037(2)— 3,769(2) Å [13]. Внутримолекулярные невалентные контакты S...S варьируют в пределах 3,068(2)—3,950(2) Å.

Для I в растворе CH₂Cl₂ наблюдается интенсивный сигнал в спектре ЭПР. Спектр при комнатной температуре обусловлен парамагнитным центром V^{IV} с S = 1/2 (рис. 3) и состоит из восьми линий сверхтонкой структуры (CTC) за счет взаимодействия неспаренного электрона со спином ядра изотопа ванадия ⁵¹V (I = 7/2 с естественным содержанием 99,75 %). Изотропные значения *g*-фактора и параметров сверхтонкого взаимодействия (CTB) для комплекса в растворе при комнатной температуре, рассчитанные из спектра, приведенного на рис. 3, равны $g_{sol} = 1,980$ и $A(V)_{sol} = 65$ Гс. Значение константы сверхтонкого взаимодействия в растворе оценивали по расстоянию между линиями переходов $\langle +1/2 \rangle - \langle +3/1 \rangle$ и $\langle -1/2 \rangle - \langle -3/2 \rangle$. Для остальных переходов из-за неполного усреднения анизотропии параметров спектра ЭПР. (Bu₄N)₂[V(dmit)₃] в растворе наблюдается смещение переходов и уширение линий спектра ЭПР.

Спектр ЭПР поликристаллического образца, приведенный на рис. 4, имеет явно неаксиальный характер и может быть описан спин-гамильтонианом

$$\hat{H} = g_{xx}\beta H_x S_x + g_{yy}\beta H_y S_y + g_{zz}\beta H_z S_z + A_{xx}I_x S_x + A_{yy}I_y S_y + A_{zz}I_z S_z$$

с параметрами: $g_1 = 1,999, g_2 = 1,984, g_3 = 1,987, A_1 = 19, A_2 = 95$ и $A_3 = 81$ Гс.

Рис. 4. Экспериментальный (*a*) и моделированный (б) спектры ЭПР V⁴⁺ для поликристаллического образца (Bu₄N)₂[V(dmit)₃] с параметрами: $g_1 = 1,999, g_2 = 1,984, g_3 = 1,987, A_1 = 19, A_2 = 95$ и $A_3 = 81$ Гс

Рис. 5. Спектр ЭПР свежеприготовленного поликристаллического образца (Bu₄N)₂[V(dmit)₃] при комнатной температуре

Квадрупольные взаимодействия не учитывали, поскольку их ожидаемый вклад невелик.

В спектре ЭПР поликристаллического образца между переходами СТВ для проекций +1/2 и –1/2 наблюдаются линии от СТС для компонент спектра g_1 и A_1 . Расстояние между линиями соответствует $A_1 = 19$ Гс. Учитывая значение константы СТВ для раствора ($A_0 = 65$ Гс), были рассчитаны вклады от контактного (изотропного) взаимодействия и дипольного (анизотропного) сверхтонкого взаимодействия для комплекса (Bu₄N)₂[V(dmit)₃] в кристаллическом состоянии. В отличие от данных для близких по структуре комплексов ванадия (Bu₄N)₂[V(dmt)₃] и [V(mnt)]^{2–}, при константе СТВ в растворе A(V) = 65 Гс все три константы СТС для поликристаллического образца должны быть одного знака. Значения A изотропной и анизотропной части СТВ для ванадия в структуре комплекса равны соответственно: $A(V)_{и3} = (A_1 + A_2 + A_3)/3 = 195/3 = 65$ Гс, а $A(V)_{ани3} = -23$ Гс. Причем среднее значение константы СТС $A(V)_{и3} = 65$ Гс совпадает с изотропной константой СТС для раствора ($A_0 = 65$ Гс).

В работах [12] и [26] приводятся данные ЭПР для растворов близких комплексов ванадия при комнатной температуре и для замороженных растворов. Но в этих случаях речь идет не о структурах комплексов, а только об их анионной части ([V(dmit)₃]^{2–} и [V(dmt)₃]^{2–}, так как в растворе комплексы диссоциируют. Что касается данных ЭПР в растворе при комнатной температуре для комплекса (Bu₄N)₂[V(dmit)₃], приведенных в работе [12], то они практически совпадают. Для нашего случая в растворе CH₂Cl₂ параметры спектра ЭПР: $A_0 = 65$ Гс и g = 1,980, данные в статье для раствора в ацетоне: $A_0 = 63$ Гс и g = 1,979.

Следует отметить, что спектр ЭПР свежесинтезированного поликристаллического образца (рис. 5) отличается от спектра ЭПР, описанного выше, снятого для того же самого комплекса, но синтезированного более года назад. Отличие состоит в том, что в спектре на рис. 5 наблюдается широкая слабо структурированная линия, что в большей степени соответствует наличию различных коллективных взаимодействий в структуре образца. Длительное хранение образца на воздухе, вероятно, приводит к его частичному окислению и образованию состояний ванадия V^{5+} . Это фактически приводит к разбавлению магнитной системы, исчезновению широкой линии в спектре ЭПР и лучшему разрешению переходов (см. спектр на рис. 4).

ЗАКЛЮЧЕНИЕ

Моноядерный комплекс ванадия(IV) состава $(Bu_4N)_2[V(dmit)_3]$ получен в виде кристаллического образца с выходом 20 %. Кристаллическая структура $(Bu_4N)_2[V(dmit)_3]$ определена впервые. Комплекс имеет искаженное октаэдрическое строение. Записаны спектры ЭПР комплекса в растворе и поликристаллического образца. Найденные параметры спектра ЭПР $(Bu_4N)_2[V(dmit)_3]$ в растворе CH_2Cl_2 хорошо согласуются с литературными данными для $(Bu_4N)_2[V(dmit)_3]$ в растворе ацетона. Для поликристаллического образца впервые удалось записать спектр ЭПР хорошего разрешения.

СПИСОК ЛИТЕРАТУРЫ

- 1. King R.B. // Inorg. Chem. 1963. 2, N 3. P. 641 642.
- 2. (a) Schrauzer G.N., Mayweg V., Finck H.W., Muller-Westerhoff U., Heinrich W. // Angew. Chemie. 1964. 76, N 8. P. 345 345. (b) Schrauzer G.N., Finck H.W., Mayweg V. // Angew. Chemie. 1964. 76, N 16. P. 715 715.
- 3. Hoyer E., Schroth W. // Chem. Ind. 1965. P. 652.
- 4. Alcacer L., Novais H. Extended linear chain compounds. Springer US, 1983. P. 319 351.
- 5. Underhill A.E., Tonge J.S., Clemenson P.I., Wang H.H., Williams J.M. // Mol. Cryst. Liquid Cryst. 1985. 125, N 1. P. 439 446.
- 6. (a) Kato R., Mori T., Kobayashi A., Sasaki Y., Kobayashi H. // Chem. Lett. 1984. N 1. P. 1 4. (b) Kato R., Kobayashi A., Kobayashi A., Sasaki Y. // Chem. Lett. 1985. N 1. P. 131 134. (c) Kobayashi H., Kato R., Kobayashi A., Sasaki Y. // Chem. Lett. 1985. N 2. P. 191 194.
- (a) Bousseau M., Valade L., Bruniquel M.F., Cassoux P., Garbauskas M., Interrante L., Kasper J. // Nouv. J. Chim. 1984. 8. P. 3 6. (b) Valade L., Legros J.P., Bousseau M., Cassoux P., Garbauskas M., Interrante L.V. // J. Chem. Soc., Dalton Trans. 1985. N 4. P. 783 794. (c) Bousseau M., Valade L., Legros J.P., Cassoux P., Garbauskas M., Interrante L.V. // J. Am. Chem. Soc. 1986. 108, N 8. P. 1908 1916.
- (a) Heuer W.B., Hoffman B.M. // J. Chem. Soc., Chem. Commun. 1986. N 1. P. 174 175. (b) Heuer W.B., Squattrito P.J., Hoffman B.M., Ibers J.A. // J. Am. Chem. Soc. – 1988. – 110, N 3. – P. 792 – 803. (c) Heuer W.B., True A.E., Swepston P.N., Hoffman B.M. // Inorg. Chem. – 1988. – 27, N 8. – P. 1474 – 1482. (d) Whittaker A.K., Stein P.C., Bernier P., Heuer W.B., Hoffman B.M. // J. Phys. Chem. – 1989. – 93, N 8. – P. 3038 – 3041.
- 9. Cowie M., Bennett M.J. // Inorg. Chem. 1976. 15, N 7. P. 1595 1603.
- 10. Karlin K.D. Progress in Inorganic Chemistry. John Wiley & Sons, 2004. 52.
- 11. Olk R.M., Olk B., Dietzsch W., Kirmse R., Hoyer E. // Coord. Chem. Rev. 1992. 117. P. 99 131.
- 12. Olk R.M., Dietzsch W., Kirmse R., Stach J., Hoyer E., Golic L. // Inorg. Chim. Acta. 1987. 128, N 2. P. 251 259.
- 13. Matsubayashi G., Akiba K., Tanaka T. // Inorg. Chem. 1988. 27, N 26. P. 4744 4749.
- 14. Atzori M., Morra E., Tesi L., Albino A., Chiesa M., Sorace L., Sessoli R. // J. Am. Chem. Soc. 2016. 138, N 35. P. 11234 11244.
- 15. *Gushchin A.L., Llusar R., Vicent C., Abramov P.A., Gómez-García C.J. //* Eur. J. Inorg. Chem. 2013. 2013, N 14. P. 2615 2622.
- Llusar R., Uriel S., Vicent C., Clemente-Juan J.M., Coronado E., Gómez-García C.J. et al. // J. Am. Chem. Soc. – 2004. – 126, N 38. – P. 12076 – 12083.
- 17. Llusar R., Vicent C. // Coord. Chem. Rev. 2010. 254, N 13. P. 1534 1548.
- 18. Гущин А.Л., Абрамов П.А., Пересыпкина Е.В., Соколов М.Н. // Коорд. химия. 2013. **39**, № 38. С. 8 13.
- 19. McCleverty J.A. // Prog. Inorg. Chem. 1968. 10. P. 49 221.
- 20. Broderick W.E., McGhee E.M., Godfrey M.R., Hoffman B.M., Ibers J.A. // Inorg. Chem. 1989. 28, N 15. P. 2902 2904.
- 21. Akiba K., Matsubayashi G.E., Tanaka T. // Inorg. Chim. Acta. 1989. 165, N 2. P. 245 248.
- 22. Steimecke G., Sieler H.J., Kirmse R., Hoyer E. // Phosphorus and Sulfur and the Related Elements. 1979. 7, N 1. P. 49 55.
- 23. Sheldrick G.M. SADABS, Bruker AXS. Germany, University of Goettingen, 1990-2007.
- 24. Hübschle C.B, Sheldrick G.M., Dittrich B. // J. Appl. Cryst. 2011. 44, N 6. P. 1281 1284.
- 25. Sheldrick G.M. // Acta Crystallogr. Sect. C: Struct. Chem. 2015. 71. P. 3 8.
- 26. Kwik W.L., Stiefel E.I. // Inorg. Chem. 1973. 12, N 10. P. 2337 2342.