УДК 536.46

ВЛИЯНИЕ ПАРАМЕТРОВ ВНЕШНЕЙ СРЕДЫ НА ВОСПЛАМЕНЕНИЕ И ГОРЕНИЕ СВЕРХЗВУКОВОЙ ВОДОРОДНОЙ СТРУИ, ИСТЕКАЮЩЕЙ В ЗАТОПЛЕННОЕ ПРОСТРАНСТВО

Н. Н. Федорова, О. С. Ванькова

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск nfed@itam.nsc.ru

Представлены результаты численного моделирования смешения, воспламенения и горения холодной сверхзвуковой ($M_{jet} = 1.46$) водородной струи, подаваемой соосно в кольцевую сверхзвуковую ($M_{air} = 1.86$) струю горячего влажного воздуха, в условиях истечения в затопленное пространство. Моделирование проведено в программном комплексе ANSYS Fluent 2020 R1 в нестационарной двумерной осесимметричной постановке на основе осредненных по Рейнольдсу уравнений Навье — Стокса, дополненных $k-\omega$ SST моделью турбулентности и детальным кинетическим механизмом горения водорода в воздухе. Геометрия и параметры расчетов выбраны в соответствии с условиями эксперимента (Cohen, Guile, 1969), данные которого использованы для верификации расчетного алгоритма. Изучена структура реагирующей струи, проведена оценка полноты сгорания водорода при различных значениях параметра нерасчетности струи. Получены мгновенные, средние и пульсационные компоненты основных газодинамических параметров и концентраций компонентов реагирующей смеси.

Ключевые слова: горение водорода, моделирование, внутренние течения, стабилизация пламени.

DOI 10.15372/FGV20220302

ВВЕДЕНИЕ

Процессы смешения, воспламенения и горения водородосодержащих смесей реализуются во многих технических устройствах, таких как горелки, газовые турбины, прямоточные воздушно-реактивные двигатели и др. [1]. В неподготовленных смесях топливо и окислитель разделены. Химические реакции горения начинаются после того, как топливо и окислитель смешиваются на молекулярном уровне, при условии, что температура смеси превышает температуру воспламенения. Скорость горения при этом определяется, главным образом, конвективным и диффузионным переносом, которые существенно зависят от входных условий [2–6].

В [7] представлен обзор большого массива экспериментальных данных по проблеме струйно-факельного истечения горючих газов в затопленное пространство, заполненное воздухом. Показано, что определяющими критериями подобия являются число Рейнольдса и масштабный фактор, которые рассчитывают по начальным параметрам истекающей топливной струи.

В [8] представлен обзор основных концепций смешения топлива с воздухом и зависящего от смешения сверхзвукового горения. Реализация смешения осуществляется с помощью каверн, пилонов, стоек и других устройств [9]. При высоких скоростях потока часто используется параллельная инжекция водородного топлива, поскольку она позволяет снизить потери давления и увеличить количество движения за счет сложения импульсов основного течения и струи [10, 11].

Истечение струй в затопленное пространство исследовалось в [12–15]. При истечении нерасчетных недорасширенных струй, для которых $p_a/p_{\infty} > 1$ (p_a, p_{∞} — давление на срезе сопла и в затопленном пространстве), формируется характерная бочкообразная структура, состоящая из осесимметричного висячего скачка уплотнения и замыкающего центрального скачка — диска Маха [14]. Важной особенностью течения является то, что большая мас-

Работа выполнена в рамках государственного задания (номер гос. регистрации 121030500163-4).

[©] Федорова Н. Н., Ванькова О. С., 2022.

са газа сосредоточена в сжатом слое за висячим скачком уплотнения, вследствие чего вязкие эффекты в слое смешения у границы существенно влияют на местоположение скачков и на распределение параметров [16].

Горению сверхзвуковых водородных струй посвящены экспериментальные [17–20] и численные [21–27] исследования.

В [21] представлено численное исследование нереагирующего и реагирующего течения в камере сгорания ГПВРД для условий экспериментов, проведенных в DLR [22]. Водород подается в спутный сверхзвуковой поток тангенциально. Трехмерные уравнения Навье — Стокса с $k-\varepsilon$ -моделью турбулентности решаются с помощью коммерческого CFD-пакета. Для моделирования горения используется комбинация моделей вихревой диссипации и химии конечных скоростей реакций. Моделирование хорошо воспроизводит сложную структуру ударных волн и волн разрежения, а также их взаимодействие. При использовании периодических граничных условий расчет предсказывает раннее начало реакции, но зона реакции гораздо более ограниченная и интенсивная в случае полного моделирования камеры сгорания. Полное моделирование камеры позволяет более точно прогнозировать профиль температуры, максимальное отклонение от экспериментальных значений составляет ≈12 %. Сделано заключение, что для лучшего согласования температурного поля в областях ближнего следа необходимо использовать детальные кинетические механизмы горения водорода в воздухе.

В [23] с помощью пакета прикладных программ ANSYS изучалось влияние числа Маха и температуры вязкой сверхзвуковой струи, истекающей из сопла летательного аппарата. Расчеты проводились при параметрах, близких к рассмотренным в [24]. Исследованы основные подструктуры вязкой сверхзвуковой струи, истекающей в спутный сверхзвуковой поток, а также влияние друг на друга струи и спутного потока. Установлено, что при увеличении числа Маха на срезе сопла летательного аппарата размеры начального участка струи значительно возрастают. При этом экстремумы на профилях температуры, а также давления вдоль оси струи возрастают и смещаются по оси. С увеличением температуры на срезе сопла уменьшаются длина и ширина начального участка струи.

В [27] численно исследовано сверхзвуковое турбулентное горение плоских водородных струй в сверхзвуковом потоке воздуха. Показано, что в зоне смешения водородных струй возникают крупномасштабные вихревые структуры, которые оказывают влияние на турбулентный обмен между топливом и окислителем и повышают полноту сгорания. Горение инициирует образование возмущений, которые взаимодействуют с волнами, порожденными нерасчетностью струи. В результате формируется новая волновая структура течения. С увеличением нерасчетности струи интенсивность волн растет, а скорость смешения снижается из-за повышения плотности струи.

В предыдущей работе авторов [28] по результатам численного анализа смешения и воспламенения плоской звуковой струи холодного водорода, подаваемого тангенциально в сверхзвуковой поток горячего влажного воздуха, была выполнена валидация детальных кинетических схем различной степени сложности с экспериментальными данными [29]. В результате детального анализа выбрана кинетическая схема [30], обеспечившая наилучшее совпадение расчетных и экспериментальных данных. В [31] для условий эксперимента [29] сопоставлены результаты расчетов по нескольким кинетическим схемам без учета и с учетом взаимодействия химии и турбулентности. В работе авторов [32] проведена верификация расчета по экспериментальным данным [33] и валидация моделей взаимодействия турбулентности и химии. Для моделирования горения выбор сделан в пользу подхода конечной скорости реакции.

В данной работе исследуется влияние давления в затопленном пространстве на структуру потока и процессы смешения, воспламенения и горения. Проведено детальное сравнение расчетных профилей числа Маха, полной температуры и концентраций компонентов смеси на оси и в нескольких поперечных сечениях струи для нереагирующего и реагирующего потока с экспериментальными данными и между собой. Показано, что использование нестационарного подхода в сочетании с детальной кинетической схемой позволяет воспроизвести в расчете вихревые структуры, развивающиеся на границе слоя горения, которые вносят существенный вклад в смешение водородной и воздушной струй и таким образом оказывают влияние на процесс горения водорода.

1. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И МЕТОД РАСЧЕТА

Расчеты проведены для условий эксперимента [33], в котором круглая сверхзвуковая струя водорода ($p_{\rm H_2} = 90$ кПа, $T_{\rm H_2} = 276$ K, $M_{H_2} = 1.46$) в спутной коаксиальной струе горячего влажного воздуха ($p_{air} = 90 \text{ к}\Pi a, T_{air} =$ 1140 К, $M_{air} = 1.86$) инжектируется в затопленное пространство. Здесь и далее p — статическое давление, Т — статическая температура, М — число Маха; нижние индексы обозначают параметры водородной (H₂) и воздушной (air) струй, а также затопленного пространства (∞). В [33] выполнены две серии экспериментов, различающихся концентрацией химических компонентов во внешней (кольцевой) струе (табл. 1). В первой серии внешняя струя имеет низкую концентрацию кислорода, поэтому воспламенение происходит в конце измерительной секции. Данные этой серии использованы для тестирования процесса смешения струй с окружающим пространством. Во второй серии экспериментов во внешнюю струю добавлен кислород и тем самым обеспечены условия для самовоспламенения водород-

	Таблица 1
Массовые концентрации к	омпонентов
в эксперименте [3	33]

Тип эксперимента	O_2	${\rm H}_2{\rm O}$	N_2	H_2
Внешняя струя, серия 1	0.06	0.12	0.82	0
Внешняя струя, серия 2	0.26	0.15	0.59	0
Внутренняя струя	0	0	0	1

Таблица 2

Параметры в затопленном пространстве,
используемые в расчетах

Вариант расчета	Высота над уровнем Земли, км	$p_{\infty}, \Pi \mathbf{a}$	T_{∞}, \mathbf{K}
1	0	101325	288.15
2	5	54048	255.65
3	10	26500	223.15

ной струи. Эти эксперименты использовались для тестирования моделей горения.

В настоящей работе выполнена верификация расчетного алгоритма по экспериментальным данным [33]. Численно изучено влияние давления в затопленном пространстве на процессы смешения, воспламенения и стабилизации горения. Варианты расчета с разными условиями в затопленном пространстве представлены в табл. 2. Давление и температура выбраны в соответствии с атмосферными условиями на различной высоте над уровнем Земли.

Все расчеты проведены в двумерной осесимметричной постановке. Схема расчетной области представлена на рис. 1,*a* (масштаб неправильный). Входные сечения струй водорода и воздуха показаны стрелками, срезы стенок сопла заштрихованы. Нижняя граница является осью. Все остальные границы являются выходными и выбраны таким образом, чтобы исключить их влияние на картину течения. Внутренний радиус воздушной кольцевой струи $r_i = 1$ см, внешний R = 5 см, толщина

Рис. 1. Схема расчетной области (а) и фрагмент адаптированной расчетной сетки (б)

стенки внутренней трубки $h_{lip} = 0.054$ см, размер вертикального среза сопла h = 5 см. В данной работе обезразмеривание проводилось по внутреннему диаметру воздушной струи $d_j = 2r_j = 2$ см. Длина расчетной области $L = 75d_j = 150$ см, высота $H = 40d_j = 80$ см.

На входных границах заданы соответствующие экспериментальным значения статического давления, числа Маха, статической температуры и турбулентных параметров с учетом пограничных слоев, сформировавшихся на внутренних стенках сопла и трубки для подачи водорода. На выходных границах заданы условия покоящейся воздушной среды с параметрами, представленными в табл. 2. Стенки предполагаются адиабатическими.

В расчетной области построена структурированная расчетная сетка, которая сгущалась к оси и стенкам сопла (сетка 1). Для расчета задачи о смешении струй без учета химических реакций сетка была адаптирована средствами Fluent по градиентам плотности (сетка 2) и температуры (сетка 3). В результате получена последовательность трех сеток различной плотности (табл. 3). Адаптированная расчетная сетка показана на рис. 1,6. Дополнительные ячейки сосредоточены в слое смешения струй воздуха и водорода, а также в области внешней границы воздушной струи с затопленным пространством.

Численное моделирование проведено с помощью пакета ANSYS CFD Fluent 2020 R1 [34] на основе решения осредненных по Фавру нестационарных уравнений Навье — Стокса [35], дополненных $k-\omega$ SST моделью турбулентности [36], законами сохранения химических компонентов и уравнениями химической кинетики. В многокомпонентной смеси массовая доля *i*-го компонента Y_i вычисляется путем решения уравнения типа конвекция — диффузия:

Таблица З

Сетка	Адаптация по градиенту	Число ячеек	Минимальный объем ячейки, м ³
1		80 100	$3.288 \cdot 10^{-10}$
2	Плотности	123573	$5.081 \cdot 10^{-11}$
3	Статической температуры	204867	$4.070 \cdot 10^{-11}$

Параметры расчетных сеток

$$\frac{\partial}{\partial t} \left(\rho Y_i \right) + \nabla \cdot \left(\rho \vec{v} Y_i \right) = -\nabla \cdot \vec{J}_i + R_i.$$
(1)

Здесь ρ — плотность, \vec{v} — скорость, R_i — суммарная скорость производства *i*-го компонента, \vec{J}_i — диффузионный поток, возникающий из-за градиента концентрации, который для турбулентных течений вычисляется как

$$\vec{J_i} = -\left(\rho D_{i,m} + \frac{\mu_t}{\mathrm{Sc}_t}\right) \nabla Y_i,\tag{2}$$

где $D_{i,m}$ — коэффициент диффузии *i*-го компонента смеси, Sc_t — турбулентное число Шмидта, μ_t — турбулентная вязкость.

Массовые скорости образования компонентов R_i , входящие в (1) как источниковый член, вычисляются на основе метода ламинарных пламен с конечными скоростями реакций. Влияние турбулентных пульсаций на скорость кинетических реакций, т. е. взаимодействие турбулентности и химии, не учитывается. Константы скоростей реакций вычисляются на основе закона Аррениуса:

$$k_r = A_r T^{\beta_r} \exp\left(-\frac{E_r}{RT}\right). \tag{3}$$

Здесь A_r — предэкспоненциальный множитель, β_r — показатель степени температуры, E_r — энергия активации. Константы, входяцие в закон Аррениуса, определяются выбранной кинетической схемой. В настоящей работе использована кинетическая схема [30], включающая в себя 37 прямых и обратных реакций для 8 химических компонентов H₂, O₂, H₂O, H, O, OH, HO₂, H₂O₂. Константы скоростей реакций кинетической схемы [30] приведены в табл. 4. Входящий в состав смеси азот предполагался инертным. Термодинамические и транспортные свойства компонентов были получены по кинетической теории с помощью программы Chemkin.

Расчеты задачи о смешении проведены в стационарной постановке с помощью решателя, основанного на давлении, с использованием сопряженной схемы связывания давления и скорости. Для пространственной аппроксимации применялась противопотоковая схема второго порядка. Расчеты задачи о горении выполнены в нестационарной постановке с использованием безытерационного варианта схемы PISO. В ходе нестационарного расчета с помощью подключенных мониторов отслеживались такие параметры, как средняя по объему

Константы химических реакций кинетической схемы [30]				
№ п/п	Реакция	A, моль/м ³	β	E, кДж/моль
1	$\rm O_2 + \rm H \rightarrow \rm OH + \rm O$	$2 \cdot 10^{14}$	0	70.3
2	$OH + O \rightarrow O_2 + H$	$1.46 \cdot 10^{13}$	0	2.08
3	$\rm H_2 + \rm O \rightarrow \rm OH + \rm H$	$5.06\cdot 10^4$	2.67	26.30
4	$\rm OH + H \rightarrow H_2 + O$	$2.24 \cdot 10^4$	2.67	18.40
5	$\rm H_2 + OH \rightarrow \rm H_2 + \rm H$	$1 \cdot 10^8$	1.6	13.8
6	$\rm H_2O + \rm H \rightarrow \rm H_2 + \rm OH$	$4.45\cdot 10^8$	1.6	77.13
7	$\rm OH + OH \rightarrow H_2O + O$	$1.5\cdot 10^9$	1.14	0.42
8	$\rm H_2O + O \rightarrow OH + OH$	$1.51\cdot 10^{10}$	1.14	71.64
9	$\rm H + \rm H + \rm M \rightarrow \rm H_2 + \rm M$	$1.8\cdot 10^{18}$	-1	0
10	$\rm H_2 + \rm M \rightarrow \rm H + \rm H + \rm M$	$6.99\cdot 10^{18}$	-1	436.08
11	$\rm H + OH + M \rightarrow \rm H_2O + M$	$2.20\cdot 10^{22}$	-2	0
12	$\rm H_2O + \rm M \rightarrow \rm H + \rm OH + \rm M$	$3.80\cdot 10^{23}$	-2	499.41
13	$\rm O + O + M \rightarrow O_2 + M$	$2.9\cdot 10^{17}$	-1	0
14	$\rm O_2 + \rm M \rightarrow \rm O + \rm O + \rm M$	$6.81\cdot 10^{18}$	-1	496.41
15	$\rm H + O_2 + \rm M \rightarrow \rm HO_2 + \rm M$	$2.3\cdot 10^{18}$	-0.8	0
16	$\rm HO_2 + \rm M \rightarrow \rm H + \rm O_2 + \rm M$	$3.26\cdot 10^{18}$	-0.8	195.88
17	$\mathrm{HO}_2 + \mathrm{H} \to \mathrm{OH} + \mathrm{OH}$	$1.5\cdot 10^{14}$	0	4.20
18	$\rm OH + OH \rightarrow \rm HO_2 + \rm H$	$1.33\cdot 10^{13}$	0	168.3
19	$\mathrm{HO}_2 + \mathrm{H} \rightarrow \mathrm{H}_2 + \mathrm{O}_2$	$2.5\cdot 10^{13}$	0	2.9
20	$\rm H_2 + O_2 \rightarrow \rm HO_2 + \rm H$	$6.84\cdot10^{13}$	0	243.10
21	$\rm HO_2 + \rm H \rightarrow \rm H_2O + \rm O$	$3 \cdot 10^{13}$	0	7.20
22	$\rm H_2O + O \rightarrow \rm HO_2 + \rm H$	$2.67\cdot 10^{13}$	0	242.52
23	$\mathrm{HO}_2 + \mathrm{O} \rightarrow \mathrm{OH} + \mathrm{O}_2$	$1.8\cdot 10^{13}$	0	-1.7
24	$\rm OH + O_2 \rightarrow \rm HO_2 + \rm O$	$2.18\cdot 10^{13}$	0	230.61
25	$\mathrm{HO}_2 + \mathrm{OH} \rightarrow \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$	$6 \cdot 10^{13}$	0	0
26	$\rm H_2O + O_2 \rightarrow \rm HO_2 + OH$	$7.31\cdot 10^{14}$	0	303.53
27	$\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2$	$2.5\cdot10^{11}$	0	-5.2
28	$\rm OH + OH + M \rightarrow H_2O$	$3.25\cdot 10^{22}$	-2	0
29	$\rm H_2O_2 + \rm M \rightarrow \rm OH + \rm OH + \rm M$	$2.1\cdot 10^{24}$	-2	206.8
30	$\rm H_2O_2 + \rm H \rightarrow \rm H_2 + \rm HO_2$	$1.7\cdot 10^{12}$	0	15.7
31	$\mathrm{H}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{H}$	$1.15\cdot 10^{12}$	0	80.88
32	$\rm H_2O_2 + \rm H \rightarrow \rm H_2O + \rm OH$	$1 \cdot 10^{13}$	0	15.0
33	$\rm H_2O + OH \rightarrow \rm H_2O_2 + \rm H$	$2.67\cdot 10^{12}$	0	307.51
34	$H_2O_2 + O \rightarrow OH + HO_2$	$2.8\cdot 10^{13}$	0	26.8

Таблица 4

№ п/п	Реакция	A, моль/м ³	β	E, кДж/моль
35	$\rm OH + HO_2 \rightarrow H_2O$	$8.4\cdot10^{12}$	0	84.09
36	$\mathrm{H_2O_2} + \mathrm{OH} \rightarrow \mathrm{H_2O} + \mathrm{HO_2}$	$5.4\cdot10^{12}$	0	4.20
37	$\mathrm{H_2O} + \mathrm{HO_2} \rightarrow \mathrm{H_2O_2} + \mathrm{OH}$	$1.63\cdot 10^{13}$	0	132.71

Продолжение таблицы 4

температура и масса водяного пара. Проводилось также накопление статических данных по давлению, скорости, числу Маха, температуре и концентрациям химических компонентов. На основе этого получены поля мгновенных, средних по времени и среднеквадратичных отклонений от средних этих параметров. Для определения характерного времени расчета был создан монитор интеграла массовой доли паров воды во всей расчетной области. После установления значений монитора расчет останавливался и отстраивались средние по времени и пульсационные профили на оси в разные моменты времени для числа Маха, статических давления и температуры, массовой концентрации H₂O. Сравнение этих профилей показало, что с течением времени значения перестают изменяться, т. е. горение стабилизируется.

2. РЕЗУЛЬТАТЫ ТЕСТОВЫХ РАСЧЕТОВ

Результаты расчета сравнивались с экспериментальными данными [33]. Для смещения сравнение проводилось по профилям числа Маха, давления Пито, полной температуры и массовой доли водорода. Для горения сравнение проводилось по профилям числа Маха, давления Пито, полной температуры и массовой концентрации компонентов смеси в нескольких сечениях поперек потока.

2.1. Исследование сходимости по сетке

На первом этапе для условий варианта расчета 1 без учета химических реакций исследовалось влияние сетки на результаты расчета. В табл. 5 представлены полученные на различных сетках максимальные значения числа Маха, статических давления и температуры на оси струи, которые показывают, что при адаптации сетки максимальные значения основных параметров изменяются незначительно. Таким образом, можно утверждать, что на сетке 3 получено сеточно-независимое решение.

 ${\rm T}\, a\, б\, \pi\, u\, {\tt l}\, a\,\, 5$ Сравнение результатов расчета на разных сетках

Сетка	$p_{\rm max}$, бар	$M_{\rm max}$	$T_{\rm max},{ m K}$
1	1.8932	1.8401	830.45
2	1.93408	1.8417	830.63
3	1.9341	1.842	832.45

Для дальнейших расчетов использовалась сетка 3.

2.2. Верификация расчетной методики по экспериментальным данным

Далее расчетный алгоритм был верифицирован по экспериментальным данным для случаев со смешением. На рис. 2 представлены экспериментальные и расчетные профили давления Пито, полной температуры и массовой доли водорода на срезе сопла и в нескольких сечениях поперек потока, которые показывают удовлетворительное согласие расчета с экспериментом.

Для случаев с горением сравнение расчетных и экспериментальных данных по давлению Пито, полной температуре и массовой концентрации компонентов смеси (H_2 , O_2 , H_2O) также показало их хорошее качественное согласование (рис. 3).

Количественные различия в профилях температуры свидетельствуют о том, что в расчетах горение начинается раньше, а температура в слое смешения окислителя и топлива выше, чем в эксперименте. Рис. 3,6 показывает, что расчетная концентрация водорода на оси превышает экспериментальные значения. Причиной различия может быть то, что расчеты выполнены в двумерном приближении с использованием осредненных по Рейнольдсу уравнений Навье — Стокса. Тем не менее можно говорить об удовлетворительном совпадении расчетных и экспериментальных данных.

Рис. 2. Расчетные (линии) и экспериментальные (точки) профили давления Пито (*a*), полной температуры (*б*) и массовой доли водорода (*в*) в сечениях поперек потока в процессе инертного смешения струй

3. РЕЗУЛЬТАТЫ ПАРАМЕТРИЧЕСКИХ РАСЧЕТОВ

В этом параграфе приведены результаты исследования влияния давления в затопленном пространстве на процессы смешения, воспламенения и стабилизации горения водородной струи. На рис. 4 представлены поля средних по времени чисел Маха, рассчитанных по вариантам 1–3 (см. табл. 2) в ближнем поле струи $(x/d_j < 20)$. При расчете по варианту 1 значения давления струи на срезе сопла и в затопленном пространстве близки, поэтому поле чисел Маха струи достаточно равномерное. Одна-

Рис. 3. Рассчитанные по варианту 1 (линии) и экспериментальные (точки) профили давления Пито (*a*), полной температуры (*б*) и массовых концентраций компонентов смеси (*в*) в сечениях поперек потока с учетом химических реакций

ко при снижении давления в затопленном пространстве степень нерасчетности струи повышается. Характерная для сверхзвуковой недорасширенной струи бочкообразная структура становится более развитой, что оказывает влияние на смешение топлива и окислителя. В случае 2 как во внутренней, так и во внешней струе появляются «бочки». В случае 3 с самым низким давлением видно образование прямого скачка (диска Маха), за которым формируется дозвуковая область. С увеличением степени нерасчетности ширина струи увеличивает-

Рис. 4. Средние значения числа Маха, рассчитанные по вариантам 1 (a), 2 (b) и 3 (e) (см. табл. 2)

ся, при этом самый быстрый ее рост наблюдается в расчете 3 в районе первой «бочки».

На рис. 5 и 6 представлены полученные в расчетах средние по времени (вверху) и мгновенные (снизу) поля статической температуры и массовой концентрации H₂O. В расчете по варианту 1 (см. табл. 2) при увеличении расстояния от среза сопла горячий слой расширяется равномерно и почти линейно. При снижении давления в затопленном пространстве (варианты 2, 3) слой горения смещается от оси, что связано с периодической структурой «бочек» и образованием локальных областей с низким числом Маха. В расчете 3 слой сильно расширяется, что связано с формированием прямого скачка и дозвуковой области за ним. Воспламенение во всех трех случаях происходит в сечении $x/d_i \sim 2$. На полях мгновенных параметров видны вихревые структуры, развивающиеся в слое горения, причем масштаб вихрей увеличивается с ростом степени нерасчетности.

На рис. 7 представлены профили средних параметров течения (числа Маха, плотности, статического давления и статической темпера-

Рис. 5. Поля средних (сверху) и мгновенных температур, рассчитанные по вариантам 1 (a), 2 (δ) и 3 (e) (см. табл. 2)

туры) на оси струи, полученные при расчете по вариантам 1–3 (см. табл. 2). Как показывают графики, с уменьшением давления в затопленном пространстве приходящие на ось скачки становятся более интенсивными. В случае варианта 2 на графике числа Маха (рис. 7,a) видна последовательность волн разрежения и сжатия, амплитуда которых затухает. При расче-

Рис. 7. Профили средних по времени параметров на оси, рассчитанные по вариантам 1–3 (см. табл. 2)

те по варианту 1 волновая структура менее интенсивная. В расчете по варианту 3 в области $x/d_j = 10 \div 20$ образуется прямой скачок, за которым формируется дозвуковая область с низкими значениями числа Маха. Давление и температура за прямым скачком резко возрастают, что способствует воспламенению.

На рис. 8 представлены профили массовой концентрации паров воды. Видно, что слой горения с максимальной концентрацией H_2O с уменьшением давления в затопленном пространстве смещается вверх от оси. В сечении $x/d_j = 17.8$ слой горения, рассчитанный по варианту 3, почти в три раза шире, чем в случае 1.

Для сравнения результатов разных вариантов расчета использован интегральный показатель — эффективность горения η_c по длине струи:

$$\eta_c(x) = 1 - \frac{\dot{m}_{H_2}(x)}{\dot{m}_{H_2}|_{inlet}},$$

где $\dot{m}_{\rm H_2}$ — суммарный по поперечному сечению массовый расход водорода. Рис. 9 показывает, что при $x/d_j < 40$ эффективность горения вдоль потока во всех исследованных случаях растет. Самая высокая эффективность горения получена в расчете по варианту 1. В случае расчетов 2 и 3 эффективность горения в ближнем поле струи ниже. Кроме того, в этих случаях зависимости демонстрируют существенную немонотонность, обусловленную воздействием волновой структуры недорасширенной струи. Снижение эффективности горения при повышении степени нерасчетности струи согласуется с данными работы [27],

Рис. 9. Эффективность горения, рассчитанная по вариантам 1–3 (см. табл. 2)

в которой этот эффект объясняется повышением плотности струи относительно затопленного пространства.

ЗАКЛЮЧЕНИЕ

Представлены результаты численного исследования воспламенения холодной сверхзвуковой ($M_{jet} = 1.46$) водородной струи, окруженной кольцевой сверхзвуковой ($M_{air} = 1.86$) струей горячего влажного воздуха, в условиях истечения в затопленное пространство. Моделирование проведено в условиях эксперимента [33] на основе осредненных по Рейнольдсу нестационарных уравнений Навье — Стокса, дополненных $k-\omega$ SST моделью турбулентности, детальным кинетическим механизмом горения водорода в воздухе [30]. Расчеты выполнены в программном комплексе ANSYS Fluent 2020 R1 в двумерной осесимметричной поста-

Рис. 8. Профили массовой концентрации паров воды в сечениях поперек потока, полученные по вариантам расчета 1–3 (см. табл. 2)

новке с использованием решателя, основанного на давлении.

Применение нестационарного подхода позволяет воспроизвести в расчете вихревые структуры, развивающиеся на границе слоя горения, которые вносят существенный вклад в смешение водородной и воздушной струй и таким образом ускоряют химические реакции.

Проведена валидация полученных в расчете средних профилей основных газодинамических параметров и концентраций реагирующей и нереагирующей смесей с экспериментальными данными [33]. Получено удовлетворительное качественное и количественное согласование.

Численные исследования влияния давления в затопленном пространстве на структуру и параметры струи, на воспламенение и горение показали, что с уменьшением давления в затопленном пространстве повышается степень нерасчетности струи, что приводит к формированию бочкообразной структуры с областями низких значений числа Маха, способствующей смешению, самовоспламенению и интенсивному горению. При давлении в затопленном пространстве в выходном сечении 0.28 бар образуется прямой скачок, за которым реализуется общирная дозвуковая зона.

ЛИТЕРАТУРА

- Гельфанд Б. Е., Попов О. Е., Чайванов
 Б. В. Водород: параметры горения и взрыва. М.: Физматлит, 2008.
- Yip H. L., Srna A., Yuen A. C. Y., Kook S., Taylor R. A., Yeoh G. H., Medwell P. R., Chan Q. N. A Review of hydrogen direct injection for internal combustion engines: Towards carbon-free combustion // Appl. Sci. — 2019. — V. 9, N 22. — 4842. — DOI: 10.3390/app9224842.
- Баев В. К., Головичев В. И., Третьяков П. К., Гаранин А. Ф., Константиновский В. А., Ясаков В. А. Горение в сверхзвуковом потоке. — Новосибирск: Наука, 1984.
- Пирумов У. Г., Шустов С. А., Гидаспов В. Ю., Иванов И. Э. Основы физической газодинамики сопел и струй ракетных двигателей малой тяги // Вест. Моск. авиационного ин-та. — 2009. — Т. 16, № 7. — С. 5.
- Williams F. A. Progress in knowledge of flamelet structure and extinction // Prog. Energy Combust. Sci. — 2000. — V. 26, N 4-6. — P. 657– 682. — DOI: 10.1016/S0360-1285(00)00012-5.
- Sánchez A. L., Williams F. A. Recent advances in understanding of flammability characteristics of hydrogen // Prog. Energy Combust.

Sci. -2014. - V. 41. - P. 1–55. - DOI: 10.1016/j.pecs.2013.10.002.

- Полежаев Ю. В., Мостинский И. Л., Стоник О. Г. Физические основы турбулентного горения газов // Теплофизика высоких температур. — 2010. — Т. 48, № 6. — С. 981–990.
- 8. Heiser W., Pratt D., Daley D., Mehta U. Hypersonic Airbreathing Propulsion. — AIAA. Education Ser., 1994. — DOI: 10.2514/4.470356.
- Seiner J. M., Dash S. M., Kenzakowski D. C. Historical survey on enhanced mixing in scramjet engines // J. Propul. Power. — 2001. — V. 17, N 6. — P. 1273–1286. — DOI: 10.2514/2.5876.
- Tomioka S., Kobayashi K., Kudo K., Murakami A., Mitani T. Effects of injection configuration on performance of a stage supersonic combustor // J. Propul. Power. 2003. V. 19, N 5. 2003. P. 876–884. DOI: 10.2514/2.6178.
- Tomioka S., Murakami A., Kudo K., Mitani T. Combustion tests of a staged supersonic combustor with a strut // J. Propul. Power. 2001. V. 17, N 2. P. 293–300. DOI: 10.2514/2.5741.
- Кагенов А. М., Еремин И. В., Глазунов А. А., Тырышкин И. М. Применение пакета OpenFOAM для расчета течений газа в соплах и струях // Изв. вузов. Физика. — 2013. — Т. 56, № 9/3. — С. 66–68.
- Анискин В. М., Коротаева Т. А., Ободовская Е. А., Турчинович А. О. Численное моделирование недорасширенных осесимметричных микроструй, истекающих в затопленное пространство // Докл. АН ВШ РФ. — 2018. — № 1 (38). — С. 22–35.
- Киселев С. П., Киселев В. П., Зайковский В. Н. Исследование сверхзвуковых недорасширенных струй, истекающих в затопленное щелевое пространство // ПМТФ. — 2020. — Т. 61, № 2. — С. 81–91.
- 15. Волков К. Н. Моделирование крупных вихрей в турбулентной струе, истекающей в затопленное пространство или спутный поток // ПМТФ. — 2011. — Т. 52, № 1. — С. 60–70.
- 16. Авдуевский В. С., Иванов А. В., Карпман И. М., Трасковский В. Д., Юделович М. Я. Влияние вязкости на течение в начальном участке сильно недорасширенной струи // Докл. АН СССР. — 1971. — Т. 197, № 1. — С. 46–49.
- Воронцов С. С., Забайкин В. А., Смоголев А. А. Сравнительные исследования факела водорода в спутном сверхзвуковом потоке воздуха при регистрации излучения в различных спектральных диапазонах // Теплофизика высоких температур. — 2003. — Т. 41, № 2. — С. 310– 313.
- 18. Забайкин В. А., Смоголев А. А. Особенности взаимного влияния струй водорода при ор-

ганизации горения в сверхзвуковом высокотемпературном потоке // Хим. физика. — 2007. — Т. 26, \mathbb{N} 6. — С. 68–72.

- 19. Сафронов А. В., Хотулев В. А. Результаты экспериментальных исследований сверхзвуковых холодных и горячих струйных течений, истекающих в затопленное пространство // Космонавтика и ракетостроение. — 2009. — № 3. — С. 15–22.
- Забайкин В. А. Горение водорода в условиях высокотемпературного сверхзвукового потока // Теплофизика высоких температур. 2017. Т. 55, № 4. С. 582–588.
- Dharavath M., Manna P., Chakraborty D. Thermochemical exploration of hydrogen combustion in generic scramjet combustor // Aerospace Sci. Technol. — 2013. — V. 24, N 1. — P. 264– 274. — DOI: 10.1016/j.ast.2011.11.014.
- Waidmann W., Alff F., Böhm M., Brummund U., Clauss W., Oschwald M. Supersonic combustion of hydrogen/air in a scramjet combustion chamber // Space Technol. — 1995. — V. 15, N 6. — P. 421–429.
- 23. Метелев Д. А., Тохтуев А. Н. Исследование влияния числа Маха и температуры вязкой сверхзвуковой струи на срезе сопла летательного аппарата на структуру течения в спутном сверхзвуковом потоке // Молодой ученый. 2018. № 21 (207). С. 1–6.
- 24. Мышенков В. И. Расчет течения вязкой ламинарной сверхзвуковой струи в спутном потоке // Вычисл. математика и матем. физика. — 1979. — № 2. — С. 474–485.
- 25. Ковалев Б. Д., Мышенков В. И. Расчет вязкой сверхзвуковой струи, истекающей в затопленное пространство // Учен. зап. ЦАГИ. 1978. Т. 9, № 2. С. 9–18.
- 26. Кудимов Н. Ф., Сафронов А. В. Результаты численного исследования турбулентного горения в струйных течениях // Матем. моделирование. — 2015. — Т. 27, № 10. — С. 117–124.

- Жапбасбаев У. К., Макашев Е. П. Газодинамические структуры при сверхзвуковом горении водорода в системе плоских струй в сверхзвуковом потоке // ПМТФ. — 2001. — Т. 42, № 1. — С. 25–32.
- 28. Ванькова О. С., Федорова Н. Н. Моделирование воспламенения и горения спутной водородной струи в сверхзвуковом потоке воздуха // Физика горения и взрыва. — 2021. — Т. 57, № 4. — С. 18–27. — DOI: 10.15372/FGV20210402.
- Burrows M. C., Kurkov A. P. Analytical and experimental study of supersonic combustion of hydrogen in a vitiated airstream. — NASA TM X-2828. — 1973.
- Maas U., Warnatz J. Ignition processes in hydrogen-oxygen mixtures // Combust. Flame. — 1988. — V. 74, N 1. — P. 53–69. — DOI: 10.1016/0010-2180(88)90086-7.
- 31. Vankova O. S. Comparison of turbulence/chemistry interaction models in the problem of ignition a parallel hydrogen jet in a supersonic air flow // AIP Conf. Proc. — 2021. — V. 2351. — 040052. — DOI: 10.1063/5.0053925.
- 32. Ванькова О. С., Федорова Н. Н. Воспламенение холодной водородной струи в спутной коаксиальной струе горячего влажного воздуха при истечении в затопленное пространство // Теплофизика и аэромеханика. — 2021. — Т. 28, № 6. — С. 935–950. — DOI: 10.1134/S0869864321060135.
- Cohen L. S., Guile R. N. Investigation of the mixing and combustion of turbulent compressible free jets. — NASA CR-1473. — 1969.
- 34. **ANSYS** CFD Academic Research, Custom number 610336.
- 35. Wilcox D. C. Turbulence Modeling for CFD. 3rd ed. — DCW Industries, Inc., 2006.
- Menter F. R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J. — 1994. — V. 32, N 8. — P. 1598– 1605. — DOI: 10.2514/3.12149.

Поступила в редакцию 29.12.2021. Принята к публикации 12.01.2022.