УДК 535.343.4 + 004.78

Систематизация опубликованной научной графики, представляющей характеристики континуального поглощения водяного пара. III. Публикации 2001–2020 гг.

Н.А. Лаврентьев, О.Б. Родимова, А.З. Фазлиев[⊠]*

Институт оптики атмосферы им. В.Е. Зуева СО РАН 634055, г. Томск, пл. Академика Зуева, 1

> Поступила в редакцию 30.03.2023 г.; после доработки 25.04.2023 г.; принята к печати 15.05.2023 г.

Описаны графические ресурсы по континуальному поглощению водяного пара и его смесей, опубликованные в 2011—2020 гг. Представлены сводные таблицы, характеризующие основные параметры коэффициентов поглощения и функций пропускания в разных спектральных интервалах, температурную зависимость коэффициента поглощения и константу равновесия реакции образования димера воды. Отмечены особенности исследования континуального поглощения в опубликованных за эти годы работах.

В сжатой форме представлены результаты оценки качества цитируемых графиков, которые описаны четырьмя качественными и количественными атрибутами. Охарактеризованы три процедуры цитирования, две из которых компьютеризированы. Представлен метод оценки различия цитирующего и цитируемого графика и примеры пар «цитирующий и цитируемый графики» с количественной оценкой различия.

Ключевые слова: информационная система GrafOnto, графики по континуальному поглощению воды, цитирующие и цитируемые графики, количественная оценка различия графиков; GrafOnto information system, water continuum absorption plot, cited and citing plots, quantification of the difference between plots.

Введение

Работа посвящена систематизации научных графиков по континуальному поглощению водяным паром в работах за 2001-2020 гг. [1-68] в информационной системе (ИС) GrafOnto (plots.saga.iao.ru). Работа является третьей в серии наших статей, посвященных этой теме. В статьях [69, 70] рассмотрены научные графики, опубликованные в 1898-1980 и 1981-2000 гг. Настоящая статья состоит из двух частей: первая связана с описанием физических особенностей графических ресурсов для водяного пара и смесей, а вторая сфокусирована на проблеме цитирования графиков в этих публикациях. Примитивные графики, характеризующие водяной пар и его смеси с Ar, N2 и CO2, составляют 42% от общего числа таких графиков (2606 графиков), а число цитирующих графиков, относящихся к водяному пару, составляет 61% (901) от их общего числа (1480).

В [69, 70] для анализа были выбраны 110 публикаций, рисунки в которых отражали результаты наиболее характерных измерений и расчетов континуального поглощения. В данной статье рассматриваются графики из 68 публикаций. Как и ранее, они относятся в основном к спектральным и температурным зависимостям коэффициентов поглощения не только в окнах прозрачности, но и в пределах полос поглощения. В 2001-2020 гг. возросло число статей, посвященных исследованию микроволнового и дальнего ИК-диапазонов. Появление достаточно подробных расчетных работ позволило более детально анализировать вклады в континуальное поглощение, обусловленные разными механизмами. Стоит отметить, что если в ранних работах трудности в оцифровке были обусловлены техническим уровнем оригинальных графиков, то в последних исследованиях камнем преткновения является обилие экспериментальных и расчетных точек, накладывающихся друг на друга.

Как и в [69, 70], количественные данные о рассмотренных графиках сведены в таблицы, кратко затронуты новые, по сравнению с предыдущими периодами, физические вопросы, активно обсуждаемые в последнее время, и описаны информационные аспекты системы GrafOnto.

^{*} Николай Александрович Лаврентьев (lnick@iao.ru); Ольга Борисовна Родимова (rod@iao.ru); Александр Зарипович Фазлиев (faz@iao.ru).

[©] Лаврентьев Н.А., Родимова О.Б., Фазлиев А.З., 2023

Среди информационных аспектов особое внимание уделено качеству цитирования графических ресурсов. Как правило, цитирующий и цитируемый (см. определение в разд. 2) графики находятся в разных работах, которые оцифровываются независимо друг от друга, что может приводить к различию этих графиков, например в силу разного качества печати. В нашей статье описан подход к количественному анализу различия пары «цитирующий и цитируемый графики». Кратко описаны проблемы, возникающие при автоматизации поиска цитируемого графика, приведены примеры оценок различия между цитирующими и цитируемыми графиками, представлена статистика цитирующих графиков, относящихся к молекуле воды и ее смесям.

Поскольку большинство случаев цитирования графиков до сих пор ограничено ссылкой на публикацию и имеет большую степень произвола [71], то поиск цитируемого графика ранее проводился администратором системы путем перебора графиков в цитируемой публикации. Автоматизация поиска цитируемого графика требовала критериев поиска такого графика в базе данных системы GrafOnto. В качестве такого критерия было принято условие минимального различия между цитирующим графиком и подходящими графиками в цитируемой публикации. В описанной ниже процедуре цитирования применяется количественный метод оценки качества цитирования, используя который, приложение системы рекомендует администратору цитируемый график с минимальным процентом отличия от цитирующего графика. Отметим, что в настоящее время в системе оцениваются только примитивные цитирующие графики.

Цель работы — систематизация опубликованной научной графики, представляющей характеристики континуального поглощения водяного пара.

1. Описание информационных ресурсов по континуальному поглощению

В 2001-2020 гг. интенсивно развиваются экспериментальные исследования континуума водяного пара в разных спектральных диапазонах, что во многом связано с совершенствованием техники эксперимента. Обширные исследования ближнего и дальнего ИК-диапазонов Фурье-спектрометрами были проведены в рамках программы CAVIAR (см., например, [9, 24, 31]), в NIST [18, 27-29] и ИОА СО РАН [40, 44]. На основе результатов этих измерений авторами были сделаны выводы о значительной доле поглошения лимерами водяного пара в континуальном поглошении в пределах полос поглощения (см., например, [72, 30, 22]). Много работ было посвяшено исследованию микроволнового диапазона (см., например, [3, 29]). Особо стоит упомянуть обнаружение линий вращательного спектра димера воды [46] с помощью специального резонаторного спектрометра [73]. Техника CRDS-измерений использовалась в исследовании континуума водяного пара в публикациях [2, 12]. В последние годы она широко применяется в изучении поглощения водяным паром в дальнем ИК-диапазоне [39, 43, 49, 55, 62, 66, 68].

Приведенные ниже табл. 1–6 содержат информацию о графиках, взятых из работ [1–68]. Каждая строка в таблице относится к отдельному рисунку в публикации. Этот рисунок может содержать как оригинальные, так и цитирующие примитивные графики.

Два направления в теоретическом описании континуального поглощения (поглощение далекими крыльями сильных спектральных линий и поглощение димерами воды) сохранились с периода до 2001 г. и эволюционировали, позволяя разделить наблюдаемое континуальное поглощение на части, обусловленные разными физическими механизмами. Работы по квазистатической теории крыльев линий [4, 5, 7, 20] в какой-то мере были завершены обзорными статьями [19, 26], вывод которых, хотя и не окончательный, заключался в преобладающей роли крыльев разрешенных линий как в области между полосами, так и внутри полос в области 0-1150 см⁻¹. В то же время появилось значительное количество работ начиная с [74]. в которых, согласно представлениям [75], рассматривалось поглощение связанными и метастабильными димерами, а также «свободными» сталкивающимися парами молекул воды. В связи с этим стало возможно оценить константу равновесия реакции образования димера исходя из измерений континуума (см. табл. 6). Свое слово о вкладе поглощения промежуточными частями между близкими и далекими крыльями линий сказали и исследователи поглощения в микроволновом диапазоне [61], В рамках асимптотической теории крыльев линий [76] опубликован ряд работ [34, 37, 38, 48, 51, 54] по спектральным и температурным зависимостям континуального поглощения водяным паром. Согласно этой теории рассчитанное поглощение соответствует поглощению всеми парами сталкивающихся молекул, кроме случаев, приводящих к образованию стабильных димеров. Таким образом, по разности расчета и эксперимента может быть обнаружено поглощение стабильными димерами [77, 78]. Оценки отличия контура линии от лоренцевского также продолжали появляться (например, табл. 7).

Таким образом, налицо существенное продвижение в выяснении природы континуума как в экспериментальном, так и в теоретическом плане. Однако неожиданно обнаружилось различие результатов измерений континуума Фурье-спектрометрами ([30] и ссылки в ней) и методами спектроскопии внутрирезонаторного затухания (CRDS)

лица 1	Ссылка			[13]			[11]	[11]	[11]	[11]	[11]	[11]	[11]			[6]	[6]	[22]	[36]	[58]		[6]
Τ a б	Единицы оси у			поглощаемость (основание 10)			пропускание	пропускание	пропускание	пропускание	пропускание	оптическая глубина	оптическая глубина			оптическая глубина	оптическая глубина	оптическая глубина	оптическая глубина	оптическая глубина		оптическая глубина
	Единицы оси x			cM^{-1}			HM	MH	INH	MH	HM	IHM	HM			CM ⁻¹	CM ⁻¹	CM ⁻¹	MKM, CM ⁻¹	cm ⁻¹		CM ⁻¹
ьных диапазонах	Temeparypa, K															299; 342	299; 342	530; 503		400		293
я в различных спектрал	Буферный газ	$10-55 \text{ cm}^{-1}$	ксперимент, расчет	H_2O, N_2	$10000-14300 \text{ cm}^{-1}$	ксперимент, расчет	H_2O , $(H_2O)_2$	H_2O , $(H_2O)_2$, O_2	H_2O, O_4	H_2O, O_2, O_4	0,	$H_2O, (H_2O)_2$	H_2O , $(H_2O)_2$	$5000-14000 \text{ cm}^{-1}$	ксперимент, расчет	H_2O , $(H_2O)_2$	H_2O , $(H_2O)_2$	H ₂ O, (H ₂ O) ₂	H_2O, N_2	H ₂ O, (H ₂ O) ₂	Pacyem	H ₂ O, (H ₂ O) ₂
Функции пропускания	Область спектра		(C	$10-55 \text{ cm}^{-1}$		(C	880-1000 нм	680-760 нм	680-760 нм	MH 070-000	610-645 нм	мн 066-068	710-755 нм		(C	$5000-5600 \text{ cm}^{-1}$	$5000-5600 \text{ cm}^{-1}$	$5000-5600 \text{ cm}^{-1}$ $3400-4000 \text{ cm}^{-1}$	$2000-9000 \text{ cm}^{-1}$	$8500-9300 \text{ cm}^{-1}$ 1010011300 cm ⁻¹		$1600 - 14400 \text{ cm}^{-1}$
	Область спектра, мкм			181,8-1000												0,69-6,25	0,69-6,25	0,69-6,25 2,5-2,94	1,1-5	1,08-1,18 0,88-0,99		0,69-6,25
	Автор			Podobedov et al.			Sierk et al.	Sierk et al.	Sierk et al.	Sierk et al.	Sierk et al.	Sierk et al.	Sierk et al.			Ptashnik et al.	Ptashnik et al.	Ptashnik	Ptashnik et al.	Simonova, Ptashnik		Ptashnik et al.
	Год			2005			2004	2004	2004	2004	2004	2004	2004			2004	2004	2008	2012	2016		2004

Систематизация опубликованной научной графики... III. Публикации 2001-2020 гг.

Год 2014 Tre	ABTOD									
2014 Tre 2002 Kul		Область спектра, мкм	Область спектра	Буферный газ	Парциальное давление H ₂ O	Полное давление	Температура, К	Единицы оси <i>х</i>	Единицы оси у	Ссылка
2014 Tre 2002 Kul					Эксперимент					
2002 Kul	tyakov et al.		190—260 ГГц	H_2O		34,2; 27,2; 12,1; 3,7 Topp	48,8; 38,25; 6,7 °C	ГГц	cM ⁻¹	[45]
2002 Kul					эксперимент, расчет					
1	nn et al.		140-400 LL _{II}	H_2O, N_2				ГГц	дБ/км	[3]
	un et al.		140-400 FF _{II}	H_2O				ГГц	дБ/км	[3]
2002 Ma	Tipping		20-500 ГГц	H_2O, N_2			296	ГГц	$д B / к M \cdot к \Pi a^{-2}$	[5]
2002 Ma	Tipping		20-500 ГГц	H_2O, N_2			330	ГГц	${\tt g} B/{\tt kM}\cdot {\tt k}\Pi a^{-2}$	[5]
2002 Ma	Tipping		20-500 ГГц	H_2O, N_2			270	ГГц	${\tt g}{\rm B}/{\tt km}\cdot{\tt k}{\tt \Pi}{\rm a}^{-2}$	[5]
2003 Ma	Tipping		20-500 ГГц	H ₂ O, N ₂			296	ГГц	${\tt д} {\rm B}/{\tt km}\cdot {\tt k} {\rm IIa}^{-2}$	[2]
2003 Ma	Tipping		20-500 ГГц	H_2O, N_2			330	ГГц	$д B / к M \cdot к \Pi a^{-2}$	[2]
2003 Ma	Tipping		20-500 ГГц	H_2O, N_2			270	ГГц	${\rm g}{\rm B}/{\rm km}\cdot{\rm k}{\rm \Pi}{\rm a}^{-2}$	[2]
2007 Scr	bano, Leforesrier	$200-\infty$	$0-50 \text{ cm}^{-1}$	H ₂ O, (H ₂ O) ₂		2,13 кПа	297	cm^{-1}	дБ/км	[17]
2008 Pod	lobedov et al.	111 - 1000	$10-90 \text{ cm}^{-1}$	H_2O		2,13 кПа	293; 313; 333	$\rm CM^{-1}$	дБ/км	[20]
2008 Pod	lobedov et al.	111 - 1000	$10-90 \text{ cm}^{-1}$	H_2O, N_2		2,13 кПа	293; 323; 333	cm^{-1}	дБ/км	[20]
2011 Kos	helev et al.		60-150 ГГц	H_2O, N_2	19,7; 19,0; 8,7; 2,6 r∏a	993 r∏a	299; 311; 286; 271	ГГц	дБ/км	[29]
2011 Pta	shnik et al.	333-5000 9,1-100	$2-30 \text{ cm}^{-1}$ $100-1100 \text{ cm}^{-1}$	H ₂ O, (H ₂ O) ₂				cm ⁻¹	$cm^2 \cdot mo \pi^{-1} \cdot a Tm^{-1}$	[30]
2013 Slo	cum et al.		0-2000 ГГц	H ₂ O, air	15,23 Topp	760 ropp		ГГц	M^{-1}	[41]
2013 Tre	tyakov et al.		20-150 ГГц	H_2O				Пц	$c M^{-1}$	[42]
2013 Tre	tyakov et al.		20-150 ГГц	H_2O				ГГц	CM ⁻¹	[42]
2014 Tre	tyakov et al.	333-5000	$2-30 \text{ cm}^{-1}$	$(H_2O)_2$			296	cm^{-1}	дБ/км	[45]
2014 Ser	ov et al.		180-260 ГГц	H ₂ O, (H ₂ O) ₂		12 TOPP	296	ГГц	CM ⁻¹	[46]
2014 Ser	ov et al.		170-260 ГГц	H ₂ O, (H ₂ O) ₂		13 Topp	296	ГГц	CM ⁻¹	[46]
2014 Ser	ov et al.		190—260 ГГц	H ₂ O, (H ₂ O) ₂		27,2 Topp	311,1	ГГц	$c M^{-1}$	[46]
2014 Sen	ov et al.		180-260 ГГц	H ₂ O, (H ₂ O) ₂		12,1 Topp	297,8	ГГц	CM ⁻¹	[46]
2014 Ser	ov et al.		180—260 ГГц	H_2O , $(H_2O)_2$		12,1 Topp	298,3	ГГц	CM ⁻¹	[46]
2015 Tre	tyakov et al.	$20-\infty$	$0-500 \text{ cm}^{-1}$	H_2O			300	$\rm CM^{-1}$	$cm^{-1}/ropp^{2}$	[52]
2015 Tre	tyakov et al.	$1000 - \infty$	$0-10 \text{ cm}^{-1}$	H_2O			300; 330	cm^{-1}	cm ⁻¹ /Topp ²	[52]
2015 Tre	tyakov et al.	$20-\infty$ 1111- ∞	$0-500 \text{ cm}^{-1}$	H_2O			300	CM^{-1}	$\rm cm^{-1}/Topp^2$	[52]
2016 Bos	danova. Rodimova	~	190-260 FFn	O,H				LLu	CM ⁻¹	[54]
2016 Bog	danova, Rodimova		190-260 IT _{II}	H_2O				ГГц	CM ⁻¹	[54]
2017 Odi	ntsova et al.	$200-\infty$	$0-50 \text{ cm}^{-1}$	H_2O				$\rm CM^{-1}$	дБ/км	[59]
2017 Odi	ntsova et al.	50 - 200	$50-200 \text{ cm}^{-1}$	H_2O				cm^{-1}	$д B / \kappa M \cdot M \delta a p^2$	[59]
2017 Ser	ov et al.	50-250 1111-1667	$40-200 \text{ cm}^{-1}$	H ₂ O, (H ₂ O) ₂				cm ⁻¹	$cm^2\cdot mo.I^{-1}\cdot aTM^{-1}$	[61]
2019 Odi	ntsova et al.	$167 - \infty$	$0-60 \text{ cm}^{-1}$	H_2O				CM ⁻¹	$cM^4 \cdot MOJI^{-1} \cdot aTM^{-1}$	[63]

Таблица 2

Лаврентьев Н.А., Родимова О.Б., Фазлиев А.З.

Год	Автор	Область спектра, мкм	Область спектра, см ⁻¹	Буферный газ	Температура, К	Единицы оси <i>х</i>	Единицы оси у	Ссылка
		96 		Эксперимент	N1		C frai	
2008	Baranov et al.	8,74-12,22	818-1144,5	H_2O	310,8; 318; 325,8; 339,3; 351,9; 363,6	cM^{-1}	$c M^2 \cdot M o \pi^{-1} \cdot a T M^{-1}$	[18]
				Эксперимент, расч	tem			
2002	Cormier et al.	10-11	900 - 1000	H_2O		CM ⁻¹	$CM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	[2]
2002	Ma, Tipping	9,09-33,3	300-1100	H_2O	296	cM^{-1}	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[4]
2002	Ma, Tipping	8,06-16,67	600 - 1240	H_2O	220 - 330	cM^{-1}	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[4]
2003	Бузыкин, Иванов	5,56-16,67	600 - 1800	H_2O	296	cM^{-1}	$cM^2 \cdot MOM^{-1} \cdot aTM^{-1}$	[9]
2003	Tonkov, Filippov	9, 17 - 12, 2	820 - 1090	H_2O, N_2		cM^{-1}	$\rm KM^{-1} \cdot \rm aTM^{-1}$	[8]
2004	Nesmelova et al.	9,7-14,28	700 - 1030	H_2O	284	cM^{-1}	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	[10]
2008	Baranov et al.	8,7-12,5	800-1150	H_2O	310,8; 325,8; 363,6	cM^{-1}	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[18]
2008	Ma et al.	9,09–33,3	300-1100	H_2O	296	cM^{-1}	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[19]
2008	Ma et al.	8,7-12,5	800-1150	H_2O	310,8; 325,8; 363,6	cM^{-1}	$cm^2 \cdot MoJ^{-1} \cdot aTM^{-1}$	[19]
2008	Serio et al.	16,67 - 41,67	240 - 600	H_2O		cM^{-1}	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[23]
2010	Leforestier et al.	$8,7-\infty$	0-1150	H_2O	240; 270; 300; 330	CM ⁻¹	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[26]
2011	Ptashnik et al.	8,7-12,5	800-1150	H_2O	363; 326; 311	cM^{-1}	$\text{CM}^2 \cdot \text{MOJ}^{-1} \cdot \text{aTM}^{-1}$	[30]
2012	Baranov, Lafferty	8-12,5	800-1250	H_2O, N_2	296; 298	cM^{-1}	$cm^2 \cdot Mo. M^{-1} \cdot aTM^{-1}$	[33]
2014	Shine et al.	8, 1 - 71, 4	140 - 1240	H_2O , $(H_2O)_2$		cm^{-1}	$\text{CM}^2 \cdot \text{MOJ}^{-1} \cdot \text{aTM}^{-1}$	[47]
2015	Klimeshina, Rodimova	10-28	350-1000	H_2O, N_2	296; 430	cM^{-1}	$\text{cM}^2 \cdot \text{MOJ}^{-1} \cdot \text{aTM}^{-1}$	[48]
2015	Klimeshina, Rodimova	8, 1 - 12, 5	800-1230	H_2O, N_2	296	$\rm CM^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	[48]
2015	Ptashnik	$333 - \infty$ 7.69-333	0-30 30-1300	H ₂ O, (H ₂ O) ₂	293-300	$c M^{-1}$	$c M^2 \cdot M o J ^{-1} \cdot a T M^{-1}$	[50]
2015	Ptashnik	8,7-12,8	780-1150	H ₂ O, (H ₂ O) ₂	293 - 300	cM^{-1}	$\text{CM}^2 \cdot \text{MOJ}^{-1} \cdot \text{aTM}^{-1}$	[50]
2016	Baranov	7,52-9,26	1080 - 1330	H ₂ O, CO ₂		cM^{-1}	cm ^{−1} · aMara ⁻²	[53]
2016	Bogdanova, Rodimova	9,09-33,3	300 - 1100	H_2O	296	cM^{-1}	$cm^2 \cdot mo J^{-1} \cdot aTM^{-1}$	[54]
2017	Odintsova et al.	$12, 5 - \infty$	0-800	H_2O		cM^{-1}	дБ/км	[59]
2017	Odintsova et al.	$25-\infty$	0-400	H_2O , $(H_2O)_2$		cM^{-1}	дБ/км	[59]
2019	Odintsova et al.	$12,5-\infty$	0-800	H_2O		cM^{-1}	$\text{CM}^2 \cdot \text{MOJ}^{-1} \cdot \text{aTM}^{-1}$	[63]
2019	Odintsova et al.	20 - 200	50-500	H_2O		cM^{-1}	$\text{cM}^2 \cdot \text{MOJ}^{-1} \cdot \text{aTM}^{-1}$	[63]
2019	Odintsova et al.	20 - 200	50 - 500	H_2O		$\rm CM^{-1}$	$cm^2 \cdot Mon^{-1} \cdot aTM^{-1}$	[63]
2019	Tran et al.	6,25-200	50 - 1600	H ₂ O, CO ₂		cM ⁻¹	см ⁻¹ · амага ²	[65]
				Pacuem				
2008	Lee et al.	$10-\infty$	0 - 1000	H ₂ O, (H ₂ O) ₂	80; 220	CM ⁻¹	$cm^2 \cdot mo. m^{-1}$	[21]
2008	Lee et al.	9,09 - 33,3	300 - 1100	H_2O	311; 326; 363	CM ⁻¹	$\text{cM}^2 \cdot \text{MOJ}^{-1} \cdot \text{aTM}^{-1}$	[21]

F 871 11 12	Ссылка	6		[40]	[40]		[10]	[14]	[15]	[15]	[22]	[24]	[24]	[24]	[24]	[25]	[27]	[28]	[30]	[30]	[31]	[31]	[32]	[33]	[33]	[34]	[35]	[36]	[37]
	Единицы оси у	8		$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$\mathrm{CM}^2 \cdot \mathrm{MOJI}^{-1} \cdot \mathrm{aTM}^{-1}$		$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	нормированное поглощение	KM ⁻¹	KM ⁻¹	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$\mathrm{CM}^2 \cdot \mathrm{MOJ}^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$cM^2 \cdot Mo \pi^{-1} \cdot a \pi M^{-1}$	$cm^2 \cdot MoJI^{-1} \cdot aTM^{-1}$	$cm^2 \cdot MoJI^{-1} \cdot aTM^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$cm^2 \cdot MoJI^{-1} \cdot aTM^{-1}$	$cm^2 \cdot MoJI^{-1} \cdot aTM^{-1}$	$cm^2 \cdot MoJI^{-1} \cdot aTM^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$				
	Единицы оси x	7		cM ⁻¹	cM^{-1}		cM ⁻¹	CM ⁻¹	MKM	MKM	cM^{-1}	cm^{-1}	cM ⁻¹	CM^{-1}	cM^{-1}	cM ⁻¹	CM ⁻¹	$c M^{-1}$	cM^{-1}	MKM, CM ⁻¹	MKM, CM ⁻¹	MKM, CM ⁻¹	CM ⁻¹	$\rm CM^{-1}$	CM ⁻¹	CM ⁻¹	cM^{-1}	CM ⁻¹	CM^{-1}
	Температура, К	9	шнәмт	289	318	m, pacyem	296; 338; 384; 428	673			296	295	293	299	299				295	296	293			310,8; 325,8; 351,9	296; 326	296; 328; 338; 384; 428		402; 339; 296	296
	Буферный газ	5	Экспер	H_2O	H_2O	Эксперимен	H_2O, N_2	H_2O , $(H_2O)_2$	H_2O	H_2O	H_2O , $(H_2O)_2$	H_2O	H_2O	H_2O	H_2O	air	H_2O, N_2	H_2O	H_2O	H_2O , $(H_2O)_2$	H ₂ O, (H ₂ O) ₂	H_2O	H_2O, N_2	H_2O	H_2O, N_2	H_2O	H_2O, N_2	H_2O, N_2	H ₂ O, (H ₂ O) ₂
	Область спектра, см ⁻¹	4		1314-7448	1314-7448		2400 - 2850	3200 - 4100	6112-6165	4587-4619	3050 - 4250	1200 - 2000	3400 - 4000	5040 - 5600	6900-7500	$\begin{array}{c} 1350{-}1500\\ 1580{-}1650\\ 1850{-}2000\end{array}$	2000-3200	1900 - 3500	1400 - 1900 3500 - 3950	1000 - 7000	1000 - 9600	2000-5000	2000 - 3000	700 - 3700	700 - 3700	2400 - 2700	0-2000	2000 - 3400	0-6000
	Область спектра, мкм	33					3,5-4,17	2,44-3,12	1,622 - 1,636	2,165-2,18	2,35-3,28	5-8,33	2, 5-2, 94	1,78-1,98	1, 33 - 1, 45	6,67-7,4 6,06-6,33 5-5,4	3,125-5	2,86-5,26	5,26-7,14 2,53-2,86	1,43-10	$1,04{-}10$	2-5	3,3–5	2,7-14,3	2,7-14,3	3,7-4,2	5-0	2,94-5	$1,67-\infty$
	ABTOP	2		Ptashnik et al.	Ptashnik et al.		Nesmelova et al.	Vigasin et al.	Bicknell et al.	Bicknell et al.	Ptashnik	Paynter et al.	Paynter et al.	Paynter et al.	Paynter et al.	Rowe, Walden	Baranov	Baranov, Lafferty	Ptashnik et al.	Ptashnik et al.	Ptashnik et al.	Ptashnik et al.	Baranov et al.	Baranov, Lafferty	Baranov, Lafferty	Klimeshina et al.	Mlawer et al.	Ptashnik et al.	Klimeshina, Rodimova
	Год	-		2013	2013		2004	2005	2006	2006	2008	2009	2009	2009	2009	2009	2011	2011	2011	2011	2011	2011	2012	2012	2012	2012	2012	2012	2013

Лаврентьев Н.А., Родимова О.Б., Фазлиев А.З.	
--	--

c		c		a.	<	t	····	4
2 3	3	~	1	2	6	7	8	6
Klimeshina, Rodimova 3,7–4,2 2400–	3,7-4,2 2400-	2400 -	2700	H_2O	296; 328; 338; 384; 428	cm^{-1}	$cm^2 \cdot mon^{-1} \cdot aTM^{-1}$	[38]
Klimeshina, Rodimova 3,7–4,2 2000–3	3,7-4,2 2000-3	2000-3	500	H_2O	293; 350; 472	cm^{-1}	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[38]
Klimeshina, Rodimova 3,7–4,2 2000–35	3,7-4,2 2000-35	2000-35	00	H_2O	310,9; 325,5; 363,3	CM ⁻¹	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[38]
Mondelain et al. 1,52–1,72 5800–660	1,52-1,72 5800-660	5800-660	0	H_2O		CM ⁻¹	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	[39]
Mondelain et al. 1,49–1,71 5850–670	1,49–1,71 5850–670	5850-670	0	H_2O	302; 310; 320; 328; 340	CM^{-1}	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[43]
Mondelain et al. 1,38–1,9 5250–725	1,38-1,9 5250-725	5250-725	0	H_2O		CM ⁻¹	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[43]
Mondelain et al. 1,49–1,71 5850–670	1,49–1,71 5850–670	5850-670	0	H_2O		CM^{-1}	$cm^2 \cdot Mon^{-1} \cdot aTm^{-1}$	[43]
Mondelain et al. 1,49–1,71 5850–6700	1,49–1,71 5850–6700	5850-6700	-	H_2O	302; 340	CM^{-1}	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[43]
Ptashnik et al. 1,25–10 1000–8000	1,25–10 1000–8000	1000 - 8000		H_2O	287	cm^{-1}	$cm^2 \cdot mo.n^{-1} \cdot aTm^{-1}$	[44]
Shine et al. 1, 1–6, 25 1600–9000	1,1-6,25 1600-9000	1600 - 9000	-	H_2O H_2O , N_2	296 - 400	CM^{-1}	$cm^2 \cdot moJ^{-1} \cdot aTM^{-1}$	[47]
Klimeshina, Rodimova 3,1–5 2000–3250	3,1-5 2000-3250	2000-3250		H_2O, N_2	402	$c M^{-1}$	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[48]
Klimeshina, Rodimova 3,1–5 2000–3250	3,1-5 2000-3250	2000-3250		H_2O, N_2	326	CM^{-1}	$cm^2 \cdot Mo. m^{-1} \cdot aTM^{-1}$	[48]
Klimeshina, Rodimova 1,67–12,5 800–6000	1,67–12,5 800–6000	800-6000		H_2O, N_2	296	CM ⁻¹	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[48]
Mondelain et al. 1,4–2,5 4000–7000	1,4–2,5 4000–7000	4000-7000		H_2O	296	CM ⁻¹	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[49]
Mondelain et al. 2–2,5 4000–5000	2-2,5 4000-5000	4000-5000		H_2O	296; 402	CM ⁻¹	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[49]
Ptashnik 2,4–3,28 3050–4150	2,4-3,28 3050-4150	3050-4150		H_2O , $(H_2O)_2$	296	cm^{-1}	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[50]
Ptashnik 5,26–7,69 1300–1900 2,5–2,94 3400–4000	$\begin{array}{rrrr} 5,26-7,69 & 1300-1900 \\ 2,5-2,94 & 3400-4000 \end{array}$	1300 - 1900 3400 - 4000		H ₂ O, (H ₂ O) ₂	295	cm ⁻¹	$cm^2 \cdot mo.n^{-1} \cdot a.rm^{-1}$	[50]
Ptashnik 1,28–10 1000–7800	1,28–10 1000–7800	1000 - 7800		H_2O	289,5-311	CM^{-1}	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[50]
Rodimova $1,25-\infty$ $0-8000$	$1,25-\infty$ 0-8000	0-8000		H_2O	296	$\rm CM^{-1}$	$cm^2 \cdot mo.n^{-1} \cdot a.rm^{-1}$	[51]
Rodimova 1,1-200 50-9000	1,1-200 50-9000	50 - 9000		H_2O	296	cm^{-1}	$cm^2 \cdot moJ^{-1} \cdot aTM^{-1}$	[51]
Rodimova 1,25–2 5000–8000	1,25-2 5000-8000	5000-8000		H_2O	296	CM ⁻¹	$cm^2 \cdot MoJ^{-1} \cdot aTM^{-1}$	[51]
5,26-7,14 1400-1900 Rodimova 2,56-2,86 3500-3900 1,82-1,92 5200-5500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1400{-}1900\\ 3500{-}3900\\ 5200{-}5500 \end{array}$		H ₂ O, (H ₂ O) ₂	296	cm ⁻¹	$cM^2 \cdot MOR^{-1} \cdot aTM^{-1}$	[51]
Baranov 3,03-4 2500-3300	3,03-4 2500-3300	2500-3300		H ₂ O, CO ₂		$c M^{-1}$	$cM^{-1} \cdot aMara^{-2}$	[53]
Bogdanova, Rodimova 2,53–2,86 3500–3950	2,53-2,86 3500-3950	3500-3950		H ₂ O, (H ₂ O) ₂	296	CM ⁻¹	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[54]
Campargue et al. 1–6,67 1500–10 ⁴	$1-6,67$ $1500-10^{4}$	$1500 - 10^{4}$		H_2O	287-311	cm^{-1}	$cM^2 \cdot MO.T^{-1} \cdot aTM^{-1}$	[55]
Campargue et al. 3,12–5 2000–3200	3,12-5 2000-3200	2000-3200		H_2O	287-293	cm^{-1}	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[55]
Campargue et al. 1,96-2,38 4200-5100	1,96-2,38 4200-5100	4200-5100	~	H_2O	287-293	CM ⁻¹	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[55]
Campargue et al. 1,18–1,33 7500–8500	1,18-1,33 7500-8500	7500-8500		H_2O		CM^{-1}	$cm^2 \cdot mo.m^{-1} \cdot a.tm^{-1}$	[55]
Campargue et al. 1–6,67 1500–10 ⁴	$1-6,67$ $1500-10^4$	$1500 - 10^{4}$		H_2O	287-311	cm^{-1}	$cm^2 \cdot Mo.n^{-1} \cdot a.r.M^{-1}$	[55]

Систематизация опубликованной научной графики... III. Публикации 2001-2020 гг.

6	[56]	[57]	[57]	[57]	[09]	[09]	[09]	[61]	[62]	[62]	[62]	[64]	[64]	[64]	[99]	[99]	[67]	[67]	[67]	[67]	[67]	[67]	[68]		Ξ
~	$cM^2 \cdot MOM^{-1}$	$\text{cm}^2 \cdot \text{mo.}\text{m}^{-1} \cdot \text{a.}\text{rm}^{-1}$	$cm^2 \cdot mo. m^{-1} \cdot a. Tm^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$cm^2 \cdot mo.m^{-1} \cdot a.m^{-1}$	$cm^2 \cdot mo\pi^{-1} \cdot aTM^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$\rm cm^2\cdot mo. r^{-1}\cdot a. rm^{-1}$	$cm^2 \cdot mo.n^{-1} \cdot a.rm^{-1}$	$cm^2 \cdot mo. m^{-1} \cdot a. Tm^{-1}$	$\text{cM}^2 \cdot \text{MOJ}^{-1} \cdot \text{aTM}^{-1}$	$\rm cm^2\cdot moJ^{-1}\cdot aTM^{-1}$	$cm^2 \cdot mo.r^{-1} \cdot arm^{-1}$	$cM^2 \cdot MO.I^{-1} \cdot aTM^{-1}$	$cM^2 \cdot MOM^{-1} \cdot aTM^{-1}$	$\text{CM}^2 \cdot \text{MOJ}^{-1} \cdot \text{ATM}^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$cm^2 \cdot mon^{-1} \cdot atm^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	$\text{cm}^2 \cdot \text{mon}^{-1} \cdot \text{atm}^{-1}$	$cm^2 \cdot mon^{-1} \cdot atm^{-1}$	$cm^2 \cdot mo.n^{-1} \cdot a.rm^{-1}$	$cm^2 \cdot mon^{-1} \cdot arm^{-1}$		$cM^2 \cdot MOA^{-1}$
2	cM ⁻¹	MKM, CM ⁻¹	MKM, CM ⁻¹	CM ⁻¹	CM ⁻¹	CM ⁻¹	CM ⁻¹	CM ⁻¹	CM ⁻¹	cM^{-1}	CM ⁻¹	cm^{-1}	CM ⁻¹	CM ⁻¹	CM ⁻¹	cM^{-1}	CM ⁻¹	cM ⁻¹	CM ⁻¹	CM ⁻¹	cM^{-1}	cm^{-1}	cM^{-1}		CM ⁻¹
9	ŝ.	287 - 311	298-431	400	287-311	287-311	287 - 293		287-311			268,5-351	288,5	272-351	296	297; 400		296; 353	296	296-353	296	296	296; 400	1	
5	H ₂ O	H_2O	H ₂ O, air	H_2O	H_2O	H_2O	H_2O	H_2O , $(H_2O)_2$	H_2O	H_2O	H_2O	H_2O	H_2O	H ₂ O, (H ₂ O) ₂	H_2O	H_2O	H ₂ O, air	H ₂ O, air	H_2O	H_2O	H_2O	H_2O	H_2O, N_2	Pacyen	$(H_2O)_2$
4	2500-7800	2000 - 7000	2000 - 7000	4000 - 5200	2000 - 3200	2000 - 3200	4000 - 5100	1300-2000 $3000-4000$	2000 - 3200	42005100	1500 - 9000	1300-2000 3500-4000	1300-2000 3500-4000	1300 - 1940 3460 - 3960	5800 - 6700	4000 - 5200	3400 - 3900	3400 - 3900	3400 - 4000	3400 - 4000	3400 - 4000	3400 - 4000	5500-6750		0-20000
3	1,28-4	1, 4-5	1, 4-5	1,92-2,5	3,12-5	3,12-5	1,96-2,5	5-7,69 2,5-3,3	3,12-5	1,96-2,38	1,11-6,67	5-7,69 2,5-2,86	5-7,69 2,5-2,86	5,15-7,69 2,52-2,89	1,49-1,72	1,92-2,5	2,56-2,94	2,56-2,94	2, 5-2, 94	2, 5-2, 94	2, 5-2, 94	2, 5-2, 94	1,48-1,82		$0,5-\infty$
2	Reichert	Shine et al.	Shine et al.	Shine et al.	Richard et al.	Richard et al.	Richard et al.	Serov et al.	Lechevallier et al.	Lechevallier et al.	Lechevallier et al.	Ptashnik et al.	Ptashnik et al.	Ptashnik et al.	Vasilchenko et al.	Vasilchenko et al.	Birk et al.	Birk et al.	Birk et al.	Birk et al.	Birk et al.	Birk et al.	Mondelain et al.		Vaida et al.
-	2016	2016	2016	2016	2017	2017	2017	2017	2018	2018	2018	2019	2019	2019	2019	2019	2020	2020	2020	2020	2020	2020	2020		2001

Лаврентьев Н.А., Родимова О.Б., Фазлиев А.З.

		Температурная зависимо	сть коэффициента 1	юглощения H ₂ O			
Год	ABTOP	ω, cM ⁻¹	Буферный газ	Temneparypa, K	Единицы оси x	Единицы оси у	Ссылка
2004	Nesmelova et al.	944,19	H_2O	240-340	К	$\rm CM^2 \cdot MOJI^{-1} \cdot \rm aTM^{-1}$	[10]
2004	Nesmelova et al.	1000	H_2O	250-500	К	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[10]
2005	Cormier et al.	944	H_2O	270-315	K	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[12]
2005	Cormier et al.	944	H_2O, N_2	270-315	К	$\text{cm}^2 \cdot \text{moj}^{-1} \cdot \text{atm}^{-1}$	[12]
2005	Cormier et al.	944	H_2O	270-315	К	$cM^2 \cdot MOJ^{-1} \cdot aTM^{-1}$	[12]
2005	Cormier et al.	944	H_2O, N_2	270-315	К	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[12]
2008	Baranov et al.	944,19	H_2O	270 - 390	К	$cm^2 \cdot mo.n^{-1} \cdot aTM^{-1}$	[18]
2008	Baranov et al.	1203	H_2O	290 - 440	К	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	[18]
2008	Ma et al.	944,195	H_2O	250-345	К	$\rm CM^2\cdot MOJI^{-1}\cdot aTM^{-1}$	[19]
2011	Baranov	2475	H_2O, N_2	320-370	К	$cm^2 \cdot mo.m^{-1} \cdot a.m^{-1}$	[27]
2011	Baranov, Lafferty	2460	H_2O	290 - 430	К	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[28]
2011	Ptashnik et al.	190, 239 Гц	H_2O	250 - 400	K	см ⁻¹ , пр. ед.	[30]
2011	Ptashnik et al.	300-1100	H_2O	278-500	$1000/T, { m K}^{-1}$	$cm^2 \cdot mo.m^{-1} \cdot a.tm^{-1}$	[30]
2011	Ptashnik et al.	4200; 4300; 4400; 4500; 4600; 2400; 2500; 2600; 5800; 5900; 6000; 6100; 6200; 6300	H_2O	290-700	$1000/T, { m K}^{-1}$	$\mathrm{CM}^2 \cdot \mathrm{MOJ}^{-1} \cdot \mathrm{ATM}^{-1}$	[31]
2013	Klimeshina, Rodimova	900; 1000; 1100; 2400; 2500; 2600	H_2O	286 - 500	$1000/T, \mathrm{K}^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	[38]
2015	Mondelain et al.	4250	H_2O	286 - 500	$1000/T, { m K}^{-1}$	$cm^2 \cdot mo.n^{-1} \cdot a.rm^{-1}$	[49]
2016	Baranov	1128	H ₂ O, CO ₂	290 - 340	К	$cm^{-1} \cdot amara^{-2}$	[53]
2016	Baranov		H ₂ O, CO ₂	290 - 340	К	cm ⁻¹ · amara ⁻²	[53]
2016	Campargue et al.	2283	H_2O	250-500	$1000/T, { m K}^{-1}$	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[55]
2016	Shine et al.	4250; 4301; 4723	H_2O	263-500	$1000/T, { m K}^{-1}$	$cm^2 \cdot mo.m^{-1} \cdot aTm^{-1}$	[57]
2016	Shine et al.	2400; 2500; 2600	H_2O	263-500	1000/T, K ⁻¹	$\text{CM}^2 \cdot \text{MOJ}^{-1} \cdot \text{ATM}^{-1}$	[57]
2016	Shine et al.	5875; 6121; 6665	H_2O	263-500	$1000/T, { m K}^{-1}$	$CM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	[57]
2017	Richard et al.	2490	H_2O	278-500	$1000/T, { m K}^{-1}$	$cm^2 \cdot mon^{-1} \cdot aTm^{-1}$	[09]
2018	Lechevallier et al.	3000; 4301; 5006	H_2O	278500	$1000/T, K^{-1}$	$cM^2 \cdot MOJI^{-1} \cdot aTM^{-1}$	[62]
2019	Ptashnik et al.	1548; 1614; 1691; 3618; 3666; 3720; 3848	H_2O , $(H_2O)_2$	268	1000/T, K ⁻¹	$\rm CM^2\cdot MOJI^{-1}\cdot aTM^{-1}$	[64]

Таблица 5

Систематизация опубликованной научной графики... III. Публикации 2001-2020 гг.

Таблица 6 Константа равновесия реакции образования димера воды

Год	Автор	Темпера- тура, К	Единицы оси <i>х</i>	Единицы оси у	Ссылка
2006	Scribano et al.	260 - 390	К	атм ⁻¹	[16]
2014	Tretyakov et al.	250 - 400	К	атм ⁻¹	[45]
2014	Serov et al.	270 - 390	К	атм ⁻¹	[46]
2019	Ptashnik et al.	260 - 390	К	атм ⁻¹	[64]

Таблица 7

Отличие контура линии от лоренцевского

Год	Автор	Буферный газ	Единицы оси <i>х</i>	Единицы оси <i>у</i>	Ссылка
2017	Serov et al.	H_2O	$\Delta\omega$, cm ⁻¹	χ(пр. ед.)	[61]
2019	Tran et al.	H_2O, CO_2	$\Delta \omega$, cm ⁻¹	χ(пр. ед.)	[65]

(см., например, [62]), далеко выходящее за пределы ошибок эксперимента. Несмотря на усилия по выяснению физических причин такого расхождения [57], неясность в этом вопросе все еще остается.

2. Процедуры цитирования и свойства цитируемого графика

При исследовании цитирования опубликованных графиков важны используемые процедуры цитирования и нахождение качественных и количественных характеристик различия между дискретными функциями, соответствующими цитируемому и цитирующему графикам. Опубликованный цитирующий график характеризуется дискретной функцией, сопоставляемой с опубликованным ранее оригинальным графиком из иной публикации, также характеризуемым дискретной функцией. Обе эти функции, которые могут быть представлены или не представлены в публикации, содержатся в базе данных GrafOnto. Цитирующий график, опубликованный в графическом виде, предполагает, что для соответствующего ему цитируемого графика существуют значения функции в графическом или табличном представлении в иной ранней публикации.

Определение. Опубликованный график называется цитирующим, если в публикации для него указана библиографическая ссылка на опубликованную ранее статью, в которой подобное множество координатных пар представлено в аналитическом, графическом или табличном виде.

Для сравнения цитирующего и цитируемого графика необходимо привести физические величины, относящиеся к соответствующим осям системы координат, к одним и тем же единицам измерения и проверить наличие значений метаданных, определяемых значениями термодинамических величин, входящих в формулы расчета коэффициентов перехода между этими единицами измерения. Иногда ссылка на цитируемый график предполагает вычисление значений аналитической функции или использование табличных данных. Приведение графиков к одинаковым единицам измерения требует дополнительных вычислений. Выделим три варианта процедуры цитирования при работе с графиками. К первому варианту относится сравнение дискретных функций графиков, не требующее дополнительных вычислений. Ко второму варианту относятся сравнения, в которых необходим пересчет единиц измерения функций, представляющих физические величины. Третий вариант процедуры требует вычислений значений дискретной функции цитируемого графика, представленного в аналитическом или табличном виде. Первые два варианта процедуры цитирования реализованы в ИС GrafOnto и далее рассматриваются как *пассивное цитирование*. Третий вариант будем называть *активным цитированием*, в настоящее время он в ИС не поддерживается.

Результаты сравнения цитирующего и цитируемого графиков относятся к *метаданным* цитирующего графика и описываются тремя атрибутами. Первый атрибут характеризует разницу числа значений дискретных функций, соответствующих этим графикам; он принимает значения: одинаковое, частичное или избыточное. Второй атрибут описывает интервал значений по оси абсцисс, на котором пересекаются сравниваемые функции в единицах измерения цитирующего графика. Третий атрибут процентное различие сравниваемых дискретных функций.

Процедура оценки различия в паре «цитирующий и цитируемый графики» и примеры двух пар графиков описаны ниже.

3. Количественный метод оценки различия цитирующего и цитируемого графиков

При развитии информационной системы значительное внимание было уделено исследованию доверия цитированию, встречающемуся в публикациях. В нашей ранней работе [71], выполненной на примере цитирований работ Д. Бёрча и др., были показаны качественные результаты анализа цитирований. Количественная оценка впервые представлена в [79].

Основной проблемой исследования цитирования было несовпадение значений цитирующего и цитируемого графиков при условии, что сравниваемые значения могут не совпадать по обеим осям координат, т.е. это несовпадение присутствует как для значений аргумента, так и функции. Такое расхождение было обусловлено несколькими факторами. Во-первых, при распознавании графиков в старых публикациях качество графиков было низкое, и по этой причине достигнуть высокой точности было невозможно. Во-вторых, существенное различие возникало при сравнении функций, представленных в разных масштабах, как правило, в линейном или логарифмическом.

При сравнении цитируемых и цитирующих графиков возникла задача разработки метрики среднего расхождения графиков, позволяющей быстро количественно оценить корректность цитирования. Так как каждый из графиков представляет собой набор координатных пар (x, y): $O = \{(x_i^o, y_i^o)\}_{i=1,...,n}$ для цитируемого и $C = \{(x_i^c, y_i^c)\}_{i=1,...,t}$ для цитирующего графиков (где *n* и *t* – количество точек в цитируемом и цитирующем графиках соответственно), и в общем случае значения их ординат и абсцисс могут не совпадать, то возникает проблема неоднородности. Для сравнения необходимо сначала достигнуть однородности множеств О и С по оси х. Это происходит следующим образом. Первоначально находится интервал, на котором множества О и С пересекаются. Если этот интервал пустой, то сравнение невозможно и программа возвращает ошибку. В обратном случае мы получаем множества $O_{\mathrm{R}} = \{(x_{j}^{o}, y_{j}^{o})\}_{j=1,...,p}$ и $C_{\mathrm{R}} = \{(x_{k}^{c}, y_{k}^{c})\}_{k=1,...,q}$, в которые включаются лишь координатные пары, попадающие в интервал пересечения (p и q – количество точек цитируемого и цитирующего графиков, попадающих в интервал пересечения). Затем для значений абсцисс из множества O_R цитируемого графика, не совпадающих со значениями из множества $C_{\rm R}$, рассчитываются ординаты y_j^c как линейная интерполяция между ординатами ближайших точек из множества C_R и в результате получается множество $O_{\mathrm{R}l} = \{(x_l^o, y_l^c)\}_{l=1,...,r}$ (r – количество точек цитируемого графика, для которых значения абсцисс не совпадают со значениями из множества $C_{\rm R}$). Производя аналогичную операцию для цитирующего графика, мы получаем множество $C_{Rm} = \{(x_m^c, y_m^o)\}_{m=1,...,s}$ (s – количество точек цитирующего графика, для которых значения абсцисс не совпадают со значениями из множества $O_{\rm R}$).

Таким образом, формируются два массива координатных пар $O_{\mathrm{R}l}$ и $C_{\mathrm{R}m}$, которые мы можем

сравнить, так как они имеют попарно одинаковые абсциссы. Для каждого элемента этих множеств вычисляется модуль разницы между оригинальной ординатой y^{o} или интерполированной y_{i}^{o} и y^{c} или y_{i}^{c} . Если абсциссы точек из цитирующего и цитируемого графика совпадают, этим значением будет $|y_{o} - y_{c}|$; для точек, содержащихся только в цитируемом графике, $-|y_o - y_c^i|$; а для точек из цити-рующего графика $-|y_o^i - y_c^i|$. Объединив множества $O_{\rm R}$ и $O_{\rm Rl}$, мы получаем общее множество точек $O_{\mathrm{R}f} = \{(x_f^o, y_f^o)\}_{f=1,...,v}$, а объединив множества C_{R} и $C_{\mathrm{R}m}$ — множество $C_{\mathrm{R}f} = \{(x_f^c, y_f^c)\}_{f=1,...,v}$ для цитируемого и цитирующего графиков соответственно (размерность обоих множеств v = p + r = q + s). У этих множеств полностью совпадают значения абсцисс, для каждого из которых рассчитывается модуль разницы ординат $\Delta y_f = |y_f^o - y_f^c|$. Затем значение этого модуля нормируется на значение ординаты той кривой, которая лежит выше, назовем ее $U_e = \{(x_e, y_e)\}_{e=1,...,v}$. В результате для каждой абс-циссы как цитируемого, так и цитирующего графика мы получаем метрику расхождения $\Delta r_f = \Delta y_f / |y_e|$ в данной точке. Усреднив значение этой метрики по всему массиву абсцисс, по формуле R == $\sum_{f=1,...,v} (\Delta r_f / v) \cdot 100\%$ вычисляем общее значение расхождения для пары «цитирующий и цитируемый графики», находящееся между 0 и 100%.

На рис. 1 показаны сравниваемые цитирующий и цитируемый графики дискретных функций и проекции этих графиков на их линейные аппроксимации.

Из метода нормализации следует, что расхождение в 50% означает примерную среднюю разницу

Рис. 1. Множества точек *O*, *C*, *O*_R, *O*_R/ и *C*_{Rm} на примере сравнения цитируемого графика с цитирующим. Цитирующий график расположен сверху, он взят из рис. 18 в публикации [10]. Нижний график является цитируемым графиком, он взят из рис. 1 в публикации [80]

значений цитирующего и цитируемого графиков в два раза, расхождение 90% — в 10 раз, 99% в 100 раз и т.д. (см. формулу расчета R). Считать расхождение малым или большим зависит от эксперта и решаемой им задачи. При оценке качества цитирования мы считаем расхождение от 0 до 10% отличным (сравнимым с неопределенностью измерения), от 10 до 25% — хорошим, от 25 до 50% спорным, а расхождения > 50% однозначно ошибочным цитированием. Объяснение различий больше 10% требует дополнительного исследования.

После воплощения вышеописанного метода оценки разницы цитируемого и цитирующего графиков была разработана следующая версия ПО, в которой вместо линейной интерполяции для составления множеств O_{Rl} и C_{Rm} использовалась интерполяция кубическими сплайнами. Теоретически это должно было улучшить оценки среднего расхождения для гладких кривых, но на практике результаты оказались не впечатляющими. Во-первых, для сплайновой интерполяции необходимо минимально три точки вместо двух, что сразу же исключило 22 пары графиков. Во-вторых, из 667 пар «цитирующий и цитируемый графики» расхождения для сплайновой интерполяции оказались лучше, чем для линейной, лишь у 198 пар. Для 332 пар графиков лучшие результаты дала линейная интерполяция, а у 137 оставшихся разница между значениями менее 0,1%. В среднем на всем исследуемом массиве пар «цитирующий и цитируемый графики» при использовании сплайновой интерполяции расхождение хуже приблизительно на 5%, что вкупе с большей трудоемкостью вычислений приводит к выводам о нецелесообразности применения сплайновой интерполяции для решения задачи оценки разницы цитируемого и цитирующего графиков.

4. Результаты сравнения цитирующих и цитируемых примитивных графиков

Количественные оценки сравнения можно использовать, с одной стороны, как для пары «цитирующий и цитируемый графики», так и для любой пары графиков с учетом целесообразности, например для сравнения результатов расчетов и измерений функций поглощения. С другой стороны, с их помощью можно оценивать качество отдельных частей собственной коллекции графических ресурсов в случаях, когда используются массивы данных, полученные путем сканирования и распознавания значений физических величин, а также коллекций разных организаций.

На рис. 2 показаны примеры пар графиков (цитирующий и цитируемый). На рис. 2, *а* цитирующий график взят из рис. 6 в публикации [81], цитируемый график из рис. 3 работы [83]. Оценка различия для этой пары графиков, равная 11%, связана как с частичным цитированием, так и с неудовлетворительным качеством цитируемого графика. На рис. 2, *б* цитирующий график взят из рис. 10 [82] и является объединением значений двух оригинальных графиков из статей Д. Бёрча, а цитируемый

Рис. 2. Оценки различия пар «цитирующий и цитируемый графики»; среднее различие графиков: a - 11,25%; $\delta - 52,86\%$

график взят из рис. 5 работы [83]. Анализ различия сравниваемых графиков (52,86%) на этом рисунке показал, что причина значительного расхождения — ошибка при распознавании цитирующего графика, обусловленная выбором неправильного масштаба оси абсцисс при оцифровке данных. Корректировка масштаба привела к оценке различия в 12,62%.

В табл. 8 представлены результаты связывания цитирующих графиков с цитируемыми. В первой колонке таблицы показан интервал значений метрики *R* для пары «цитирующий и цитируемый графики», в следующих трех колонках дано число пар, удовлетворяющих условиям первой колонки. Пятая

Таблица 8

Оценка различия пар «цитирующий и цитируемый графики»

Интеррал R	Колич	ество пар гр	афиков	Всего от общего
%	${\rm H}_2{\rm O}$	Смеси с H ₂ O	Всего	количества пар графиков, %
$0 \le R < 10$	209	30	239	56,1
$10 \le R < 25$	65	6	71	16,7
$25 \le R < 50$	50	5	55	12,9
$50 \le R < 100$	42	19	61	14,3
Всего	366	60	426	100

колонка описывает процент пар графиков для данного интервала значений расхождения от общего числа пар «цитирующий и цитируемый графики».

В табл. 9 в первой и второй строках приведено число пар «цитирующий и цитируемый графики», для которых в базе данных ИС GrafOnto присутствуют или отсутствуют цитируемые графики. В третьей строке дана сводная статистика по полному набору пар графиков в системе.

Таблица 9

Количество пар графиков, для которых в базе данных нет/есть цитируемый график

Цитирующие графики, для кото- рых в системе	$\mathrm{H}_{2}\mathrm{O}$	Смеси с Н ₂ О	Всего	Всего от общего количества пар графиков, %
Нет цитируемого графика Есть цитируемый	203	43	246	36,4
график Всего	366 569	60 103	426 672	63,6 100

Заключение

Данная статья завершает цикл работ по систематизации графических ресурсов, описывающих исследования по континуальному поглощению водяного пара и его смесей, опубликованных в 1898—2020 гг.

В рассматриваемый период времени значительно активизировались экспериментальные и теоретические исследования континуума водяного пара. Это позволило более детально говорить о физических причинах его происхождения. Наметились точки соприкосновения между различными теоретическими подходами к объяснению континуума, которые, в сущности, описывают разные стороны одного явления. Это позволяет надеяться на их разумное объединение, которое могло бы помочь устранению неясностей, существующих в рамках этих подходов. Все еще остается непонятным расхождение результатов измерений континуума различными методами, выходящее за пределы ошибок эксперимента.

Внесены изменения в онтологию графических ресурсов в части наделения цитирующих примитивных графиков атрибутами, описывающими тип процесса цитирования, соотношение числа значений функций цитирующего и цитируемого графиков, интервал пересечения значений функций цитирующего и цитируемого графиков и оценку различия этой пары графиков.

Настоящая работа по оценке пар «цитирующий и цитируемый графики» является первой работой по исследованию качества цитирования графических ресурсов в физических науках. Для компьютерной обработки ее результаты представлены в форме онтологий графических ресурсов по исследованию континуального поглощения.

Дальнейшее пополнение графических ресурсов ориентировано на публикации, вышедшие после 2020 г. Объем увеличения онтологии за счет количественных оценок сравнений совместимых экспериментальных и расчетных данных методом, описанным выше, предполагается небольшим. Планируются проведение анализа результатов оценки различия графиков в парах «цитирующий и цитируемый графики» для 27,3% таких пар, для которых $25 \le R < 100\%$, и проверка значений термодинамических параметров для цитируемых и цитирующих графиков.

Благодарности. Авторы благодарны чл.-кор. РАН, д.ф.-м.н. И.В. Пташнику за предоставление оригинальных числовых массивов к графикам из его публикаций.

Список литературы

- Vaida V., Daniel J.S., Kjaergaard H.G., Goss L.M., Tuck A.F. Atmospheric absorption of near infrared and visible solar radiation by the hydrogen bonded water dimer // Quart. J. Roy. Meteorol. Soc. 2001. V. 127A, N 575. P. 1627–1643. DOI: 10.1002/qj.49712757509.
- Cormier J.G., Ciurylo R., Drummond J.R. Cavity ringdown spectroscopy measurements of the infrared water vapor continuum // J. Chem. Phys. 2002. V. 116, N 3. P. 1030–1034. DOI: 10.1063/1.1425825.
- 3. Kuhn T., Bauer A., Godon M., Buhler S., Kunzi K. Water vapor continuum: Absorption measurements at 350 Hz and model calculations // J. Quant. Spectrosc. Radiat. Transfer. 2002. V. 74. P. 545–562. DOI: 10.1016/ S0022-4073(01)00271-0.
- 4. Ma Q., Tipping R.H. The frequency detuning correction and the asymmetry of line shapes: The far wings of H₂O-H₂O // J. Chem. Phys. 2002. V. 116, N 10. P. 4102-4115. DOI: 10.1063/1.1436115.
- Ma Q., Tipping R.H. Water vapor millimeter wave foreign continuum. A Lanczos calculation in the coordinate representation // J. Chem. Phys. 2002. V. 117, N 23. P. 10581–10596. DOI: 10.1063/1.1516792.
- 6. Бузыкин О.Г., Иванов С.В. Континуальное поглощение водяного пара в колебательно-неравновесных условиях // Оптика атмосф. и океана. 2003. Т. 16, № 3. С. 235–244.
- 7. Ma Q., Tipping R.H. A simple analytical parameterization for the water vapor millimeter wave foreign continuum // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 82. P. 517–531. DOI: 10.1016/S0022-4073(03) 00175-4.
- Tonkov M.V., Filippov N.N. Collision induced far wings of CO₂ and H₂O bands in IR spectra // Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. Dordrecht: Springer, 2003. P. 125–136. DOI: 10.1007/978-94-010-0025-3 10.
- Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm⁻¹: Evidence for water dimers // Quart. J. Roy. Meteorol. Soc. 2004. V. 130A, N 602. P. 2391–2408. DOI: 10.1256/ qj.03.178.
- 10. Несмелова Л.И., Родимова О.Б., Творогов С.Д. Коэффициент поглощения водяного пара при различных температурах // Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия / под общ. ред. Л.Н. Синицы и Е.А. Виноградова. Томск: Изд-во ИОА СО РАН, 2004. С. 413–436.
- Sierk B., Solomon S., Daniel J.S., Portmann R.W., Gutman S.I., Langford A.O., Eubank C.S., Dutton E.G., Holub K.H. Field measurements of water vapor continuum absorption in the visible and near-infrared // J. Geophys. Res. 2004. V. 109. D08307. DOI: 10.1029/ 2003JD003586.

Систематизация опубликованной научной графики... III. Публикации 2001-2020 гг.

- Cormier J.G., Hodges J.T., Drummond J.R. Infrared water vapor continuum absorption at atmospheric temperatures // J. Chem. Phys. 2005. V. 122, N 11. P. 114309. DOI: 10.1063/1.1862623.
- Podobedov V.B., Plusquellic D.F., Fraser G.T. Investigation of the water-vapor continuum in the THz region using a multipass cell // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 91. P. 287–295. DOI: 10.1016/j. jqsrt.2004.05.061.
- 14. Vigasin A.A., Pavlyuchko A.I., Jin Y., Ikawa S. Density evolution of absorption band shapes in the water vapor OH-stretching fundamental and overtone: Evidence for molecular aggregation // J. Mol. Struct. 2005. V. 742, N 1–3. P. 173–181. DOI: 10.1016/j. molstruc.2004.12.060.
- Bicknell W.E., Cecca S.D., Griffin M.K., Swartz S.D., Flusberg A. Search for low-absorption regions in the 1.6and 2.1-μm atmospheric windows // J. Directed Energy. 2006. V. 2. P. 151–61.
- Scribano Y., Goldman N., Saykally R.J., Leforestier C. Water dimers in the atmosphere III: Equilibrium constant from a flexible potential // J. Phys. Chem. A. 2006. V. 110. P. 5411-5419. DOI: 10.1021/jp056759k.
- 17. Scribano Y., Leforesier C. Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum // J. Chem. Phys. 2007. V. 126, N 23. P. 234301-1–234301-12. DOI: 10.1063/ 1.2746038.
- Baranov Y.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm⁻¹ spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 2291–2302. DOI: 10.1016/j.jqsrt.2008.03.004.
- Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128. P. 124313-1–124313-17. DOI: 10.1063/1.2839604.
- Podobedov V.B., Plusquellic D.F., Siegrist K.E., Fraser G.T., Ma Q., Tipping R.H. New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 458–467. DOI: 10.1016/j.jqsrt.2007. 07.005.
- Lee M.S., Baletto F., Kanhere D.G., Scandolo S. Farinfrared absorption of water clusters by first-principles molecular dynamics // J. Chem. Phys. 2008. V. 128, N 21. P. 214506-1-214506-5. DOI: 10.1063/ 1.2933248.
- 22. Ptashnik I.V. Evidence for the contribution of water dimers to the near-IR water vapour self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 831–852. DOI: 10.1016/j.jqsrt.2007.09.004.
- Serio C., Guido M., Esposito F., Di Girolamo P., Di Iorio T., Palchetti L., Bianchini G., Muscari G., Pavese G., Rizzi R., Carli B., Cuomo V. Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H₂O rotational band from 240 to 590 cm⁻¹ // Opt. Express. 2008. V. 16, N 20. P. 15816–15833. DOI: 10.1364/OE.16.015816.
- 24. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm⁻¹ region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. P. D21301. DOI: 10.1029/2008JD011355.
- 25. Rowe P.M., Walden V.P. Improved measurements of the foreign-broadened continuum of water vapor in the 6.3 μm band at -30 °C // Appl. Opt. 2009. V. 48, N 17. P. 1358–1365. DOI: 10.1364/AO.48.001358.

- 26. Leforestier C., Tipping R.H., Ma Q. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption // J. Chem. Phys. 2010. V. 132, N 16. P. 164302. DOI: 10.1063/1.3384653.
- 27. Baranov Yu.I. The continuum absorption in $H_2O + N_2$ mixtures in the 3–5 µm spectral region at temperatures from 326 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2281–2286. DOI: 10.1016/j. jqsrt.2011.06.005.
- 28. Baranov Yu.I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1304–1313. DOI: 10.1016/j.jqsrt.2011.01.024.
- 29. Koshelev M.A., Serov E.A., Parshin V.V., Tretyakov M.Yu. Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2704– 2712. DOI: 10.1016/j.jqsrt.2011.08.004.
- 30. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303. DOI: 10.1016/j.jqsrt.2011.01.012.
- 31. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments // J. Geophys. Res. 2011. V. 116. D16305. DOI: 10.1029/2011JD015603.
- 32. Baranov Yu.I., Buryak I.A., Lokshtanov S.E., Lukyanchenko V.A., Vigasin A.A. H₂O-N₂ collision-induced absorption band intensity in the region of the N₂ fundamental: Ab initio investigation of its temperature dependence and comparison with laboratory data // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2691–2709. DOI: 10.1098/rsta.2011.0189.
- 33. Baranov Yu.I., Lafferty W.J. The water vapour selfand water-nitrogen continuum absorption in the 1000 and 2500 cm⁻¹ atmospheric windows // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2578–2589. DOI: 10.1098/rsta. 2011.0234.
- 34. Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 71–76. DOI: 10.1134/ S102485601201006X.
- 35. Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT_CKD model of continuum absorption // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2520– 2556. DOI: 10.1098/rsta.2011.0295.
- 36. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2557–2577. DOI: 10.1098/rsta.2011.0218.
- 37. *Климешина Т.Е., Родимова О.Б.* Изменение контура линии в крыле от полосы к полосе в случае H₂O и CO₂ // Оптика атмосф. и океана. 2013. Т. 26, № 1. С. 18–23.
- 38. Klimeshina T.E., Rodimova O.B. Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 119. P. 77–83. DOI: 10.1016/j. jqsrt.2012.12.020.
- 39. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 381–391. DOI: 10.1016/j.jqsrt.2013.07.006.

- 40. Ptashnik V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35. DOI: 10.1016/j.jqsrt.2013.02.016.
- 41. Slocum D.M., Slingerland E.J., Giles R.H., Goyette T.M. Atmospheric absorption of terahertz radiation and water vapor continuum effects // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 127. P. 49–63. DOI: 10.1016/j.jqsrt.2013.04.022.
- 42. Tretyakov M.Yu., Serov E.A., Koshelev M.A., Parshin V.V., Krupnov A.F. Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature // Phys. Rev. Lett. 2013. V. 110, N 9. P. 093001-1-093001-4. DOI: 10.1103/PhysRevLett.110. 093001.
- 43. Mondelain D., Manigand S., Kassi S., Campargue A. Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 μm transparency window // J. Geophys. Res.: Atmos. 2014. V. 119, N 9. P. 5625–5639. DOI: 10.1002/ 2013JD021319.
- 44. Пташник И.В., Петрова Т.М., Пономарев Ю.Н., Солодов А.А., Солодов А.М. Континуальное поглощение водяного пара в окнах прозрачности ближнего ИК-диапазона // Оптика атмосф. и океана. 2014. Т. 27, № 11. С. 970–975.
- 45. Третьяков М.Ю., Кошелев М.А., Серов Е.А., Паршин В.В., Одинцова Т.А., Бубнов Г.М. Димер воды и атмосферный континуум // Успехи физ. наук. 2014. Т. 184, № 11. С. 1199–1215.
- 46. Serov E.A., Koshelev M.A., Odintsova T.A., Parshin V.V., Tretyakov M.Yu. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188–258 Hz range // Phys. Chem. Chem. Phys. 2014. V. 16. P. 26221–26233. DOI: 10.1039/ c4cp03252g.
- 47. Shine K.P., Ptashnik I., R\u00e4el G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2014. V. 33, N 3-4. P. 1-21. DOI: 10.1007/s10712-011-9170-y.
- 48. Klimeshina T.E., Rodimova O.B. Water-vapor foreigncontinuum absorption in the 8–12 and 3–5 μm atmospheric windows // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 161. P. 145–152. DOI: 10.1016/j.jqsrt. 2015.04.005.
- 49. Mondelain D., Vasilchenko S., Cermak P., Kassi S., Campargue A. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm // Phys. Chem. Chem. Phys. 2015. V. 17, N 27. P. 17762–17770. DOI: 10.1039/C5CP01238D.
- 50. Пташник И.В. Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы // Оптика атмосф. и океана. 2015. Т. 28, № 5. С. 443–459. DOI: 10.15372/AOO20150508.
- 51. Rodimova O.B. Continuum water vapor absorption in the 4000–8000 cm⁻¹ region // Proc. SPIE. 2015. V. 9680. P. 968002. DOI: 10.1117/12.2205332.
- 52. Tretyakov M.Yu., Sysoev A.A., Odintsova T.A., Kyuberis A.A. Collision-induced dipole moment and millimeter and submillimeter continuum absorption in water vapor // Radiophys. Quantum Electron. 2015. V. 58, N 4. P. 262–276. DOI: 10.1007/s11141-015-9600-7.
- 53. Baranov Yu.I. On the significant enhancement of the continuum-collision induced absorption in H₂O + CO₂ mixtures // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 175. P. 100–106. DOI: 10.1016/j.jqsrt.2016. 02.017.
- 54. Bogdanova J.V., Rodimova O.B. The water vapor absorption in the long wave wing of the rotational band

// Proc. SPIE. 2016. V. 10035. P. 1003506. DOI: 10.1117/12.2249129.

- 55. Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model // J. Geophys. Res.: Atmos. 2016. V. 121. P. 13180–13203. DOI: 10.1002/2016JD025531.
- 56. Reichert A. Quantification of the infrared water vapor continuum by atmospheric measurements // Dissertation an der Fakultät für Physik der Ludwig-Maximilians-Universit ät Munchen angefertigt am Karlsruher Institut für Technologie (KIT). Institut für Meteorologie und Klimaforschung Atmospharische Umweltforschung (IMK-IFU) Garmisch-Partenkirchen vorgelegt von Andreas Reichert aus Kosching Munchen. 24.10.2016.
- 57. Shine K.P., Campargue A., Mondelain D., McPheat R.A., Ptashnik I.V., Weidmann D. The water vapour continuum in near-infrared windows – current understanding and prospects for its inclusion in spectroscopic databases // J. Mol. Spectrosc. 2016. V. 327. P. 193–208. DOI: 10.1016/j.jms.2016.04.011.
- 58. Simonova A.A., Ptashnik I.V. Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 μm bands // Proc. SPIE. 2016. V. 10035. P. 100350K. DOI: 10.1117/12.2249458.
- 59. Odintsova T.A., Tretyakov M.Yu., Pirali O., Roy P. Water vapor continuum in the range of rotational spectrum of H₂O molecule: New experimental data and their comparative analysis // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 187. P. 116–123. DOI: 10.1016/j. jqsrt.2016.09.00.
- 60. Richard L., Vasilchenko S., Mondelain D., Ventrillard I., Romanini D., Campargue A. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 µm transparency windows // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 201. P. 171–179. DOI: 10.1016/j.jqsrt.2017.06.037.
- 61. Serov E.A., Odintsova T.A., Tretyakov M.Yu., Semenov V.E. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 193. P. 1–12. DOI: 10.1016/j.jqsrt.2017. 02.011.
- 62. Lechevallier L., Vasilchenko S., Grilli R., Mondelain D., Romanini D., Campargue A. The water vapour self-continuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 and 2.0 μm // Atmos. Meas. Technol. 2018. V. 11. P. 2159–2171. DOI: 10.5194/amt-11-2159-2018.
- 63. Odintsova T., Tretyakov M.Yu., Zibarova A.O., Pirali O., Roy P., Campargue A. Far-infrared self-continuum absorption of H₂¹⁶O and H₂¹⁸O (15–500 cm⁻¹) // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 227. P. 190–209. DOI: 10.1016/j.jqsrt.2019.02.01.
- 64. Ptashnik I., Klimeshina T.E., Solodov A.A., Vigasin A.A. Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 228. P. 97–105. DOI: 10.1016/j.jqsrt.2019.02.024.
- 65. Tran H., Turbet M., Hanoufa S., Landsheere X., Chelin P., Ma Q., Hartmann J.-M. The CO₂-broadened H₂O continuum in the 100–1500 cm⁻¹ region. Measurements, predictions, and empirical model // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 230. P. 75–80. DOI: 10.1016/j.jqsrt.2019.03.016.
- 66. Vasilchenko S., Campargue A., Kassi S., Mondelain D. The water vapour self- and foreign-continua in the 1.6 μ m and 2.3 μ m windows by CRDS at room temperature //

Систематизация опубликованной научной графики... III. Публикации 2001-2020 гг.

J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 227. P. 230–238. DOI: 10.1016/j.jqsrt.2019.02.016.

- 67. Birk M., Wagner G., Loos J., Shine K.P. 3 μm water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 253. P. 107134(1-22). DOI: 10.1016/j.jqsrt.2020.107134.
- 68. Mondelain D., Vasilchenko S., Kassi S., Campargue A. The water vapor foreign-continuum in the 1.6 μm window by CRDS at room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 246. P. 106923(1–7). DOI: 10.1016/j.jqsrt.2020.106923.
- 69. Lavrent'ev N.A., Rodimova O.B., Fazliev A.Z. Systematization of published scientific graphics characterizing the water vapor continuum absorption. I. Publications of 1898–1980 // Proc. SPIE. 2018. V. 10833. P. 108330A-9. DOI: 10.1117/12.2504325.
- 70. Лаврентыев Н.А., Родимова О.Б., Фазлиев А.З. Систематизация опубликованной научной графики, представляющей характеристики континуального поглощения водяного пара. П. Публикации 1981–2000 гг. // Оптика атмосф. и океана. 2022. Т. 35, № 3. С. 217–231. DOI: 10.15372/AOO20220307.
- Akhlestin A.Yu., Lavrentiev N.A., Rodimova O.B., Fazliev A.Z. The continuum absorption: Trust assessment of published graphical information // Proc. SPIE. 2019. V. 11208. P. 112080P. DOI: 10.1117/12.2541741.
- 72. Tretyakov M.Yu., Krupnov A.F., Koshelev M.A., Makarov D.S., Serov E.A., Parshin V.V. Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range // Rev. Sci. Instrum. 2009. V. 80, N 9. P. 093106-1–093106-10. DOI: 10.1063/1.3204447.74.
- 73. Пташник И.В. Димеры воды: «неизвестный» эксперимент // Оптика атмосф. и океана. 2005. Т. 18, № 4. С. 359–362.
- 74. Vigasin A.A. Bound, metastable and free states of bimolecular complexes // Infrared Phys. 1991. V. 32. P. 461–470.

- 75. Stogryn D.E., Hirschfelder J.O. Contribution of bound, metastable, and free molecules to the second virial coefficient and some properties of double molecules // J. Chem. Phys. 1959. V. 31, N 6. P. 1531–1545.
- 76. Несмелова Л.И., Родимова О.Б., Творогов С.Д. Контур спектральной линии и межмолекулярное взаимодействие. Новосибирск: Наука, 1986. 216 с.
- 77. Богданова Ю.В., Климешина Т.Е., Родимова О.Б. Димерное поглощение в ИК-полосах водяного пара // Оптика атмосф. и океана. 2019. Т. 32, № 10. С. 801–807.
- 78. Богданова Ю.В., Родимова О.Б. Соотношение между поглощением мономерами и димерами водяного пара в пределах вращательной полосы H₂O // Оптика атмосф. и океана. 2018. Т. 31, № 5. С. 341–348.
- 79. Лаврентыев Н.А., Фазлиев А.З. Метод количественной оценки качества цитирования научных графиков // Сборник трудов российской конференции с международным участием «Распределенные информационно-вычислительные ресурсы (DICR-2022)». Россия. г. Новосибирск, 5–8 декабря 2022 г. / под ред. С.А. Рылова, Ю.И. Молородова, А.А. Жирнова, Ю.Н. Синявского. Новосибирск: 2022. DOI: 0.25743/ DIR.2022.24.51.022.
- 80. Roberts R.E., Selby J.E.A., Biberman L.M. Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window // Appl. Opt. 1976. V. 15, N 9. P. 2085–2090. DOI: 10.1364/AO.15.002085.
- 81. Ma Q., Tipping R.H. A near-wing correction to the quasistatic far-wing line shape theory // J. Chem. Phys. 1994. V. 100, N 4. P. 2537–2546. DOI: 10.1063/ 1.466502.
- 82. *Tipping R.H., Ma Q.* Theory of the water continuum and validations // Atmos. Research. 1995. V. 36, N 1–2.
 P. 69–94. DOI: 10.1016/0169-8095(94)00028-C.
- 83. Burch D.E. Absorption by H_2O in narrow windows between 3000–4200 cm⁻¹. Report AFGL-TR-85-0036 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, USA, Massachusetts. 1985. 37.

N.A. Lavrentiev, O.B. Rodimova, A.Z. Fazliev. Systematization of published scientific graphics characterizing the water vapor continuum absorption: III. Publications of 2001–2020.

Graphical resources on the continuum absorption of water vapor and its mixtures published in 2011–2020 are described. Summary tables are presented that characterize the main parameters of the absorption coefficients and transmission functions in different spectral intervals, the temperature dependence of the absorption coefficient, and the equilibrium constant of the water dimer formation reaction. The features of the study of the continuum absorption in published works in this time interval are noted.

In a concise form, the results of the assessment of the quality of citing plots are presented, which are described by four qualitative and quantitative attributes. Three citation procedures are characterized, two of which are computerized. A method for estimating the difference between the citing and cited plots and examples of pairs "citing and cited plots" with a quantitative assessment of the difference are presented.