УДК 630*231

ПОЭТАПНАЯ ПАСПОРТИЗАЦИЯ ДЕРЕВЬЕВ НА ОБЪЕКТАХ ГЕНЕТИКО-СЕЛЕКЦИОННОГО КОМПЛЕКСА СОСНЫ ОБЫКНОВЕННОЙ

© 2014 г. В. В. Тараканов¹, Л. И. Кальченко², К. Г. Зацепина^{1,2}, А. К. Экарт¹, Д. Н. Шуваев²

¹ Западно-Сибирский филиал Института леса им. В. Н. Сукачева СО РАН 630082, Новосибирск, а / я 45
² Филиал Российского центра защиты леса Центр защиты леса Алтайского края 656056, Барнаул, ул. Пролетарская, 61

E-mail: tarh012@mail.ru, altay-lss@yandex.ru, kseniya-zacepina@yandex.ru, ekart@pochta.ru, denis.shuvaev@gmail.com Поступила в редакцию 31.07.2014 г.

На клоновых плантациях сосны *Pinus sylvestris* L. в Алтайском крае, включающих около 1.5 тыс. деревьев 118 клонов, осуществлена поэтапная паспортизация деревьев. Паспортизация осуществлялась в 3 этапа: 1) лесоводственный (предварительный), 2) фенетический (основной), 3) молекулярно-генетический (уточняющий). Точность фенетической паспортизации составила 97.1 %. Заключительный этап паспортизации осуществлялся с учетом выявленных «фенетических кластеров» внутри клонов. Внутри кластеров сопоставлялись одно- и многораметные (смешанные) образцы, которые при отсутствии ошибок в маркировке деревьев должны показывать идентичные результаты. Способ поэтапной паспортизации позволяет сократить затраты на применение дорогостоящих методов молекулярной генетики в несколько раз.

Ключевые слова: генетическая паспортизация, клоновые плантации, сосна обыкновенная, фены, аллозимный анализ.

ВВЕДЕНИЕ

Важнейшим этапом генетической паспортизации объектов лесного генетико-селекционного комплекса является проверка точности маркировки потомств плюс-деревьев на лесосеменных и архивно-маточных плантациях, а также в испытательных культурах. Без решения данной проблемы на этих объектах невозможно осуществлять ни фундаментальные, ни прикладные исследования. По имеющимся и пока немногочисленным данным даже в условиях научно-производственных объединений, в которых клоновые плантации плюс-деревьев создавались под строгим контролем генетиков и селекционеров, доля неверно маркированных привитых деревьев может быть существенной (Анрюшкявичене, 1983). В России, где программы по селекционному семеноводству осуществлялись при различном уровне научного сопровождения, доля неверно маркированных потомств на клоновых плантациях варьирует по объектам в пределах от 0–5 до 20–30 % (Кострикин и др., 1999; Тараканов, Демиденко, 1999; Чубугина и др., 2012; Кальченко, 2013). Известно, что при последней инвентаризации Единого генетико-селекционного комплекса (ЕГСК), осуществленной силами ФГУ «Рослесозащита», определенная часть плантационных объектов исключена из госреестра по причине отсутствия схем смешения клонов и семей (Отчет..., 2008), что свидетельствует о возможности еще более крупных ошибок.

Тем не менее даже на некачественно маркированных объектах паспортизация деревьев (хотя бы не всех, а только ценных для селекции) имеет смысл, если есть уверенность в том, что плантации созданы потомствами

плюс-деревьев и насаждения отличаются хорошей сохранностью. При этом затраты на это мероприятие должны быть минимизированы, поскольку велик объем предстоящих работ.

В паспортизации нуждаются в первую очередь плюс-деревья и их клоновые и семенные потомства, произрастающие на различных плантационных объектах – лесосеменных плантациях, архивах клонов, маточных плантациях, испытательных культурах. По опубликованным данным на 2008 г., в России было отобрано 36.6 тыс. плюс-деревьев, от которых заложены 7.4 тыс. га лесосеменных и архивно-маточных плантаций, а также 906 га испытательных культур (Отчет..., 2008) (табл. 1). С учетом густоты посадки только на этих объектах предстоит паспортизировать около 4.2 млн деревьев.

Для паспортизации деревьев на генетикоселекционных объектах наиболее точными обоснованно считаются аллозимные и ДНКмаркеры (Политов, 2008). Однако если стоимость паспортизации одного дерева этими современными методами принять за 1 доллар, то на паспортизацию указанных объектов потребуется около 4.2 млн долларов или 140 млн руб. Значительно дешевле (по нашим расчетам, примерно на 2 порядка) применение для паспортизации комплекса фенетических маркеров (Тимофеев-Ресовский и др., 1973; Милютин, 1985; Видякин, 2004), издавна используемых селекционерами для этих целей. Пока что развитие этого подхода сдерживается относительно небольшим числом фенов, найденных у древесных растений, и отсутствием знаний об их точной генетической природе. Есть ли возможность удешевить процесс паспортизации, не снизив ее эффективности?

С нашей точки зрения, этого можно добиться, используя «принцип этапности», предложенный Н. В. Глотовым (1983) для оценки генетической гетерогенности популяций в масштабе ареала вида. Он заключается в последовательном применении различных методов: начиная от относительно грубых, но технически простых и дешевых на первых наиболее объемных этапах анализа, заканчивая наиболее точными и дорогостоящими на заключительных «уточняющих» этапах.

Цель статьи — обобщить результаты поэтапного применения различных методов при паспортизации деревьев на клоновых плантациях сосны обыкновенной в Алтайском крае (Кальченко, Тараканов, 2010; Зацепина и др., 2012; Кальченко, 2013).

МАТЕРИАЛЫ И МЕТОДЫ

Исследование провели в Озерском лесничестве Алтайского края на 11.5 га плодоносящих клоновых плантаций, на которых были высажены свыше 2 тыс. привитых деревьев 118 клонов плюс-деревьев приобской сосны.

Для паспортизации деревьев методами фенетики использовали главным образом альтернативные фены окраски шишек (выделяя цвета «коричневый» и «не коричневый»), семян (первого окрасочного слоя — «серый» и «коричневый», второго окрасочного слоя — «равномерный» и «не равномерный», третьего слоя — «есть» и «нет») и микростробилов («красный» и «желтый»). Кроме этого, на зрелых шишках выделяли фены типа развития апофиза («передний» и «задний»), а также такие качественные признаки, как резкие уклонения в угле крепления скелетных вет-

Таблица 1. Приблизительные объемы паспортизации деревьев на некоторых объектах ЕГСК в России. По материалам (Отчет..., 2008)

Объект	Площадь, га	Густота, шт./га	Деревья, шт.
Плюс-деревья (ПД)	_	_	36 631
Лесосеменные плантации (ЛСП)	6658	200	1 331 600
Архивы клонов (АК)	570	200	114 000
Маточные плантации (МП)	221	200	44 200
Испытательные культуры (ИК)	906	3000	2 718 000
Всего	8355	_	4 244 431

Таблица 2. Ферментные системы, использованные для их электрофоретического разделения, и используемые локусы

Фермент	Номер по К. Ф.	Локусы и число выявленных аллелей
Малатдегидрогеназа(МDH)	1.1.1.37.	Mdh-2 (2)
		Mdh-3 (2)
		Mdh-4 (2)
Глутаматоксалоацетаттрансаминаза(GOT)	2.6.1.1.	Got-2 (5)
		Got-3 (3)
Шикиматдегидрогеназа(SKDH)	1.1.1.25.	Skdh-1 (5)
		Skdh-2 (2)
6-Фосфоглюконатдегидрогеназа (6-PGD)	1.1.1.44.	6-Pgd-2 (2)
Формиатдегидрогеназа(FDH)	1.2.1.2.	Fdh (4)
Фосфоглюкомутаза(PGM)	2.7.5.1.	Pgm-1 (2)
Глутаматдегидрогеназа(GDH)	1.4.2.3.	Gdh (2)
Флюоресцентная эстераза (FL-EST)	3.1.1.2.	Fe-2 (5)
Алкогольдегидрогеназа (ADH)	1.1.1.1.	Adh-1 (2)
		Adh-2 (4)
Лейцинаминопептидаза (LAP)	3.4.11.1	Lap-2 (5)

вей к стволу («пирамидальный» и «горизонтальный») и «гроздешишечность». Наряду с перечисленными учитывали индексы формы генеративных органов. При идентификации и анализе фенов использовали методику А. И. Видякина (2004).

Для паспортизации деревьев методами генетики использовали аллозимный анализ по 15 полиморфным локусам (Зацепина и др., 2012) (табл. 2).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В соответствии с принципом поэтапного анализа Н. В. Глотова (1983), для наших целей при паспортизации деревьев выделяли 3 основных этапа: 1) лесоводственный, 2) фенетический, 3) генетический.

На первом этапе выявили и исключили из дальнейших исследований непривитые, больные и сильно отстающие в росте неперспективные деревья. Это привело к сокращению выборки примерно на 15 %.

На втором методами фенетики классифицировали все привитые деревья на 3 группы: а) несеменосящие, которые не могут быть паспортизированы в связи с отсутствием у них генеративных структур; б) верно маркированные; в) ошибочно маркированные (отличающиеся хотя бы по одному фену от типичных представителей клона). Отметим, что клоновые плантации сосны очень удобны для паспортизации методами фенетики. Это обусловлено тем, что привитые деревья в пределах клонов имеют одинаковый генотип, а также выявлением у сосны большого числа фенов и «генетически маркерных» индексов генеративных органов (Видякин, 2004).

Оказалось, что методами фенетики у сосны на клоновых плантациях можно паспортизировать 92,1 % привоев, за исключением неплодоносящих (табл. 3).

При этом возникает вопрос, насколько велика вероятность ошибочной идентификации клоновой принадлежности рамет при анализе фенов. По определению, любой фен

Таблица 3. Соотношение различных категорий привитых деревьев, идентифицируемых методами фенетики на клоновых плантациях сосны в Алтайском крае

Идентификационная категория привитых деревьев	АК-96		ЛСП-88		ЛСП-80		Итого	
	ШТ.	%	ШТ.	%	ШТ.	%	шт.	%
Неидентифицированные	45	5.9	61	12.2	7	3.6	113	7.8
Ошибочно маркированные	15	2.0	18	3.6	25	12.6	58	4.0
Верно маркированные	695	92.1	422	84.2	166	83.8	1283	88.2
Итого	755	100.0	501	100.0	198	100.0	1454	100.0

Примечание. АК-96, ЛСП-88 и ЛСП-80 – архив клонов, лесосеменные плантации 1996, 1988 и 1980 гг.

идентифицируется различными исследователями со 100%-й вероятностью (Видякин, 2004). Поэтому отбраковка прививок, отличающихся от типичного «морфотипа» клона, должна осуществляться практически безошибочно. Однако среди деревьев с одинаковым морфотипом (сочетанием различных фенов) может оказаться несколько различных генотипов. Очевидно, что ошибка идентификации зависит прежде всего от числа пар анализируемых альтернативных фенов, которое варьировало в наших исследованиях от 6 до 10. Суммарное значение статистики χ^2 свидетельствует об отсутствии существенных отличий между теоретически наблюдаемыми и фактическими частотами двойных комбинаций фенов. Например, при анализе фенов окраски шишек, семян и микростробилов у 34 клонов на ЛСП-88 соответствующее значение статистики $\chi^2_{_{9\kappa cn}} = 13.0$ (v = 10; P > 0.10). Это говорит об отсутствии существенного сцепления генов, отвечающих за формирование данных качественных признаков.

Теоретически, исходя из независимого наследования фенов, при шести парах альтернативных фенов их независимое сочетание дает $2^6 = 64$ различных «морфотипа», при 10 парах $-2^{10} = 1024$ морфотипа. Это приблизительно соответствует вероятности ошибочной идентификации в пределах 0.016-0.001. Экспериментальные оценки ошибочной идентификации клоновой принадлежности деревьев при фенетическом подходе получили на третьем (заключительном) этапе генетической паспортизации.

Для генетической паспортизации клонов использовано 15 полиморфных аллозимных локусов с числом аллелей от 2 до 5 (см. табл. 2) (Зацепина и др., 2012). Теоретически, в предположении отсутствия сцепления между локусами, это может давать около 7 млн диплоидных генотипов, что делает вероятность ошибки генотипирования мизерной. Выборочная проверка результатов фенетической паспортизации осуществлялась на 255 привитых деревьях 46 клонов ЛСП-88. Оказалось, что доля деревьев, правильно отнесенных к «верно маркированным» и «неверно маркированным» на этапе фенети-

ческой паспортизации, составила 97.1 %. Это очень важный результат, свидетельствующий о достаточно высокой точности фенетической паспортизации.

Кроме этого, в ходе специального эксперимента показано, что предварительная разбивка привитых деревьев на фенетические кластеры и использование способа сопоставления «чистых» (однораметных) и «смешанных» (многораметных) образцов внутри кластеров позволяет сократить затраты на аллозимный анализ в несколько раз (Зацепина и др., 2012).

ЗАКЛЮЧЕНИЕ

Таким образом, проведенные нами исследования свидетельствуют, во-первых, о целесообразности поэтапной паспортизации деревьев на генетико-селекционных объектах, что существенно снижает стоимость этого мероприятия. Во-вторых, в связи с достаточно высокой точностью фенетической паспортизации этот метод может быть рекомендован в качестве основного для обозначенной цели, по крайней мере на клоновых плантациях. В-третьих, применять дорогостоящие высокоинформативные методы молекулярной генетики исключительно ради паспортизации 7-10 % деревьев, не идентифицированных методами фенетики, не рационально. Их следует использовать прежде всего для решения тех задач, которые не могут быть решены с помощью других методов. В частности, к таким задачам относится выявление генов, отвечающих за селектируемые признаки, что позволит резко повысить скорость и эффективность селекции. При этом «попутно» будут уточнены и результаты паспортизации.

Работа выполнена при частичной финансовой поддержке интеграционного проекта СО РАН № 140.

СПИСОК ЛИТЕРАТУРЫ

Андрюшкявичене И. С. Первичная оценка клонов на лесосеменных плантациях сосны // Всес. совещ. по лесн. генет., селек-

- ции и семеноводству. Петрозаводск, 1983. С. 74–75.
- Видякин А. И. Методические рекомендации по выделению фенов лесных древесных растений (на примере сосны обыкновенной (*Pinus sylvestris* L.)). Воронеж: НИ-ИЛГиС, 2004. 17 с.
- Глотов Н. В. Оценка генетической гетерогенности природных популяций: количественные признаки // Экология. 1983. № 1. С. 3–10.
- Зацепина К. Г., Экарт А. К., Тараканов В. В. Генотипирование деревьев на клоновых плантациях лесообразующих видов хвойных в Западной Сибири // Хвойные бореальной зоны. 2012. Т. 30. № 1–2. С. 67–71.
- Кальченко Л. И. Анализ изменчивости клонов плюсовых деревьев и естественных насаждений сосны обыкновенной (*Pinus sylvestris* L.) в Алтайском крае с использованием методов фенетики: Автореф. дис. ... канд. с.-х. наук. Йошкар-Ола, 2013. 18 с.
- Кальченко Л. И., Тараканов В. В. Поэтапная паспортизация деревьев на клоновых плантациях сосны обыкновенной: использование методов фенетики // Хвойные бореальной зоны. 2010. Т. XXVII. № 1–2. С. 87–90.
- Кострикин В. А., Пугач Е. А., Бытченко Н. В., Пугач И. Е. Опыт идентификации сосны обыкновенной на архивно-маточной плантации Семилукского питомника // Генетико-селекционные основы улучшения ле-

- сов: Сб. науч. тр. Воронеж: НИИЛГиС, 1999. С. 205–216.
- Милютин Л. И. О выделении фенов различного масштаба в популяциях лиственниц // Фенетика популяций: мат-лы III Всесоюз. совещ., 7–8 февраля. М., 1985. С. 79–80.
- Отчет ФГУ «Рослесозащита» по итогам единовременной инвентаризации объектов Единого генетико-селекционного комплекса (ЕГСК) в Российской Федерации // Лесная Россия. 2008. № 9. С. 17–25.
- Политов Д. В. Применение молекулярных маркеров в лесном хозяйстве для идентификации, инвентаризации и оценки генетического разнообразия лесных ресурсов // Лесохоз. информ. 2008. № 3–4. С. 24–27.
- Тараканов В. В., Демиденко В. П. Надежность маркировки родословных на клоновых плантациях хвойных Западной Сибири // Генетико-селекционные основы улучшения лесов: Сб. науч. тр. Воронеж: НИИЛГиС, 1999. С. 216–223.
- Тимофеев-Ресовский А. В., Яблоков А. В., Глотов Н. В. Очерк учения о популяции. М.: Наука, 1973. 277 с.
- Чубугина И. В., Ибе А. А., Дейч К. О., Шилкина Е. А. Уточнение схем посадки архивов клонов хвойных видов Красноярского края и Республики Хакассия RAPDметодом анализа ДНК // Хвойные бореальной зоны. 2012. Т. ХХХ. № 1–2. С. 187–191.

Stage-by-Stage Certification of Trees in Plantations of Scots Pine Genetic Breeding Complex

V. V. Tarakanov¹, L. I. Kalchenko², K. G. Zatcsepina^{1, 2}, A. K. Ekart¹, D. N. Shuvaev²

¹ West-Siberian Branch of V. N. Sukachev Institute of Forest Russian Academy of Sciences, Siberian Branch Novosibirsk, Post Box 45, 630082 Russian Federation ² Branch of the Russian Centre for Forest Protection Centre for Forest Protection of Altai Territory Proletarskaya str., 61, Barnaul, 656056 Russian Federation E-mail: tarh012@mail.ru, altay-lss@yandex.ru, kseniya-zacepina@yandex.ru, ekart@pochta.ru, denis.shuvaev@gmail.com

In Altai territory in Scots pine (*Pinus sylvestris* L.) clonal plantations, that include nearly 1.5 thousand trees of 118 clones, the stage-by-stage certification of trees was carried out. Certification process included 3 stages: 1) forestry stage (preliminary), 2) phenetic stage (basic), 3) genetical stage (précising). Accuracy of phenetic certification was 97.1 %. The final stage of certification was carried out taking into account of revealed «phenetic clusters» within of clones. One-ramet and many-ramets («mixed») samples were compared within clusters and these must show identical results if all ramets are truly marked. The stage-by-stage certification method allows less expensive molecular genetics testing in some cases.

Keywords: genetic certification, clone plantations, Scots pine (Pinus sylvestris L.), phens, allozyme analysis, Altai.