2009. Том 50, № 3

Май – июнь

C. 591 – 594

КРАТКИЕ СООБЩЕНИЯ

УДК 661.715.4′115.469.3:541.6

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА (5-МЕТИЛЦИКЛОПЕНТАДИЕНИЛ)-(1,5-ЦИКЛООКТАДИЕН) ИРИДИЯ(I)

© 2009 К.В. Жерикова*, Н.Б. Морозова, И.А. Байдина

Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

Статья поступила 5 июня 2008 г.

Методом РСА определена структура Ср'Іг(соd) при температуре 150(2) К. Кристаллографические данные для $C_{14}H_{19}Ir$: a = 10,8272(5), b = 9,7746(4), c = 10,9180(5) Å, $\beta = 97,3310(10)^{\circ}$, моноклинная сингония, пр. гр. $P2_1/n$, V = 1146,02(9) Å³, Z = 4, $d_{выч} = 2,199$ г/см³, R = 0,0246. Структура молекулярная, построена из нейтральных молекул. Атом металла координирует атомы углерода двух циклических лигандов — 5-метилциклопентадиенил-иона (Ср') и 1,5-циклооктадиена (соd). Пять расстояний Ir— $C_{Cp'}$ лежат в интервале 2,21—2,28 Å; четыре расстояния Ir— C_{cod} отличаются незначительно, их среднее значение 2,114(13) Å. Плоскости фрагментов лигандов $C_{11}C_{12}C_{13}C_{14}C_{15}$ и $C_1C_2C_5C_6$ практически параллельны, угол между нормалями 1,9°. В кристалле молекулы связаны только ван-дер-ваальсовыми взаимодействиями, восемь кратчайших расстояний Ir…Ir в структуре лежат в интервале 5,608—7,257 Å.

Ключевые слова: иридий(I), 1,5-циклооктадиен, 5-метилциклопентадиен, синтез, рентгеноструктурный анализ.

Интерес к летучим комплексам иридия обусловлен возможностью их использования в качестве исходных соединений для получения металлических пленок и покрытий методом химического осаждения из газовой фазы (Chemical Vapor Deposition, CVD). Благодаря высокой температуре плавления защитные покрытия на основе иридия широко используются в камерах сгорания ракетных двигателей [1], в связи с низкой реакционной способностью иридий находит применение в коррозионно-стойких электродах и электрических контактах [2]. Для успешной реализации CVD метода необходимы исходные соединения, обладающие определенным набором свойств (летучесть, стабильность при температуре осаждения и т.д.). К настоящему моменту успешно реализуются процессы CVD с использованием летучих β-дикетонатных производных иридия(III), термические свойства которых были исследованы нами ранее [3—6]. Современные технологии ориентированы на новые соединения, обладающие низкой температурой плавления (или жидкости) и высоким давлением пара. Представителем такого рода соединений является комплекс (5-метилциклопентадиенил)-(1,5-циклооктадиен) иридия(I), Ср'Ir(cod), получение и исследование которого описаны в данной работе.

Экспериментальная часть. Синтез Cp'Ir(cod) осуществляли с использованием гексахлороиридиевой кислоты по методике [7] в инертной атмосфере с использованием стандартной технологии Шленка по схеме:

$$H_2IrCl_6 \xrightarrow{cod} [IrCl(cod)]_2 \xrightarrow{NaCp'} Cp'Ir(cod).$$

^{*} E-mail: ksenia@che.nsk.su

Таблица 1

Брутто-формула	$C_{14}H_{19}Ir$					
Молекулярная масса	379,49					
Температура, К	150(2)					
Сингония	Моноклинная					
<i>a</i> , <i>b</i> , <i>c</i> , Å	10,8272(5), 9,7746(4), 10,9180(5)					
β, град.	97,3310(10)					
V, Å ³	1146,02(9)					
Пространственная группа	$P2_1/n$					
Ζ	4					
V/Z, Å ³	286,5					
$d_{\rm выч}$, г/см 3	2,199					
Область θ, град.	2,49—27,48					
Размер кристалла, мм	$0,40 \times 0,12 \times 0,10$					
Число экспериментальных отражений	7372					
Число независимых отражений	2615					
Число отражений с $I > 2\sigma(I)$	2361					
R для отражений с $I > 2\sigma(I)$	0,0246					
<i>R</i> для всех отражений	0,0277					

Кристаллографические характеристики и параметры дифракционного эксперимента

Продукт синтеза очищали перекристаллизацией из гексана с последующей вакуумной сублимацией при p = 0,01 Торр и t = 50 °C. Выход после очистки 85 %. Соединение представляет собой кристаллическое вещество белого цвета, нерастворимое в воде и хорошо растворимое в обычных органических растворителях, $t_{пл}$ 38—40 °C. Найдено, %: С 44,55, Н 5,04. Для С₁₄Н₁₉Ir вычислено, %: С 44,31, Н 5,05.

ПМР спектр соединения снимали на спектрометре Bruker MSL300 (рабочая частота 300 МГц) в дейтерохлороформе (7,24 м. д.). Спектр ПМР (б, м. д.): 3,56 (с, 4H, =CH, cod), 2,05 (м, 4H, экзо-CH₂, cod), 1,80 (м, 4H, эндо-CH₂, cod), 5,18 (м, 2H, H1, H4, Cp'), 4,97 (м, 2H, H2, H3, Cp'), 1,90 (с, 3H, -CH₃, Cp'). Полученные результаты согласуются с литературными [7] и свидетельствуют о чистоте полученного соединения.

Монокристаллы, пригодные для PCA, были выращены методом зонной сублимации. Рентгеноструктурное исследование проведено на автоматическом дифрактометре Bruker-Nonius X8 Арех [8], оснащенном двухкоординатным CCD-детектором (Мо K_{α} -излучение, графитовый монохроматор) при температуре 150 К. Кристаллографические данные и параметры эксперимента приведены в табл. 1. Структура решена прямым методом, атомы водорода заданы геометрически, все расчеты проведены по комплексу программ SHELX-97 [8]. СІF-файл, содержащий полную информацию по исследованной структуре, был депонирован в CCDC под номером 689577 на сайте www.ccdc.cam.ac.uk/data_reguest/cif. Основные межатомные расстояния и валентные углы представлены в табл. 2.

Рентгенографическое исследование соединения проведено на дифрактометре ДРОН-3М (Си K_{α} -излучение, комнатная температура). Дифрактограмма проиндицирована по данным монокристального исследования.

Результаты и их обсуждение. Соединение кристаллизуется в виде бесцветных вытянутых призм. Структура молекулярная, построена из нейтральных молекул, строение которых показано на рис. 1, *a*, *б*. Молекула комплекса не имеет элементов симметрии. Атом металла координирует атомы углерода двух циклических лигандов — 5-метилциклопентадиенил-иона (Cp') и 1,5-циклооктадиена (cod). Пять расстояний Ir—C_{Cb'} лежат в интервале 2,207—2,275 Å (ср.

Таблица 2

Связь	d		Свя	ІЗЬ	d	Связь		d	Связь	d
Ir(1) - C(1) $Ir(1) - C(2)$ $Ir(1) - C(5)$ $Ir(1) - C(6)$ $Ir(1) - C(11)$ $Ir(1) - C(12)$	2,106(2,105(2,133(2,112(2,271(2,207((5) (5) (5) (5) (5) (5) (6) 	Ir(1) - Ir(1) - Ir(1) - C(1) - C(2) - C(3)	-C(13) -C(14) -C(15) -C(2) -C(2) -C(3)	2,253(6) 2,259(5) 2,275(6) 1,430(8) 1,524(8) 1,526(8)	C(4)—C C(5)—C C(6)—C C(7)—C C(8)—C	2(5) 2(6) 2(7) 2(8) 2(1)	1,533(8) 1,435(8) 1,502(8) 1,536(8) 1,536(8)	$\begin{array}{c} C(11) - C(12) \\ C(12) - C(13) \\ C(13) - C(14) \\ C(14) - C(15) \\ C(15) - C(11) \\ C(15) - C(16) \end{array}$	1,447(9) 1,419(10) 1,423(8) 1,426(8) 1,414(8) 1,508(9)
и(1) С(12) Угол	Угол о		ω	ω Угол			υ	Угол		ω
$\begin{array}{c cccc} C(2) & -C(1) & -C(8) & 12 \\ C(1) & -C(2) & -C(3) & 12 \\ C(2) & -C(3) & -C(4) & 11 \\ C(3) & -C(4) & -C(5) & 11 \end{array}$		1,4(5) 2,7(5) 1,7(4) 2,4(4)	C(4)—C(5)—C(6) C(5)—C(6)—C(7) C(6)—C(7)—C(8) C(7)—C(8)—C(1)		6) 122 7) 123 8) 112 1) 111) 122,2(5)) 123,1(5)) 112,4(5)) 111,0(5)		-C(11)—C(12) -C(12)—C(13) -C(13)—C(14) -C(14)—C(15) -C(15)—C(14)	107,9(5) 107,5(5) 108,0(5) 108,4(5) 107,9(6)	

Основные межатомные расстояния d (Å) *и валентные углы* ω (град.) *в структуре* Cp'Ir(cod)

2,253(27) Å); расстояние от атома иридия до плоскости $C_{11}C_{12}C_{13}C_{14}C_{15}$ составляет 1,90 Å; связи С—С в кольце имеют среднее значение 1,426(13) Å. Четыре расстояния Ir— C_{cod} отличаются незначительно, максимум на 0,03 Å, их среднее значение 2,114(13) Å; расстояние от атома иридия до плоскости $C_1C_2C_5C_6$ составляет 1,45 Å; сам лиганд циклооктадиена имеет конформацию *ванны*, в которой средние значения одинарных связей С—С составляют 1,526(13) Å, двойных — 1,432(4) Å; углы перегиба относительно плоскости $C_1C_2C_5C_6$ составляют около 152°. Плоскости фрагментов лигандов $C_{11}C_{12}C_{13}C_{14}C_{15}$ и $C_1C_2C_5C_6$ практически параллельны, угол между нормалями 1,9°.

На рис. 2 показан общий вид кристаллической структуры в направлении оси Y(a) и на плоскость ($\overline{1}$ 01) (*b*). В кристалле молекулы связаны только ван-дер-ваальсовыми взаимодейст-

Рис. 1 (слева). Строение молекулы Ср'Ir(cod)

Рис. 2 (справа). Проекция кристаллической структуры Ср'Іг(соd) на плоскость (101)

Таблица З

Соединение	Пр. гр.	V/Z, Å ³	$\langle Ir - C_{cod} \rangle$, Å	$\langle Ir - C_{Cp} \rangle$, Å	Ir…Ir, Å	$d_{\rm выч}$, г/см ³	<i>t</i> _{пл} , °С
CpIr(cod)	$P2_{1}/c$	276,6	_		_	2,19	125,5—128,5 [11, 12]
Cp'Ir(cod)	$P2_1/n$	286,5	2,114	2,253	5,608—8,075	2,199	38—40
Cp ^{Pr} Ir(cod)	$P2_{1}/n$	335,7	2,118	2,257	5,707—8,024	1,901	52

Некоторые характеристики для CpIr(cod) [9], Cp'Ir(cod) *u* Cp^{Pr}Ir(cod) [10]

виями; минимальная оценка расстояний Н...Н 2,32 Å; восемь кратчайших расстояний Ir...Ir в структуре лежат в интервале 5,608—7,257 Å.

В литературе приведены данные для двух соединений, совмещающих координацию металла циклопентадиенильным лигандом и циклооктадиеном: (циклопентадиенил)-(1,5-циклооктадиен) иридия(I), CpIr(cod) и (2-пропенил)-(1,5-циклооктадиен) иридия(I) Cp^{Pr}Ir(cod), для первого из которых представлено рентгенографическое исследование [9], для второго описана кристаллическая структура [10]. Некоторые данные для сравнения приведены в табл. 3. Параметры для всех трех комплексов очень близки, т.е. увеличение заместителя практически не приводит к изменению геометрических характеристик, однако существенным образом меняет физико-химические свойства (к примеру, температуру плавления).

Авторы выражают благодарность А.В. Алексееву за проведение рентгенографического исследования, Н.В. Куратьевой за проведение рентгеноструктурного исследования, С.В. Ткачеву за снятие ЯМР спектров.

СПИСОК ЛИТЕРАТУРЫ

- 1. Handley J.R. // Platinum Metals Rev. 1986. 30, N 1. P. 12.
- Leskela M., Aaltonen T., Hamalainen J. et al. In: Proceedings of the Fifteenth International European Conference on Chemical Vapor Deposition (EUROCVD-15). – Bochum, Germany, 2005/Eds. A. Devi, R. Fischer, H. Parala, M.D. Allendorf, M.L. Hitchman. – USA, NJ: Electrochemical Society, 2005. – 2005-09. – P. 545 – 554.
- 3. Igumenov I.K. // J. de Physique IV. 1995. C5. P. 489.
- 4. Morozova N.B., Igumenov I.K., Isakova V.G., Shipachev V.A. // Patent Evroasian. 1999. P. 000402.
- 5. Morozova N.B., Semyannikov P.P., Sysoev S.V. et al. // J. Therm. Anal. Cal. 2000. 60. P. 489.
- 6. Исакова В.Г., Семянников П.П., Гранкин В.М., Игуменов И.К. // Координац. химия. 1988. 14. С. 57.
- 7. Sowa J.R., Angelici R.J. // J. Amer. Chem. Soc. 1991. 113. P. 2537.
- Bruker AXS Inc. (2004). APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). – Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
- 9. Pannetier G., Tabrizi D., Bonnaire R. // J. Less Common Metals. 1971. 24. P. 470.
- 10. Muller J., Stock R., Pickardt J. // Z. Naturforsch., B: Chem. Sci. 1981. 36. S. 1219.
- 11. Hoke J.B., Stern E.W., Murray H.H. // J. Mater. Chem. 1991. 1, N 4. P. 551.
- 12. Robinson S.D., Shaw B.L. // J. Chem. Soc. 1965. 4. P. 4997.