УДК 533.6.011

Моделирование процесса конденсации при сферическом расширении водяного пара в вакуум^{*}

Н.Ю. Быков

Центр перспективных исследований, С.-Петербургский государственный политехнический университет

E-mail: nbykov2006@yandex.ru

Предложена математическая модель процесса конденсации водяного пара для метода прямого статистического моделирования Монте–Карло. Модель описывает цепочку реакций, ведущих к образованию и распаду кластеров воды с учетом сопровождающих процессов энергообмена. Выполнено численное исследование одномерного расширения паров воды в вакуум от испаряющейся сферической поверхности в диапазоне параметров, соответствующих переходным по числу Кнудсена режимам течения. Показано влияние процесса конденсации на газодинамическую картину течения, в том числе на параметры кнудсеновского слоя.

Ключевые слова: конденсация, водяной пар, прямое статистическое моделирование, сферически расширяющееся течение.

введение

Настоящая работа посвящена численному исследованию процесса конденсации водяного пара при расширении молекул воды в вакуум от испаряющейся сферической поверхности. Прикладной аспект задачи связан с проблемой расчета течений во внутренней атмосфере комет, возникающих из-за испарения льда кометных ядер под действием солнечного излучения [1]. Моделирование одномерного течения газа от сферического источника с процессами формирования и роста кластеров также представляет значительный научный интерес, т. к. позволяет детально изучить влияние процесса конденсации на газодинамическую картину течения, в том числе на параметры кнудсеновского слоя.

Методики расчета конденсации водяного пара при истечении из звуковых сопел в вакуум или газ низкого давления связаны в основном с применением методов моделирования в рамках уравнений сплошной среды и модификаций классической теории нуклеации (КТН) [2–4]. Такой подход реализован при численном исследовании расширения водяного пара в вакуум от испаряющейся сферической поверхности льда [4] для чисел Кнудсена Kn = $\lambda/r \approx 10^{-6}$ – 10^{-5}

^{*} Работа выполнена при финансовой поддержке РФФИ (грант № 07-01-00354-а).

 $(\lambda$ — характерная средняя длина свободного пробега, *r* — радиус источника). В настоящем исследовании рассмотрен диапазон чисел Кнудсена $10^{-5} < \text{Kn} < 0,1$. Применение традиционных схем расчета в данном случае ограничено известными проблемами моделирования разреженных и термически неравновесных областей течения. Наиболее адекватной техникой расчета околоконтинуальных и разреженных течений является метод прямого статистического моделирования (ПСМ) [5, 6], который и используется в данной работе.

Сферическое расширение в вакуум от испаряющейся поверхности для случая $Kn ≥ 10^{-5}$ моделировалось методом прямого статического моделирования в работе [7] для газа без внутренних степеней свободы и в работе [8] — для паров воды. Процесс конденсации при этом не рассматривался. Численное исследование методом ПСМ течений с конденсацией потребовало разработки соответствующих моделей и алгоритмов [9–13]. В работах [9–12] рассмотрен процесс формирования и роста нейтральных кластеров при высоких температурах в парах материалов, испаренных в ходе лазерной абляции мишеней. При этом предлагаемые в указанных работах модели конденсации отличаются полнотой описания процессов энергообмена в ходе реакций ассоциации частиц и распада кластеров и набором самих реакций, приводящих к образованию кластеров. Гибридная кинетическая модель процессов образования кластеров, базирующаяся на методе ПСМ и методах молекулярной динамики (МД), представлена в работе [13] для свободной струи аргона. Расчет одномерного нестационарного сферического расширения паров кремния, нагретых до высокой температуры, в условиях близких к реализуемым при лазерной абляции, выполнен в работе [14] с использованием предложенной в [11] модели конденсации.

В настоящей работе представлена модель конденсации водяного пара, также основанная на подходах работы [11]. Модель учитывает наличие вращательных и колебательных степеней свободы кластеров и описывает процессы энергообмена, сопровождающие образование и распад частиц. В отличие от работы [11], в которой рассматривалось высокотемпературное течение атомов и кластеров ниобия, представленная модификация модели позволяет учесть частичное возбуждение колебательных степеней свободы и может использоваться для расчета течений в любом температурном диапазоне. Разработка такого подхода стала возможной благодаря работам в области квантовой механики и появлением данных по характерным колебательным частотам атомарных и молекулярных кластеров, в том числе для воды [15, 16].

МОДЕЛЬ ФОРМИРОВАНИЯ КЛАСТЕРОВ ВОДЫ

Кластеры воды образуются в результате столкновений частиц. При этом учитываются следующие процессы:

упругое столкновение молекул	$M + M \longrightarrow M' + M',$	(1)
------------------------------	----------------------------------	-----

рекомбинация молекул	$M + M + M \xrightarrow{p_1} M'_2 + M',$
----------------------	--

ассоциация кластера и мономера	$M_i + M \xrightarrow{p_2} M'_k (k = i + i)$	1), (3)
--------------------------------	--	---------

ассоциация кластеров

испарение мономера из кластера $M_k \longrightarrow M'_{k-1} + M'.$ (5)

 $M_i + M_i \xrightarrow{p3} M'_k (k = i + j),$

(2)

(4)

Здесь M — мономер (молекула воды), M_k — кластер, состоящий из k мономеров, индекс ' относится к частицам после столкновения, p — вероятность процесса.

Предполагается, что формирование димера воды происходит в ходе процесса (2) [17]. В общем случае вероятности реакций (2), (3), (4) являются функциями

энергии относительного движения частиц, значений внутренней энергии, конфигурации кластеров и геометрии столкновения. Для паров воды в настоящей работе все вероятности принимались равными единице [18].

Кластер M_k характеризуется числом мономеров k (в рассматриваемом случае k — число молекул воды), массой m_k , радиусом r_k , поступательной скоростью \vec{v}_k , внутренней энергией $E_{\text{int, }k}$ и энергией связи $E_b(k)$. Радиус кластера определяется в соответствии с модифицированной моделью жидкой сферической капли [19]

$$r_k = r_w (k^{1/3} - 1) + r_1, \ r_w = \left(\frac{3m}{4\pi\rho}\right)^{1/3},\tag{6}$$

где *m* — масса мономера (молекулы) воды, r_1 — радиус мономера, ρ — плотность льда.

Внутренняя энергия кластера M_k представляется в виде

ставление колебательной энергии [5]

$$E_{\text{int},\,k} = E_{r,\,k} + E_{v,\,k}.$$
(7)

Здесь $E_{r,k} = \frac{\zeta_r}{2} k_B T$, $E_{v,k} = Z_v^e k_B T$ — энергии вращательных и колебательных степеней свободы соответственно (ζ_r , Z_v^e — числа вращательных и эффективных колебательных степеней свободы соответственно, k_B — постоянная Больцмана, T — температура). Для кластеров воды $\zeta_r = 3$. Для определения числа эффективных колебательных степеней свободы кластера используется следующее пред-

$$E_{\nu} = \sum_{i=1}^{Z_{\nu}} \left(\frac{k_B \theta_i}{\exp[\theta_i / T] - 1} \right)$$
(8)

где $\theta_i = hv_i / k_B$ — характеристическая температура колебательной моды *i* (*h* — постоянная Планка, v_i — частота колебаний моды *i*). Полное число колебательных степеней свободы:

$$Z_v = 3k_a - 6,\tag{9}$$

 k_a — число атомов (кислорода и водорода) в кластере воды. Частоты гармонических колебаний димера и тримера воды получены квантово-механическими методами в работе [16]. В случае кластеров больших размеров для внутримолекулярных и межмолекулярных мод использованы усредненные данные для тримера воды. Значения частот для кластеров воды обобщены в табл. 1.

Таблица 1

Частоты гармонических колебаний кластера воды

Размер кластера, k	Для k внутримолеку- лярных мод (угол	Для 2 <i>k</i> внутримолекулярных мод (длина связи H-O), см ⁻¹	Для (3k _a -6-3k) межмолеку- лярных мод, см ⁻¹
	Н-О-Н), см		
2	1765,2, 1783,8	4101,1, 4139,6, 4226,6, 4236,9	127,1, 135,8, 145,7, 164,2, 327,9, 579,6
3	1775,0, 1778,4, 1796,9	4039,9, 4069,2, 4072,9, 4216,7, 4220,6, 4221,5	133,8, 146,4, 149,1, 166,8, 182,4, 212,1, 2 97,5, 307,0, 386,7, 484,7, 594,0, 752,2
k	1783,41	4139,4	269,1

Энергия связи кластера воды M_k может быть представлена в виде [20]

$$E_b(k) = Ak + B,\tag{10}$$

где A = -11,388 ккал/моль и B = 17,327 ккал/моль.

Для описания поступательно-вращательно-колебательного энергообмена между реагирующими частицами использована модель Ларсена–Боргнакке [5].

Частота испарения мономера из кластера в ходе процесса (5) моделируется согласно теории Райса–Рамспергера–Касселя–Маркуса (РРКМ) [21]:

$$\nu = \nu_0 k_s \left[\frac{E_{\text{int}, k} - \Delta E_b}{E_{\text{int}, k}} \right]^{Z_\nu^e - 1},\tag{11}$$

$$\Delta E_b = E_b(k) - E_b(k-1), \tag{12}$$

где v_0 — характерная частота колебаний, k_s — число поверхностных мономеров. В расчетах принималось $k_s = k$, $v_0 = 10^{13} c^{-1}$ [11].

постановка задачи

Рассматривается задача об одномерном сферическом расширении паров воды от испаряющейся поверхности в вакуум в переходном и околоконтинуальном по числу Кнудсена режимах течения.

Расчетная область представляет собой сферический слой, ограниченный испаряющейся поверхностью сферического источника радиуса r и внешней границей L >> r. Температура источника T_w полагается постоянной. С поверхности испаряются только мономеры (молекулы) воды.

Для описания испарения используется закон Герца–Кнудсена, в соответствии с которым поток испаряющихся молекул равен

$$F^{+} = \frac{1}{4} n_{w} v_{T} \,. \tag{13}$$

Здесь n_w — концентрация насыщенного пара (соответствующая равновесному давлению, определенному по T_w), $v_T = (8k_B T_w / \pi m)^{1/2}$ — средняя тепловая скорость испаряющихся частиц. Равновесное давление пара $p_s(T)$ определяется как [22]

$$p_S(T) = a \exp(-b/T), \tag{14}$$

где $a = 3,56 \cdot 10^{12}$ H/м², b = 6141,66 К. Плотность льда принималась равной $\rho = 920$ 1/м³ [23]. Предполагается, что функция распределения для молекул воды, испаряющихся с поверхности, является полумаксвелловской

$$f_{w+} = \frac{F^{+}}{2\pi} \left(\frac{1}{RT_{w}}\right)^{2} \exp\left(-\frac{v_{x}^{2} + v_{\theta}^{2} + v_{\varphi}^{2}}{2RT_{w}}\right), \quad v_{x} > 0$$
(15)

Здесь v_x , v_θ , v_ϕ — компоненты скорости частиц, R — газовая постоянная.

Для рассматриваемого диапазона температур источника колебательные степени свободы испаряющихся молекул воды считаются замороженными [22]. Внутренняя энергия улетающих с поверхности мономеров равна вращательной энергии $E_{int,1} = E_{r,1} = \frac{\zeta_r}{2} k_B T_w$. Формирование кластеров в поле течения происходит согласно описанной модели конденсации. Молекулы и кластеры, достигающие внешней границы области, исключались из расчета (гиперзвуковое граничное условие). Частицы, пересекающие границу источника в обратном направлении, также исключались из расчета (условие полной конденсации на поверхности).

Для моделирования расширения водяного пара в вакуум использован метод ПСМ [5]. В программе расчета реализована схема столкновений без временного счетчика (NTC-схема — No Time Counter scheme). Механика столкновений соответствовала модели твердых сфер (HS — Hard Sphere model). Сечение столкновения частиц *i* и *j* для HS модели определяется как

$$\sigma_{i-i} = \pi (r_i + r_i)^2, \tag{16}$$

где r_i , r_j — радиусы кластеров *i* и *j* соответственно. Радиус мономера воды для HS-модели полагался равным $r_1 = 3,1$ A [24].

Для переиндексации частиц и выбора макропараметров использовалась зонная сетка. В расчетах число ячеек составляло $5 \cdot 10^3$, а число моделирующих частиц — 10^6 .

В рассмотренной постановке газодинамическая картина течения определяется числом Кнудсена Кп = λ_w/r (λ_w — средняя длина свободного пробега, соответствующая параметрам n_w и T_w), характерными скоростями реакций (2)–(5) или числами Дамкелера Da_i = $r/(v_T \tau_i)$ (τ_i — характерное время процесса *i*) и параметрами представленной модели конденсации. Поскольку концентрации получаемых кластеров заранее не известны, возможно оценить лишь число Дамкелера для реакции (2) Da_{tr}, используя в качестве характерного времени среднее время между тройными столкновениями $\tau_{tr} = 1/v_{tr,w}$ ($v_{tr,w}$ — средняя частота тройных столкновений, определенная по равновесным параметрам пара у поверхности источника). Для расчета $v_{tr,w}$ можно воспользоваться формулой [25]

$$v_{tr,w} = \frac{\alpha_t}{2} n_w^2 \sigma_{1-2} \sigma_{1-1}^{3/2} \left\{ \frac{8k_B T_w (m+m_2)}{\pi m m_2} \right\}^{1/2},$$
(17)

где σ_{1-1} , σ_{1-2} — сечения столкновений мономер-мономер и мономер-димер соответственно, m_2 — масса димера, α_t — константа, порядка единицы. Формула (17) предполагает, что время жизни орбитирующего комплекса при тройном столкновении определяется как $t_L = \alpha_t \sigma_{1-1}^{1/2} / v_r$ (v_r — относительная скорость молекул воды) [25], и сечение столкновения мономер-орбитирующий комплекс равно σ_{1-2} . В настоящей работе при оценке числа Дамкелера Da_{tr} параметр α_t принимался равным единице.

Варианты расчета и значения определяющих параметров представлены в табл. 2.

Вариант	T_w, K	Kn	Da _{tr}	α
1	273	10^{-2}	$1,6 \cdot 10^{-2}$	$3,6 \cdot 10^{-4}$
2	273	10^{-3}	0,16	$9,5 \cdot 10^{-3}$
3	273	10^{-4}	1,6	0,19
4	246	10^{-4}	0,16	0,06
5	273	10^{-4}	0	0

Вапианты пасчета

Таблица 2

РЕЗУЛЬТАТЫ РАСЧЕТОВ И ИХ АНАЛИЗ

Полученные в результате моделирования радиальные распределения безразмерных плотности ρ/ρ_w (ρ_w — равновесная плотность, соответствующая концентрации n_w) и скорости v/v_T для смеси, состоящей из молекул и кластеров воды, приведены на рис. 1, *a*, *b* соответственно. На рис. 2 представлены распределения температуры T/T_w (*a*) и числа Маха M (*b*) смеси. Кривые 1-5 соответствуют вариантам расчета 1 (Kn = 10^{-2} , $Da_{tr} = 1,6\cdot10^{-2}$), 2 (Kn = 10^{-3} , $Da_{tr} = 0,16$), 3 (Kn = 10^{-4} , $Da_{tr} = 1,6$), 4 (Kn = 10^{-4} , $Da_{tr} = 0,16$), 5 (Kn = 10^{-4} , конденсация не учитывается). Символы градиента отражают результаты работы [8] для Kn = 10^{-4} , в которой методом ПСМ моделировалось задача в схожей постановке с использованием VHS-модели (Variable Hard Sphere) упругих столкновений ($T_w = 200$ K; $d_{ref} = 4,6\cdot10^{-10}$ м, $T_{ref} = 300$ К — параметры VHS-модели) без учета процессов образования кластеров.

На рис. 1, *а* также представлены данные (кривая 7) о степени перенасыщения водяного пара $S = p / p_S (p$ — локальное давление, p_S — равновесное давление, соответствующее локальной температуре пара, согласно (14)). Для варианта 5 локальное давление пара у поверхности имело значение 277 Па, при этом степень перенасыщения составляла величину $S \approx 6$ и резко возрастала по мере увеличения расстояния от источника. Такое поведение степени перенасыщения свидетельствует о благоприятных условиях для протекания процесса формирования кластеров воды.

Для характеристики интенсивности процесса конденсации удобно использовать интегральный параметр $\alpha = \sum_{k=2}^{\infty} kN_k / \sum_{k=1}^{\infty} kN_k$, (N_k — число частиц размера k

в поле течения). Степень конденсации для рассматриваемых вариантов представлена в табл. 1. Интенсивность процесса конденсации увеличивается с уменьшением чисел Кнудсена и ростом чисел Дамкелера. Наибольшая степень конденсации при расширении пара наблюдается в варианте 3 (Кn = 10^{-4} , Da_{tr} = 1,6), для которого массовая доля кластеров воды в поле течения составляет $\alpha = 0,19$. Для вариантов расчета 1 (Kn = 10^{-2} , Da_{tr} = $1,6 \cdot 10^{-2}$) и 2 (Kn = 10^{-3} , Da_{tr} = 0,16) степень конденсации составляет величину менее 0,01.

Рис. 1. Распределения плотности ρ/ρ_w и степени перенасыщения *S* (*a*), а также скорости ν/ν_T (*b*) по радиальной координате. Варианты: 1 (*1*), 2 (2), 3 (3), 4 (4), без учета конденсации 5 (5), данные [8] (6), *S* — степень перенасыщения для варианта 5 (7).

Рис. 2. Распределения температуры *T*/*T_w* (*a*) и числа Маха М (*b*) по радиальной координате. Варианты: 1 (*1*), 2 (2), 3 (3), 4 (4), 5 (5), данные [8] (6).

При малых числах Дамкелера распределения газодинамических параметров по радиальной координате в зависимости от числа Кнудсена для вариантов 1 и 2 аналогичны случаю, когда конденсация в поле течения отсутствует [8]. Уменьшение числа Кнудсена в варианте 2 (Кп = 10^{-3}) по отношению к варианту 1 (Кп = 10^{-2}) приводит к более быстрому падению плотности и температуры, более резкому росту скорости и числа Маха в поле течения.

В случае более интенсивного процесса кластерообразования (вариант 4) поведение радиальных распределений температуры и числа Маха оказывается иным. Значения безразмерной температуры в большей области течения, несмотря на меньшее число Кнудсена (Kn = 10^{-4} , Da_{tr} = 0,16), оказываются бо́льшими по сравнению с вариантом 2 (Kn = 10^{-3} , Da_{tr} = 0,16). В отличие от случая, когда процесс конденсации не рассматривается [8], уменьшение числа Кнудсена в варианте 4 по отношению к варианту 2 ведет к уменьшению числа Маха, а не к его росту из-за существенного повышения температуры в поле течения.

Сравнение распределений параметров по радиальной координате для вариантов расчета 3 (Kn = 10^{-4} , Da_{tr} = 1,6, интенсивная конденсация), 4 (Kn = 10^{-4} , $Da_{tr} = 0,16)$ и 5 (Kn = 10⁻⁴, $Da_{tr} = 0$, процесс конденсации не рассматривается) дает информацию о влиянии чисел Дамкелера на газодинамику течения. Число Da_n определяет соотношение между характерным газодинамическим временем и временем между тройными столкновениями. Его рост характеризует увеличение скорости формирования димеров и, как следствие, ведет к интенсификации процесса конденсации. Для вариантов 3 и 4 наблюдается более быстрый рост поступательной скорости и более резкое падение плотности по отношению к варианту 5. Наиболее заметный эффект процесс образования кластеров оказывает на распределения температуры. В большей части течения значения температур для вариантов расчета 3 и 5 различаются в два раза и более. При этом для варианта 3 на кривой температуры появляется выраженный максимум на расстоянии $x/r \approx 1,07$ от поверхности источника. Рост температуры в вариантах 3 и 4 по отношению к варианту 5, в котором конденсация водяного пара отсутствует, приводит к более низким значениям числа Маха во всей области течения. Такое поведение газодинамических переменных объясняется выделением скрытой энергии в ходе конденсационного процесса.

На рис. 3 представлены кривые поступательных радиальной T_x и нормальной T_n температур, полной поступательной температуры T_{tr} , внутренней температуры T_{int} и полной температуры $T = (3T_{tr} + \zeta T_{int})/(3 + \zeta)$ (ζ — число внутренних степеней

Рис. 3. Распределения компонентов температуры по радиальной координате. Варианты: 5 (*a*), 3 (*b*), $T/T_w(1)$, $T_t/T_w(2)$, $T_x/T_w(3)$, $T_n/T_w(4)$, $T_{int}/T_w(5)$.

свободы) вблизи поверхности сферического источника для числа $\text{Kn} = 10^{-4}$ (рис. 3, *a*, вариант 5 — без учета конденсации, рис. 3, *b*, вариант 3 — интенсивная конденсация).

Вопросы, связанные с поступательной и вращательной релаксацией в кнудсеновском слое при сферическом испарении водяного пара без учета процессов конденсации, подробно исследованы в работе [8]. Для малых чисел Кнудсена Кп $\leq 10^{-3}$ на некотором расстоянии от источника устанавливается квазиравновесие. При этом количественный и качественный характеры изменения компонент нормальной поступательной температуры и внутренней температуры одинаковы ($T_n \approx T_{int}$, соответствующие кривые на рис. 3, *а* совпадают). Релаксация сводится к установлению равновесия между радиальной поступательной степенью свободы T_r и остальными степенями свободы.

В настоящей работе в качестве границы начала равновесного течения (границы кнудсеновского слоя) принимается поверхность, на которой одновременно выполняются два условия:

$$\frac{\left|T_{x} - T_{n}\right|}{T} \le 0,03 \quad \text{и} \quad \frac{\left|T_{tr} - T_{\text{int}}\right|}{T} \le 0,03.$$
(18)

При таком критерии толщина кнудсеновского слоя для варианта 5 (без учета конденсации) составляет 12,5 λ_w , звуковая линия находится на расстоянии 57,5 λ_w (в работе [8] это расстояние составляет около 60 λ_w) от поверхности испаряющейся сферы.

Учет эффекта конденсации оказывает заметное влияние на характер релаксации компонент температур. Выделение энергии связи в ходе процесса ассоциации частиц приводит к росту всех компонент температуры, начиная с расстояния $x/r \approx 1,0015$, и к более интенсивному росту радиальной компоненты температуры T_x . Влияние учета процесса конденсации на толщину кнудсеновского слоя незначительно. Равновесие, согласно критерию (18), устанавливается на расстоянии 7,5 λ_w . В отличие от кнудсеновского слоя удаление звуковой линии от поверхности источника оказывается на порядок большим по отношению к варианту без учета эффекта конденсации и составляет 602 λ_w . Такое поведение положения звуковой линии объясняется совершенно иным изменением температуры водяного пара в поле течения (см. рис. 1 и 2).

В табл. 3 представлены соотношения параметров на звуковой линии к равновесным параметрам на источнике и доля обратного потока частиц F_r/F^+ на его поверхность для расчетов с учетом (варианта 3) и без учета конденсации (варианта 5)

Таблица 3

Параметр	Данные [26]	Данные [8]	Расчет, вариант 5	Расчет, вариант 3
n/n_w	0,3	0,3	0,32	0,21
T/T_w	0,814	0,79	0,78	1,25
F_r/F^+	0,219	0,205	0,2	0,24

Значение параметров на звуковой линии

для Kn = 10^{-4} . Для наглядности там же приведены данные теоретического исследования [26] для молекул с тремя внутренними степенями свободы при испарении с плоской поверхности и данные численного моделирования из работы [8] для Kn = 10^{-4} . Значения плотности и температуры на звуковой линии для случая течения с интенсивной конденсацией (вариант 3) отличаются примерно на 50 % от значений, полученных в расчетах без учета конденсации. Доли обратного на поверхность потока частиц отличаются незначительно.

На рис. 4 приведены радиальные распределения концентрации мономеров *1*, интегральной по всем размерам концентрации кластеров 2, концентрации кластеров размера k = 10 кривая *3* для варианта расчета 3 (Kn = 10^{-4} , Da = 1,6). Мономеры являются основным компонентом смеси, пространственная эволюция концентрации мономеров имеет такой же вид, как и кривая плотности смеси на рис. 1, *a*. Координата максимума плотности мономеров совпадает с поверхностью источника. Максимум концентрации кластеров (см. рис. 4, *b*) находится на некотором удалении от поверхности (для данного варианта на расстоянии *x*/*r* = 1,025). Такой же вид распределения концентрации по радиальной координате характерен для кластеров любого размера, например, k = 10 (рис. 4, *a*, кривая *3*). Скорости кластеров и мономеров совпадают для *x*/*r* < 3. С увеличением расстояния от источника наблюдается постепенное замедление движения кластеров по сравнению с мономеровии.

Интегральные по всему полю течения распределения кластеров по размерам приведены на рис. 5 для вариантов расчета 1–3. Уменьшение чисел Кп и одновременный рост Da_{tr} приводят к увеличению размера наблюдаемых кластеров воды. Для варианта 1 (Kn = 10^{-2} , $Da_{tr} = 1,6\cdot10^{-2}$) средний размер кластера в поле течения равен трем молекулам, для варианта 2 (Kn = 10^{-3} , $Da_{tr} = 0,16$) — двенадцати молекулам, для варианта 3 (Kn = 10^{-4} , $Da_{tr} = 1,6$) — сорока молекулам. В варианте 1

Рис. 4. Радиальные распределения концентрации мономеров (1), кластеров всех размеров (2), кластеров размера k = 10 (3), среднемассовой скорости мономеров (4) и кластеров размера k = 10 (5) для варианта 3.

Рис. 5. Интегральное распределение кластеров по размерам. Варианты: 1 (1), 2 (2), 3 (3).

наибольшее число кластеров составляют димеры воды, максимальный размер кластера равен 5. С увеличением интенсивности конденсации наиболее представительный размер кластеров смещается в область больших размеров и для варианта 3 составляет пятьдесят молекул, при этом максимальный размер кластера воды достигает восьмидесяти молекул. Интересно отметить, что в случае нестационарного истечения от сферического источника паров кремния в режиме ультракороткого импульса [14] процесс кластерообразования замедлялся начиная с определенного момента времени, и вне зависимости от рассмотренного диапазона определяющих параметров наибольшее число кластеров составляли димеры.

С вычислительной точки зрения представляет интерес ответ на вопрос о степени возбуждения колебательных степеней свободы. На рис. 6 представлены данные об усредненном по всему полю течения эффективном числе колебательных степеней свободы для варианта 3. Там же приведены зависимости $Z_v = 3k - 6$ (прямая 2), $Z_v = 3k_a - 6 - 3k$ (прямая 3), $Z_v = 3k_a - 6$ (прямая 4). Для рассмотренных значений температуры источника возбужденными оказываются все межмолекулярные колебательные моды кластера воды. Как и следовало ожидать, в данном случае возбуждением внутримолекулярных мод можно пренебречь из-за высоких характерных температур колебаний, соответствующих этим модам.

Рис. 6. Число колебательных степеней свободы кластеров. Вариант 3 (1), $Z_v = 3k-6$ (2), $3k_a-6-3k$ (3), $3k_a-6$ (4).

СПИСОК ЛИТЕРАТУРЫ

- Rodionov A.V., Crifo J.F., Szego K. et al. An advanced physical model of cometary activity // Planetary and space science. — 2002. — Vol. 50. — P. 983–1024.
- Kotake S., Glass I.I. Flows with nucleation and condensation // Prog. Aerospace Sc. 1979. Vol. 19. P. 129–196.
- 3. Yarygin V.N., Skovorodko P.A., Gorchakova N.G. et al. The effect of homogeneous condensation on gasdynamics and IR radiation of carbon dioxide and water vapor free jets // Proc. 14th Inter. Symp. on rarefied gas dynamics. University of Tokyo Press. 1984. P. 951–958.
- 4. Crifo J.F. On the accuracy of theoretical models of homogeneous recondensation in water jets produced by vacuum evaporation or sublimation from a spherical source // Proc. 17th Inter. Symp. on rarefied gas dynamics. Weinheim: VCH. 1991. P. 1139–1147.
- **5. Bird G.A.** Molecular gas dynamics and the direct simulation of gas flows. Oxford: Clarenton Press, 1994. 456 p.
- **6. Иванов М.С., Гимельшейн С.Ф., Маркелов Г.Н. и** др. Разреженное обтекание простых вогнутых тел с учетом эффектов реального газа // Теплофизика и аэромеханика. 1994. Т. 1, No. 1. С. 29–44.
- 7. Булгакова Н.М., Плотников М.Ю., Ребров А.К. Моделирование стационарного расширения газа с поверхности сферы в вакуум // Известия РАН, Механика жидкости и газа. 1997. No. 6. С. 137–143.
- **8.** Лукьянов Г.А., Ханларов Г.О. Стационарное расширение паров воды с поверхности сферы в вакуум // Теплофизика и аэромеханика. — 2000. — Т. 7, No. 4. — С. 511–521.
- 9. Briehl B., Urbassek H.M. Monte Carlo simulation of growth and decay processes in a cluster aggregation source // J. Vac. Sci. Thechnol. A. — 1999. — Vol. 17, No. 1. — P. 256–265.
- Zeifman M.I., Garrison B.J., Zhigilei L.V. Combined molecular dynamics direct simulation Monte Carlo computation study of laser ablation plume evolution // J. Appl. Phys. — 2002. — Vol. 92, No. 4. — P. 2181–2193.
- Быков Н.Ю., Лукьянов Г.А. Прямое статистическое моделирование импульсной лазерной абляции металлов с процессами кластеризации в испаренном облаке // Теплофизика и аэромеханика. — 2006. — Т. 13, No. 4. — С. 569–582.
- Itina T.E., Gouriet K., Zhigilei L.V. et al. Mechanisms of small clusters production by short and ultra-short pulse laser ablation // Appl. Surf. Sci. — 2007. — Vol. 253. — P. 7656–7661.
- 13. Zhong J., Zeifman M.I., Levin D.A. Kinetic model of condensation in a free argon expanding je t // J. of Thermophysics and Heat Transfer. — 2006. — Vol. 20, No. 1. — P. 41–51.
- 14. Лукьянов Г.А., Симакова О.И., Быков Н.Ю. Прямое статистическое моделирование процессов образования и роста кластеров при расширении пара от внезапно включенного сферического источника. І. Истечение в вакуум // ЖТФ. — 2008. — Т. 78, No. 1. — С. 27–33.
- Xu X., Goddard W.A. Bonding properties of water dimer: a comparative study of density functional theories //J. Phys. Chem. A. — 2004. — Vol. 108. — P. 2305–2313.
- Mo O., Yanez M., Elguero J. Cooperative (nonpairwise) effects in water trimers: an ab initio molecular orbital study // J. Chem. Phys. — 1992. — Vol. 97, No. 9. — P. 6628–6638.
- Calo J.M. Dimer formation in supersonic water vapor molecular beams // J. Chem. Phys. 1975. Vol. 62. — P. 4904.
- 18. Bykov N.Y., Leshchev D.V., Simakova O.I. The direct simulation Monte Carlo of near-continuum flows with condensation process // Proc. of XXXVI Summer School Advanced Problems in Mechanics. — СПб: Комильфо, 2008. — С. 159–166.
- **19.** Смирнов Б.М. Процессы в плазме и газах с участием кластеров // УФН. 1997. Т. 167, No. 11. С. 1169–1200.
- Lee C., Chen H., Fitzgerald G. Chemical bonding in water clusters // J. Chem. Phys. 1995. Vol. 102, No. 3. — P. 1266–1269.
- **21. Кондратьев В.Н., Никитин Е.Е.** Кинетика и механизм газофазных реакций. М.: Наука, 1974. 558 с.
- 22. F.P. Fanale, J.R. Salvail. An idealized short-period comet model: surface insolation, H₂O flux, dust flux, and Mantle evolution // Icarus. 1984. Vol. 60. P. 476–511.
- Третьяков Ю.М. Структура воды и теплофизические параметры. Москва-Ижевск: Институт компьютерных исследований, НИЦ "Регулярная и хаотическая динамика", 2006. — 114 с.
- Crifo J.F., Lukianov G.A., Rodionov A.V. et al. Comparison between Navier–Stokes and direct Monte–Carlo simulations of the circumnuclear coma. I. Homogeneous, Spherical Source // Icarus. — 2002. — Vol. 156. — P. 249–268.
- 25. Берд Г. Молекулярная газовая динамика. М.: Мир, 1981. 320 с.
- 26. C. Cercignani. Rarefied gas dynamics: from basic concepts to actual calculations. Cambridge UP, 2000. 315 p.

Статья поступила в редакцию 7 августа 2008 г.