2017. Том 58, № 3

Март – апрель

C. 560 – 566

УДК 541.49:546.289.562:547.47.83

СТРУКТУРА БИС(ЦИТРАТО)ГЕРМАНАТОВ С КАТИОНАМИ РАЗЛИЧНОГО ТИПА: (Hphen)₂[Ge(HCit)₂·3H₂O], [CuCl(phen)₂]₂[Ge(HCit)₂·6H₂O], ГДЕ H₄Cit — ЛИМОННАЯ КИСЛОТА, phen — 1,10-ФЕНАНТРОЛИН

И.И. Сейфуллина¹, Е.Э. Марцинко¹, Е.А. Чебаненко¹, О.В. Пирожок¹, В.В. Дьяконенко², С.В. Шишкина^{2,3}

¹Одесский национальный университет им. И.И. Мечникова, Украина E-mail: lborn@ukr.net

²Научно-технологический комплекс "Институт монокристаллов" НАН Украины, Харьков ³Харьковский национальный университет им. В.Н. Каразина, Украина

Статья поступила 18 октября 2016 г.

Разработаны методики и препаративно выделены продукты комплексообразования из систем: GeO₂—H₄Cit—phen—CH₃CN—H₂O (I) и GeO₂—H₄Cit—CuCl₂—phen—C₂H₅OH—H₂O (II) (phen — 1,10-фенантролин, H₄Cit — лимонная кислота). Комплексы (Hphen)₂[Ge(HCit)₂]·3H₂O (I) и [Cu(phen)₂Cl]₂[Ge(HCit)₂]·6H₂O (II) охарактеризованы методами элементного анализа, ИК спектроскопии и PCA. Соединения построены из центросимметричных октаэдрических анионов [Ge(HCit)₂]^{2–}, катионов Hphen⁺ (I) и [Cu(phen)₂Cl]⁺ (II), а также кристаллизационных молекул воды. Структурные единицы в кристаллах объединены системой водородных связей.

DOI: 10.15372/JSC20170314

Ключевые слова: диоксид германия, лимонная кислота, 1,10-фенантролин, хлорид меди(II), координационные соединения, молекулярная структура, рентгеноструктурный анализ.

введение

К настоящему времени получен значительный объем научной информации, свидетельствующий о эссенциальной роли германия(IV), биологической активности его органических и координационных соединений [1, 2], особенно с биолигандами, такими, как, например, лимонная кислота (главный промежуточный продукт метаболического цикла трикарбоновых кислот, играющий важную роль в системе биохимических реакций клеточного дыхания) [3]. На ее основе нами впервые был синтезирован и структурно охарактеризован ряд комплексных бис(цитрато)германатов с органическими катионами (протонированные органические азотсодержащие молекулы), а также разнометалльных с *s*-ионами и гексааквакатионами *d*-металлов (Mn^{2+} , Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺). Большинство из них оказались нетоксичными, перспективными для создания лекарственных препаратов, характеризующихся широким спектром фармакологического действия [4—9].

Настоящая работа спланирована как продолжение этих исследований. В качестве вторичного лиганда был выбран 1,10-фенантролин, широко используемый в супрамолекулярной химии, в частности, для создания лекарственных препаратов на основе координационных соединений биогенных металлов: некоторые из них запатентованы [10, 11]. Особенность лиганда 1,10-фенантролина заключается в том, что он способен играть самостоятельную роль органиче-

[©] Сейфуллина И.И., Марцинко Е.Э., Чебаненко Е.А., Пирожок О.В., Дьяконенко В.В., Шишкина С.В., 2017

ского катиона, а также входить в координационное окружение одного или нескольких металлоцентров комплексов различного типа: гетерометаллических, смешанно-лигандных, катион-анионных. Его дополнительное введение в такие соединения оказывает направленное влияние на их структурообразование. Это убедительно продемонстрировано на множестве примеров комплексов металлов различных электронных блоков, в частности, с гидроксикарбоновыми кислотами [3, 12—27].

Цель данного исследования: разработать методики и выделить препаративно продукты комплексообразования из систем: GeO₂—H₄Cit—phen—CH₃CN—H₂O (I) и GeO₂—H₄Cit—CuCl₂ phen—C₂H₅OH—H₂O (II), подтвердить их индивидуальность, охарактеризовать структуру и провести сравнение с ранее полученными подобными бис(цитрато)германатами(IV) [4—9].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных реагентов для синтеза соединений (Hphen)₂[Ge(HCit)₂]· $3H_2O$ (I) и [Cu(phen)₂Cl]₂[Ge(HCit)₂]· $6H_2O$ (II) использовали GeO₂ (99,999 %), моногидрат лимонной кислоты (99 %), 1,10-фенантролин (99 %) (Aldrich), CuCl₂· $2H_2O$ (99 %) (Merck).

Синтез комплекса I проводили следующим образом: навески диоксида германия (0,2 ммоль), лимонной кислоты (H₄Cit) (0,4 ммоль) и 1,10-фенантролина (1,10-phen) (0,4 ммоль) растворяли в смеси 10 мл ацетонитрила и 10 мл воды (t = 100 °C) в результате длительного кипячения (8 ч) с обратным холодильником. Полученный раствор приобретал светло-розовую окраску, из него через 1 сутки выпадал кристаллический осадок белого цвета. Выход продукта — 70 %. Монокристаллы I пригодные для рентгеноструктурного анализа были отобраны из реакционной среды.

Синтез комплекса II проводили в два этапа. Предварительно взаимодействием навесок диоксида германия (0,5 ммоль) и лимонной кислоты (1 ммоль) в 50 мл воды получали раствор бис(цитрато)германатной кислоты, который упаривали при температуре 50 °С до объема 10 мл. На втором этапе к нему прибавляли спиртовой раствор, содержащий 2 ммоль 1,10-фенантролина и 1 ммоль хлорида меди(II) в 10 мл 95 % C_2H_5OH . Через сутки из полученной реакционной среды выпадал кристаллический осадок синего цвета. Выход продукта — 60 %. Монокристаллы, пригодные для рентгеноструктурного анализа, выращивали при испарении полученного раствора в течение 2 суток.

Состав комплексов определяли в результате элементного анализа: хлор — меркурометрически [28], углерод, водород и азот — с помощью полуавтоматического C,N,H-анализатора, медь и германий — методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой на приборе Optima 2000 DV фирмы Perkin-Elmer.

Брутто-формула I С₃₆H₃₄GeN₄O₁₇; вычислено, %: С 49,81, Н 3,92, N 6,46, Ge 8,38; найдено, %: С 49,4, Н 3,6, N 6,1, Ge 8,1.

Брутто-формула II С₆₀H₅₄Cl₂Cu₂GeN₈O₂₀; вычислено, %: С 48,73, Н 3,65, N 7,58, Cl 4,79, Cu 8,60, Ge 4,92; найдено, %: С 48,9, Н 3,1, N 7,2, Cl 4,4, Cu 8,2, Ge 4,3.

ИК спектры поглощения (400—4000 см⁻¹) комплексов в виде таблеток с KBr записывали на спектрофотометре Frontier фирмы Perkin-Elmer.

Рентгеноструктурное исследование структур I и II. Кристаллы соединения I триклинные $[(C_{12}H_{10}GeO_{14}) \cdot 2(C_{12}H_9N_2)] \cdot 3H_2O$, при 100 К a = 6,8950(9), b = 11,376(1), c = 12,285(2) Å, $\alpha = 102,58(1)$, $\beta = 102,03(1)$, $\gamma = 106,09(1)^\circ$, V = 865,7(2) Å³, $M_r = 867,26$, Z = 1, пространственная группа $P\overline{1}$, $\mu(MoK_{\alpha}) = 0,976 \text{ мm}^{-1}$, $D_{\text{выч}} = 1,663 \text{ г/см}^3$, F(000) = 446.

Кристаллы соединения II триклинные $[(C_{12}H_{10}GeO_{14}) \cdot 2(C_{24}H_{16}ClCuN_4)] \cdot 6H_2O$, при 294 К $a = 10,2452(5), b = 11,8008(8), c = 13,4434(6) Å, \alpha = 75,243(5), \beta = 74,653(4), \gamma = 77,762(5)^{\circ},$ $V = 1497,4(2) Å^3, Z = 1$, пространственная группа $P\overline{1}$, $\mu(MoK_{\alpha}) = 1,378 \text{ мm}^{-1}$, $D_{\text{выч}} = 1,639 \text{ г/см}^3$, F(000) = 754. Параметры элементарных ячеек и интенсивности 7462 отражений (независимых 3963, $R_{\text{int}} = 0,072$) для структуры I и 13191 отражение (независимых 6872, $R_{\text{int}} = 0,044$) для структуры II измерены на дифрактометре Xcalibur-3 (Мо K_{α} -излучение, ССD-детектор, графитовый монохроматор, ω -сканирование). Структуры расшифрованы прямым методом по комплексу программ SHELXTL [29, 30]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{_{\rm H30}} = nU_{_{3KB}}$ неводородного атома, связанного с данным атомом водорода (n = 1,5 для гидроксильных групп и молекул воды и n = 1,2 для остальных атомов водорода). Структуры уточнены по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0,178$ по 3950 отражениям ($R_1 = 0,074$ по 2995 отражениям с $F > 4\sigma(F)$, S = 1,035) в структуре I и до $wR_2 = 0,125$ по 6855 отражениям ($R_1 = 0,053$ по 4595 отражениям с $F > 4\sigma(F)$, S = 1,029) в структуре II.

Координаты атомов, а также полные таблицы длин связей и валентных углов задепонированы в Кембриджском банке структурных данных (e-mail: deposit@ccdc.cam.ac.uk) (CCDC 1509112 для структуры I и CCDC 1509113 для структуры II).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По результатам элементного анализа комплексов установлено, что в них реализуется следующее мольное соотношение: для I - Ge: цитрат:phen = 1:2:2; для II - Ge: М: цитрат:phen = 1:2:2:4.

Из данных РСА следует, что комплексы I и II представляют собой соединения катионанионного типа, в которых роль аниона выполняет бис(цитрато)германат $[Ge(HCit)_2]^{2-}$, находящийся в частном положении, где координаты атома Ge совпадают с координатами центра симметрии, а катионом выступает протонированный по одному атому азота 1,10-фенантролин в случае комплекса I либо комплексный катион меди $[Cu(phen)_2Cl]^+$ в случае комплекса II.

Анион в (Hphen)₂[Ge(HCit)₂]·3H₂O (I) и [Cu(phen)₂Cl]₂[Ge(HCit)₂]·6H₂O (II) (рис. 1) представляет собой центросимметричный комплекс. Координационный полиэдр атома Ge — искаженный октаэдр, образованный тремя парами атомов кислорода трех типов двух тридентатных хелатных HCit³⁻ лигандов: гидроксильный (атом O(3)), α -карбоксилатный (атом O(1)), β -карбоксилатный (атом O(4)) (см. рис. 1).

Как отмечалось в предыдущих работах [8, 9], длины связей Ge—O неэквивалентны. Длина гидроксильной связи Ge—O(3) (1,793(3) в I и 1,808(2) Å в II) намного короче, чем карбоксилатные связи Ge—O. В свою очередь, следует отметить, что карбоксилатные связи также отличаются между собой по длине: связь Ge—O(4) несколько длиннее, чем связь Ge—O(1) (1,939(3), 1,954(2) Å и 1,913(3), 1,904(3) Å для структур I и II соответственно).

В результате координирования к Ge(IV) органического лиганда образуются пяти- и шестичленные металлоциклы. Шестичленный цикл Ge—O(3)—C(2)—C(3)—C(4)—O(4) находится в конформации *софа* (атом O(3) отклоняется на -0.8 Å в I и II от среднеквадратичной плоскости, проведенной через атомы Ge(1), O(4), C(2), C(3), C(4) с точностью 0,06 Å; параметры складчатости [31] приведены в табл. 1). Пятичленный цикл находится в конформации *конверт*. Атом O(3) отклоняется на -0.5 в I на 0,4 Å в II от среднеквадратичной плоскости, проведенной через атомы Ge(1), O(4), C(2), C(3), C(4) с точностью 0,06 Å; параметры складчатости [31] приведены в табл. 1). Пятичленный цикл находится в конформации *конверт*. Атом O(3) отклоняется на -0.5 в I на 0,4 Å в II от среднеквадратичной плоскости, проведенной через атомы Ge(1), O(1), C(2) с точностью 0,01 Å.

Рис. 1. Молекулярная структура аниона $[Ge(HCit)_2]^{2-}$ в комплексах I и II

Таблица 1

Параметры складчатости в структурах I и II

Соединение	S	Θ, град.	Ψ, град.
I	0,97	42,7	20,4
II	0,95	43,6	19,3

Рис. 2. Молекулярные структуры катионов в структурах I и II

Катион в структуре I представляет собой монопротонированный 1,10-фенантролин (рис. 2), о чем свидетельствуют выявленный из разностного синтеза электронной плотности атом водорода при N(2) и удлинение связи N(2)—C(15) 1,363(6) Å по сравнению с ее средним значением 1,339 Å [32].

Координационный полиэдр катиона [Cu(phen)₂Cl]⁺в структуре II представляет собой искаженную тригональную бипирамиду (см. рис. 2). В экваториальной плоскости находятся атомы N(2), N(3), Cl(1), а в аксиальной — атомы N(1) и N(4). Изменение валентных углов в экваториальном направлении от идеального значения 120° колеблется в пределах 87,20(2)—137,17(9)°, а в аксиальном направлении в пределах 80,6(2)—95,14(9)° (идеальное значение 90°). Длины связей Cu(1)—N изменяются в пределах 1,974(3)—2,153(3) Å, а Cu(1)—Cl равна 2,277(3) Å (табл. 2).

В кристалле I катион и два аниона связаны друг с другом межмолекулярными водородными связями N(2)—H...O(3) (табл. 3). Присутствие кристаллизационных молекул воды приводит к образованию О—H...О межмолекулярных водородных связей, в результате чего в кристалле формируются слои вдоль кристаллографического направления [-101] (рис. 3).

В кристалле II невозможны специфические межмолекулярные взаимодействия между катионом и анионом, но присутствие кристаллизационных молекул воды обусловливает образование О—Н...О водородных связей с участием аниона. В результате в кристалле наблюдается чередование слоев, содержащих только катионы, и слоев, содержащих анионы, которые связаны мостиковыми молекулами воды. Между катионами в слое реализуются стэкинг-взаимодействия C(19)...C(26)' (2–x, 1–y, 1–z) 3,39 Å, C(23)...C(23)' (2–x, 1–y, 1–z) 3,35 Å и слабые межмолекулярные водородные связи C(16)—H(16)...C(24)' (π) (2–x, 2–y, 1–z) (H...C 2,76 Å, угол C—H...C 163°) и C(16)—H(16)...C(22)' (π) (2–x, 2–y, 1–z) (H...C 2,76 Å, угол C—H...C 156°). Водородные связи О—H...О между анионами и молекулами воды приведены в табл. 3.

Т	а	б	Л	И	Ц	а	2
---	---	---	---	---	---	---	---

Параметр	Ι	II	Параметр	II
Ge(1) - O(4) Ge(1) - O(1) Ge(1) - O(3) Cu(1) - N(1)	1,939(3) 1,913(3) 1,793(3)	1,954(2) 1,905(3) 1,808(2) 1,974(3)	N(1)— $Cu(1)$ — $Cl(1)N(1)$ — $Cu(1)$ — $N(2)N(1)$ — $Cu(1)$ — $N(3)N(2)$ — $Cu(1)$ — $Cl(1)$	95,13(9) 80,86(13) 91,93(11) 135,64(9)
Cu(1) - N(2) Cu(1) - N(3) Cu(1) - N(4) Cu(1) - Cl(1)		2,148(3) 2,153(3) 1,978(3) 2,278(3)	N(2)— $Cu(1)$ — $N(3)N(3)$ — $Cu(1)$ — $Cl(1)N(4)$ — $Cu(1)$ — $Cl(1)N(4)$ — $Cu(1)$ — $N(2)$	87,20(12) 137,16(9) 94,39(9) 92,73(12)
Cu(1)— $Cl(1)$		2,278(3)	N(4)— $Cu(1)$ — $N(2)N(4)$ — $Cu(1)$ — $N(3)$	92,73(12) 80,65(11)

Некоторые длины связи (Å) и валентные углы (град.) в структурах I и II

	-	-	1,			
D—H…A	<i>d</i> (D—H), Å	<i>d</i> (HA), Å	<i>d</i> (DA), Å	D—НА, град.		
Структура І						
$O(7) - H(7A) O(8)^{1}$	0,84	1,79	2,623(5)	169,3		
C(5)—H5(A)O(9)	0,99	2,41	3,362(9)	161,8		
N(2)—H(2)O(5)	0,88	1,86	2,641(5)	147,5		
O(8)—H(8A)O(4)	0,87	2,57	3,198(4)	130,0		
O(8)—H(8A)O(5)	0,87	1,94	2,811(5)	174,0		
$O(8) - H(8B) O(6)^2$	0,87	1,98	2,826(4)	162,5		
$O(9) - H(9A) O(2)^3$	0,87	2,00	2,817(8)	154,8		
$O(9) - H(9A) O(9)^3$	0,87	1,83	2,264(4)	108,6		
O(9)—H(9B)O(2)	0,87	1,97	2,831(7)	170,5		
Структура П						
O(7)—H(7A)O(8)	0,82	1,87	2,668(5)	163,6		
O(8)—H(8A)O(9)	0,85	1,88	2,723(6)	175,8		
$O(9) - H(9A) \dots O(10)^4$	0,85	1,92	2,702(7)	152,3		
$O(9H)$ —(9B) $O(5)^5$	0,85	2,02	2,821(5)	156,5		
$O(10) - H(10A) \dots O(6)^6$	0,85	2,04	2,834(5)	154,3		
O(10)—H(10B)O(2)	0,85	1,94	2,756(6)	161,8		

Геометрические характеристики водородных связей в структурах I и II

Таблица 3

Результаты ИК спектроскопического исследования коррелируют с данными РСА. Наличие в ИК спектрах комплексов интенсивных полос валентных колебаний v(OH) (3443, 3436 см⁻¹ для I и II соответственно) согласуется с присутствием в их составе кристаллизационных молекул воды.

По данным РСА в комплексах I и II реализуется одинаковый бис(цитрато)германатный анион, что находит подтверждение в характере их ИК спектров: наличие вакантной карбоксильной группы —СООН ($v(C=O) \sim 1700 \text{ см}^{-1}$) и карбоксилатных групп ($v_{as}(COO^{-}) \sim 1670 \text{ см}^{-1}$)

Рис. 3. Кристаллические структуры I и II (проекция вдоль кристаллографической оси b)

и $v_s(COO^-) \sim 1380 \text{ см}^{-1})$, а также v(C-O) алкоголятного типа $\sim 1072 \text{ см}^{-1}$ при отсутствии деформационных колебаний С-OH [33]. В ИК спектрах комплексов I и II в области колебаний v(Ge-O) зафиксирована полоса поглощения ($\sim 645 \text{ см}^{-1}$), что наблюдалось ранее в бис(цитрато)германатных анионах [4-9].

На основании совокупности полученных данных можно констатировать, что в I и II сохраняется не только такая же, как и в бис(цитрато)германатах с органическими катионами [4, 5], барием и гексааквакатионами 3*d*-металлов [7—9] координируемая форма HCitr³⁻, но и сам полиэдр германия GeO₆ (в связях участвуют атомы кислорода депротонированных двух карбоксильных и одной гидроксильной групп). На присутствие в соединениях I и II молекул 1,10фенантролина указывает наличие в их ИК спектрах следующих полос поглощения: ~1585, 1470 см⁻¹ скелетные колебания С—С кольца; ~ 3064, 2918 см⁻¹ v(C—H); 1353, 1366 см⁻¹ v(C—N) (для I и II соответственно) [34]. В ИК спектре I, в отличие от II, присутствует полоса поглощения при 3098 см⁻¹, свидетельствующая о протонировании атома азота кольца 1,10фенантролина, что согласуется с данными PCA.

Таким образом, впервые получены бис(цитрато)германатные комплексы с различными катионами: в I — протонированный по одному атому азота 1,10-фенантролин Hphen⁺, а в II разнолигандный комплекс меди(II) [Cu(phen)₂Cl]⁺. На примере двух этих координационных соединений подтверждена способность 1,10-фенантролина играть роль как однозарядного органического катиона, так и лиганда в составе комплексного катиона второго иона металла. С учетом полученных ранее [4—9] и в настоящей работе данных можно утверждать, что бис(цитрато)германатные анионы являются своеобразными строительными блоками — металлотектонами, которые способны связывать катионы различной природы с образованием супрамолекулярных ансамблей — катион-анионных водородно-связанных ассоциатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Seifullina I.I., Martsinko E.E., Afanasenko E.V. // Odessa National University Herald. Chemistry. 2015. N 4. P. 6 17.
- 2. Менчиков Л.Г., Игнатенко М.А. // Хим.-фарм. журн. 2012. 46, № 11. С. 3.
- Willey G R., Somasunderam U., Aris D.R., Errington W. // Inorg. Chim. Acta. 2001. 315, N 2. P. 191 195.
- 4. Сейфуллина И.И., Песарогло А.Г., Миначева Л.Х., Марцинко Е.Э., Сергиенко В.С. // Журн. неорган. химии. 2006. **51**, № 12. С. 2010 2017. Seifullina I.I., Pesaroglo A.G., Minacheva L.Kh., Martsinko E.E., Sergienko V.S. // Russ. J. Inorg. Chem. – 2006. – **51**. – Р. 1892 – 1899.
- 5. Сейфуллина И.И., Песарогло А.Г., Миначева Л.Х., Марцинко Е.Э., Сергиенко В.С. // Журн. неорган. химии. 2007. **52**, № 4. С. 550 555. Seifullina I.I., Pesaroglo A.G., Minacheva L.Kh., Martsinko E.E., Sergienko V.S. // Russ. J. Inorg. Chem. – 2007. – **52**. – Р. 494 – 499.
- 6. Марцинко Е.Э., Сейфуллина И.И., Песарогло А.Г. // Укр. хим. журн. 2011. 77, № 9. С. 3 6.
- 7. Песарогло А.Г., Марцинко Е.Э., Миначева Л.Х., Сейфуллина И.И., Сергиенко В.С. // Журн. неорган. химии. – 2010. – **55**, № 9. – С. 1449 – 1455. Pesaroglo A.G., Martsinko E.E., Minacheva L.Kh., Seifullina I.I., Sergienko V.S. // Russ. J. Inorg. Chem. – 2010. – **55**. – Р. 1366 – 1372.
- Марцинко Е.Э., Миначева Л.Х., Песарогло А.Г., Сейфуллина И.И., Чураков А.В., Сергиенко В.С. // Журн. неорган. химии. – 2011. – 56, № 8. – С. 1247 – 1253. Martsinko E.E., Pesaroglo A.G., Minacheva L.Kh., Seifullina I.I., Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. – 2011. – 56. – Р. 26 – 31.
- 9. Марцинко Е.Э., Миначева Л.Х., Чебаненко Е.А., Сейфуллина И.И., Сергиенко В.С., Чураков А.В. // Журн. неорган. химии. – 2013. – 58, № 5. – С. 588 – 595. Martsinko E.E., Minacheva L.Kh., Chebanenko E.A., Seifullina I.I., Sergienko V.S., Churakov A.V. // Russ. J. Inorg. Chem. – 2013. – 58. – Р. 515 – 522.
- 10. Власов В.В., Казаков С.А., Плотников В.М., Слюдкин О.П., Скорик Н.А. // Патент РФ № 2190616, C07F1/08, A61K31/4745, A61P35/00. Опубл. 10.10.2002. База патентов на изобретения РФ.
- 11. Власов В.В., Казаков С.А., Плотников В.М., Слюдкин О.П., Скорик Н.А. // Патент РФ № 2192861 А61К31/4745, А61К31/375, А61К31/282, А61Р35/00. Опубл. 20.11.2002. База патентов на изобретения РФ.
- 12. Abrahams B.F., Grannas M.J., McCormick L.J., Robson R., Thistlethwaite P.J. // Cryst. Eng. Comm. 2010. – N 12. – P. 2885 – 2895.

- 13. Dong Gui-Ying, He Cui-Hong, Liu Tong-Fei, Cui Guang-Hua, Deng Xiao-Chen // Acta Cryst. 2011. E67. P. 1005 1006.
- 14. *Can-Yu Chen, Zhao-Hui Zhou, Shao-Yu Mao, Hui-Lin Wan //* J. Coord. Chem. 2007. **60**, N 13. P. 1419 1426.
- 15. Dagui Chen, Yongjing Wang, Zhang Lin, Feng Huang // J. Mol. Struct. 2010. 966. P. 59 63.
- 16. Malachy McCann, Fergal Humphreys, Vickie McKee // Polyhedron. 1997. 16, N 20. P. 3655 3661.
- 17. Xiaofeng Zhang, Deguang Huang, Chen Feng, Changneng Chen, Qiutian Liua, Licheng Sun // Acta Cryst. 2003. C59. P. m402 m404.
- Subal Chandra Manna, Ennio Zangrando, Joan Ribas, Nirmalendu Ray Chaudhuri // Eur. J. Inorg. Chem. - 2007. - P. 4592 - 4595.
- 19. Ji-Jiang Wang, Dong-Sheng Li, Long Tang, Feng Fu, Li Guo, Zhu-Lian Zhang // Z. Kristallogr. 2007. 222. P. 61 63.
- Gui-Ying Dong, Cui-Hong He, Tong-Fei Liu, Guang-Hua Cuia, Xiao-Chen Deng // Acta Cryst. 2011. – E67. – P. m1005–m1006.
- 21. Rajat S., Susobhan B., Golam M. // Cryst. Eng. Comm. 2011. N 13. P. 1018 1028.
- 22. Yaqin Guo, Dongrong Xiao, Enbo Wang, Ying Lu, Jian Lu, Xinxin Xu, Lin Xu // J. Sol. St. Chem. 2005. **178**. P. 776 781.
- 23. Jing Lu, De-Qing Chu, Jie-Hui Yu, Xiao Zhang, Ming-Hui Bi, Ji-Qing Xu, Xiao-Yang Yu, Qing-Feng Yang // Inorg. Chim. Acta. – 2006. – **359**. – P. 2495 – 2500.
- 24. Xinxin Xu, Ying Lu, Enbo Wang, Ying Ma, Xiuli Bai // Inorg. Chim. Acta. 2007. 360. P. 455 460.
- 25. Medina G., Gasque L., Bernes S. // Acta Cryst. 2002. E58. P. m765 m767.
- Covelo B., Carballo R., Vázquez-López M.E., García-Martínez E., Castiñeiras A., Balboa S., Niclós J. // Cryst. Eng. Comm. – 2006. – N 8. – P. 167 – 177.
- 27. Lin Du, Yu-Hua Zhang, Rui-Bing Fangb, Qi-Hua Zhao // Acta Cryst. 2006. E62. P. m2227 m2229.
- 28. Ya-Jie Kong, Zhuang-Dong Yuan // Acta Cryst. 2011. E67. P. m592.
- 29. Руководство по неорганическому синтезу / Н.Г. Ключников М.: Химия, 1965.
- 30. *Sheldrick G.M.* // Acta Cryst. A. 2015. **71**. P. 3 8.
- 31. Sheldrick G.M. // Acta Cryst. C. 2015. 71. P. 3 8.
- 32. Zefirov N.S., Palyulin V.A., Dashevskaya E.E. // J. Phys. Org. Chem. 1990. N 3. P. 147 154.
- 33. Burgi H.B., Dunitz J.D. // Structure correlation. VCH. Weinheim. 1994. N 2. P. 741 784.
- 34. *Введение* в колебательную спектроскопию неорганических соединений / А.И. Григорьев. М.: Наука, 1977.
- 35. ИК спектры основных классов органических соединений / Б.Н. Тарасевич. М.: Изд-во МГУ, 2012.