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МОДЕЛИРОВАНИЕ И инверсиЯ сигналов импульсных электромагнитных 
зондирований в задаче мониторинга многолетнемерзлых пород  

С ПрименениеМ методов глубокого обучения
О.В. Нечаев, К.Н. Даниловский, И.В. Михайлов
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Представлен подход к решению задач мониторинга многолетнемерзлых пород на основе интегра-
ции традиционных методов электромагнитных индукционных зондирований с технологиями глубокого 
машинного обучения. Приводятся решение прямой задачи импульсного электромагнитного зондирова-
ния методом конечных элементов с применением преобразования Сумуду, а также результаты разработки 
нейросетевого решателя прямой задачи на основе искусственной нейронной сети (ИКС), обученной на 
рассчитанных конечно-элементным алгоритмом данных. Нейросетевой решатель характеризуется схожей 
точностью моделирования с конечно-элементным методом, однако работает на несколько порядков бы-
стрее, что открывает возможности для быстрой инверсии. Приводится решение обратной задачи, осно-
ванное на алгоритме PARS. Кроме того, представлен нейросетевой алгоритм инверсии, обученный на том 
же наборе данных, представляющий собой альтернативный подход к решению обратной задачи. В рамках 
вычислительного эксперимента сравниваются результаты численной инверсии на базе нейросетевого мо-
делирования сигналов с результатами, полученными с помощью решателя обратной задачи на основе 
ИНС, а также с линейной комбинацией этих решений. Этот всесторонний анализ дает понимание эффек-
тивности предлагаемого подхода, основанного на глубоком машинном обучении, в задаче мониторинга 
многолетнемерзлых пород и предоставляет новые идеи для его дальнейшего применения в геофизике.

Мониторинг многолетнемерзлых пород, импульсное электромагнитное зондирование, векторный 
метод конечных элементов, преобразование Сумуду, экспресс-моделирование, неитерационная инверсия, 
глубокое обучение, искусственные нейронные сети

Deep-Learning-Based Simulation and Inversion of Transient  
Electromagnetic Sounding Signals in Permafrost Monitoring Problem

O.V. Nechaev, K.N. Danilovskiy, I.V. Mikhaylov
This article presents a novel approach to addressing the challenges in permafrost monitoring through the 

integration of deep-learning techniques with conventional electromagnetic sounding methods. Our methodology 
comprises a forward finite element method (FEM) solver, augmented with the Sumudu transform, and an artificial 
neural network (ANN) solver trained on FEM-generated data. Remarkably, the ANN solver demonstrates similar 
accuracy to the FEM solver but operates at a superior speed that is nearly 10,000 times faster. Furthermore, we 
introduce an inverse problem solution drawing on the PARS algorithm. In addition, we present an ANN-based 
inverse solver, where the input and output roles are inverted. The ANN inverse solver is trained on the same 
data, thereby offering an alternative approach to solving the inverse problem. In a computational experiment, we 
compare the numerical inversion results using the PARS algorithm with those obtained from the ANN forward 
solver, ANN inversion, and a linear combination of these solutions. This comprehensive analysis sheds light on 
the effectiveness of our deep-learning-based approach in permafrost monitoring, providing insights for future ap-
plications in geophysics and environmental science.

Permafrost monitoring, transient electromagnetic sounding, vector finite element method, Sumudu trans-
form, express modeling, non-iterative inversion, deep learning, artificial neural networks

введение

В российских арктических и субарктических регионах отмечаются быстрые темпы увеличения 
среднегодовых температур в последние десятилетия с деградацией многолетнемерзлых грунтов [Мохов 
и др., 2022]. Учитывая, что многолетнемерзлые породы распространены на 65 % территории России, а 
доля деформированных зданий в Арктике уже близка к 40 % [Судакова и др., 2022], необходимость на-
учного обоснования, создания и внедрения современных систем мониторинга многолетнемерзлых пород 
трудно переоценить. В качестве примера, 29 мая 2020 г. на ТЭЦ-3 в Норильске из-за стремительного 
проседания опор резервуара на многолетнемерзлых породах произошел аварийный разлив двух десятков 
тысяч тонн дизельного топлива [Глязнецова и др., 2021], что привело к экологической катастрофе. По
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этому своевременное обнаружение изменений характеристик многолетнемерзлых грунтов — важнейший 
фактор безаварийной эксплуатации инженерных сооружений в криолитозоне [Васильев и др., 2021].

Применительно к мониторингу состояния многолетнемерзлых пород активно используется дис-
танционное радиолокационное зондирование [Parsekian et al., 2021], съемка с беспилотных воздушных 
судов [Kaiser et al., 2022], а также разновременные геофизические измерения: термометрия почв [Во-
ропай и др., 2019], электротомография [Gao et al., 2019], георадиолокация [Нерадовский, 2021], неста-
ционарные [Кошурников и др., 2016] и частотные [Pavoni et al., 2021] электромагнитные зондирования, 
акустическая [Syas’ko, Shikhov, 2022] и сейсмическая [Косякина и др., 2023] съемка, комплексирование 
методов, например, аудиомагнитотеллурических зондирований и наземного ядерно-магнитного резо-
нанса [Keating et al., 2018]. Активно развивается импульсное межскважинное просвечивание [Никитен-
ко и др., 2023], с созданием прототипа аппаратуры [Бухтияров, Глинских, 2022] и проведением серии 
полевых измерений [Глинских и др., 2023].

Геофизический мониторинг состояния многолетнемерзлых грунтов все более широко применяет-
ся в отношении гражданских и промышленных объектов, таких как автомагистрали [Glinskikh et al., 
2021], газопроводы [Varlamov et al., 2022], здания на свайном фундаменте [Косякина и др., 2023], резер-
вуары с топливом [Михайлов и др., 2023] и других.

Разработка новых геофизических технологий традиционно основывается на высокоэффективных 
средствах математического моделирования синтетических данных. В связи с существенно трехмерны-
ми особенностями изучаемых объектов, одномерный подход к моделированию сигналов импульсных 
электромагнитных зондирований [Никитенко и др., 2021] не всегда оказывается правомерным. Значи-
тельного развития в применении импульсных зондирований для задач мониторинга состояния криоли-
тозоны можно ожидать за счет создания как быстрых алгоритмов трехмерного численного моделирова-
ния для учета значительной пространственно-неоднородной изменчивости изучаемых объектов, так и 
быстрых методов решения обратной задачи для идентификации параметров геофизической модели. 
При мониторинге состояния промышленных и гражданских объектов ключевую роль играет время меж-
ду измерением сигналов зондирования на объекте и получением результатов финальной интерпретации 
состояния криолитозоны; в случае критической ситуации принимать решения по предупреждению/лик-
видации последствий природных и техногенных катастроф необходимо как можно более оперативно.

На сегодняшний день использование традиционных подходов при интерпретации практических 
данных (непосредственное решение трехмерных краевых задач) требует значительных вычислительных 
и временных ресурсов. Одной из возможных альтернатив является применение заранее обученных ис-
кусственных нейронных сетей (ИНС) для получения практически мгновенных результатов при решении 
как прямых [Петров и др., 2021; Yuan et al., 2023], так и обратных [Li et al., 2023; Даниловский и др., 
2023] геофизических задач. Такие ИНС могут быть обучены до начала мониторинга состояния криоли-
тозоны на заранее подготовленных наборах данных для конкретного объекта и при заранее заданном 
диапазоне конфигураций геофизической модели. Тем самым основные вычислительные затраты при-
ходятся на предварительные этапы генерации обучающих данных и обучения ИНС, а не на обработку 
данных непосредственно в процессе мониторинга.

В данной работе исследуется возможность применения методов глубокого обучения для инверсии 
сигналов импульсных электромагнитных зондирований в задаче мониторинга многолетнемерзлых пород. 
Описывается постановка прямой и обратной задач, приводятся результаты разработки численных алго-
ритмов, а также решений на основе ИНС, анализируются результаты вычислительного эксперимента.

РЕШЕНИЕ ПРЯМОЙ ЗАДАЧИ

Рассмотрим геофизическую модель процесса электромагнитного мониторинга многолетнемерз-
лых пород (рис. 1). В качестве источника электромагнитного поля будет выступать импульс тока в ге-
нераторной катушке T, расположенной на глубине 1 м, ее горизонтальные координаты (0, 0). Результа-
том мониторинга является временная развертка ЭДС, наведенная в установленных в скважине 
измерительных катушках Ri, находящихся на горизонтальном удалении 20 м от генераторной катушки. 
Измерительные катушки расположены вдоль скважины каждые 0.5 м, на глубинах от 1 до 10 м. Модель 
состоит из воздуха с удельным электрическим сопротивлением (УЭС) ra = 106 Ом·м, вмещающей сре-
ды, состоящей из многолетнемерзлых пород, обладающих дисперсионными свойствами [Kozhevnikov, 
Antonov, 2012; Кожевников и др., 2014], ее УЭС в частотной области (Фурье-образ) описывается фор-
мулой Коул-Коул [Kozhevnikov, Antonov, 2021]:
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где r0 — УЭС на постоянном токе, m — поляризуемость, c — показатель степени (далее полагается 
равным 1), t — время релаксации. В многолетнемерзлых породах находится талик — зона протаивания 
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с УЭС rt. Талик представлен в виде прямоугольного параллелепипеда, обладающего размерами hxy на 
hxy на hz. Положение талика в пространстве задается координатами его вершины C (см. рис. 1). Необхо-
димо отметить, что верхняя грань талика всегда находится на земной поверхности. Будем полагать, что 
талик и воздух не обладают диспергирующими свойствами, в этом случае r(ω) = const.

Математическая модель, описывающая прямую задачу процесса мониторинга, выглядит следую-
щим образом:
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где E(t) — напряженность электрического поля, J0 — плотность тока в генераторной катушке, σ(t) = 
= r(t)  — удельная электропроводность, обладающая диспергирующими свойствами, * — операция 
свертки, ε0 — диэлектрическая и μ0 — магнитная проницаемости, ∂Ω — граница расчетной области Ω, 
удаленная от генераторной катушки настолько, что напряженность поля на ней можно полагать равной 
нулю.

Применим к получившемуся уравнению преобразование Сумуду:
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Рис. 1. Геофизическая модель и схема зондирующей установки электромагнитного мониторинга 
многолетнемерзлых пород. 
T — генераторная катушка, Ri — измерительные катушки, ra — воздух, rt — талик, r0 — вмещающие многолетнемерзлые по-
роды.
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Интегральное преобразование Сумуду было предложено в статье [Watugala, 1993] в качестве аль-
тернативы преобразованию Лапласа. К важным свойствам этого преобразования относится сохранение 
масштаба и размерности функции: единицы измерения самой функции и ее изображения совпадают 
[Belgacem, Karaballi, 2006]. Необходимо также отметить, что Сумуду-изображение действительной 
функции является действительной функцией. Таким образом, при последующих вычислениях, в отли-
чие от использования преобразования Лапласа или Фурье, не возникает необходимости прибегать к 
комплексным числам, что снижает вычислительные затраты и требования к оперативной памяти в слу-
чае нахождения Сумуду-изображения функции. Наиболее подробно свойства преобразования Сумуду 
рассматриваются в работах [Belgacem, Karaballi, 2006; Belgacem, 2006]. В отличие от преобразования 
Лапласа, для преобразования Сумуду не существует явной формулы выполнения соответствующего об-
ратного преобразования. Выполнение данной процедуры требует решения интегрального уравнения 
Фредгольма первого рода [Эпов и др., 2023, 2024].

Используя преобразование Сумуду по времени, преобразуем математическую модель (1)–(4) к 
следующему виду:

	 rot rot
1 1

0

0

2 0�
�

�
 E u u

u
E u

u
J u� � � � � ��

�
�

�

�
� � � � � � � , 	 (5)

	 E u n� �� �
��

0. 	 (6)

Сумуду-образ формулы Коул-Коул имеет вид:
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Для получения приближенного решения краевой задачи в частных производных (5), (6) будем ис-
пользовать векторный метод конечных элементов [Эпов и др., 2007]. В результате получим Сумуду-изо-
бражение напряженности электрического поля. Интегрируя его по контуру измерительных катушек, 
можно найти Сумуду-изображение ЭДС, наведенных в этих катушках.

Решения задачи (5), (6) для разных значений u не зависят друг от друга, поэтому их получение 
можно осуществлять параллельно, что уменьшает временные затраты. Однако даже в случае параллели-
зации вычислений, расчет синтетических сигналов с требуемой точностью занимает значительное вре-
мя. Также следует учитывать, что при итерационном решении обратной задачи количество вызовов 
алгоритма моделирования в зависимости от точности начального приближения (стартовой модели) мо-
жет достигать нескольких сотен тысяч раз. Для ускорения процедуры решения прямой задачи можно 
воспользоваться ИНС, которые эффективно справляются с аппроксимацией сложных нелинейных 
функций, таких как связь между параметрами геоэлектрической модели и электромагнитными отклика-
ми измерительной установки.

В рамках данного исследования для создания быстрого аналога конечно-элементного алгоритма 
используется ИНС с архитектурой многослойного перцептрона. Применение более продвинутых архи-
тектур, например сверточных, в данном случае не представляется целесообразным, поскольку это при-
ведет к невозможности точно описать геометрические параметры модели среды из-за дискретизации 
пространства.

Входными данными для разработанной ИНС служит вектор из восьми значений, описывающий 
параметры геоэлектрической модели x y h h mxy z t0 0 0, , , , , ,       , � � �� �  (см. рис. 1). Выходными данными яв-
ляется вектор из 95 значений, содержащий пересчитанные по формуле Коул-Коул сигналы импульсного 
электромагнитного зондирования на 19 глубинах и 5 временах. Для создания обучающего набора дан-
ных использован описанный выше способ решения краевой задачи с применением векторного метода 
конечных элементов; сигналы электромагнитных зондирований рассчитаны в широком диапазоне мо-
дельных параметров. Общий объем созданного набора данных составляет 104 пар модель—сигналы, 
при обучении данные разделялись на две подвыборки: 75 % непосредственно для обучения (обучающие 
данные) и 25 % для контроля (тестовые данные).

Обучение ИНС выполнено с применением алгоритма Nadam [Dozat, 2016], сочетающего в себе 
ускорение градиента Нестерова [Нестеров, 1983] и адаптивную оценку импульса [Kingma, Ba, 2015]. 
В качестве минимизируемой в процессе обучения функции потерь использовано среднее абсолютное 
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отклонение — MAE (англ. «mean absolute error»). Полное время обучения финальной версии ИНС с 
архитектурой, выбранной по результатам экспериментов, составило 45 мин (количество эпох — 2000, 
использованы параллельные вычисления на графическом ускорителе (GPU) NVIDIA GeForce RTX 
3070Ti).

На рис. 2 показано сравнение синтетических сигналов импульсного электромагнитного зондиро-
вания, рассчитанных с применением конечно-элементного и нейросетевого алгоритмов в модели среды, 
характеризующейся следующими значениями параметров: 

	 {x0 = 9.53 м, y0 = 1.21 м, hxy = 8.13 м, hz = 9.16 м, ρt = 76.8 Ом·м,  
	 ρ0 = 303 Ом·м, m = 0.70, τ = 1.7 10–4 c}.

На рисунке 3 приведены сводные гистограммы поточечных невязок сигналов электромагнитного 
зондирования, рассчитанных численно методом конечных элементов и с помощью нейросетевого алго-
ритма по данным из тестовой подвыборки. Относительная невязка сигналов превышает 5  % лишь в 5 % 
случаев (отдельные точки, где значения ЭДС близки к нулю). Абсолютная невязка при этом превышает 
10–9 В лишь в 5 % случаев.

Итоговая версия обученной ИНС преобразована в формат TensorFlow-Lite для ускорения работы 
алгоритма при использовании центральных процессорных устройств (CPU) и повышения портируемо-
сти решения. Оценка быстродействия выполнена при расчете набора сигналов электромагнитного зон-
дирования в одной модели среды с применением CPU AMD Ryzen 7-5700G (табл. 1). Дополнительно 
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Рис. 2. Сигналы электромагнитного зондирования, рассчитанные численно (слева) и с помощью 
ИНС (в центре), а также их относительная невязка (справа).

Т а б л и ц а  1 .  Результаты оценки быстродействия разработанного алгоритма моделирования сигналов  
	 импульсного электромагнитного зондирования на основе ИНС в сравнении с численным решением

Численный алгоритм Нейросетевой алгоритм

5.9·101 с 1.5·10–4 с
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увеличить производительность алгоритма можно, используя параллельные вычисления на GPU, однако 
такие тесты в рамках данного исследования не выполнялись.

Таким образом, разработанный нейросетевой алгоритм характеризуется качественно более высоким 
быстродействием при меньшей ресурсоемкости, что в совокупности с достигнутой точностью моделиро-
вания обеспечивает возможность его использования в рамках итерационного решения обратной задачи.

РЕШЕНИЕ ОБРАТНОЙ ЗАДАЧИ

При решении обратной задачи мониторинга будем вовлекать следующие параметры геофизиче-
ской модели: УЭС талика — rt, горизонтальный и вертикальный размеры талика — hxy и hz, горизон-
тальные координаты вершины талика C — x0 и y0, параметры формулы Коул-Коул для многолетнемерз-
лых пород — r0, m, τ. Трансформируем искомые параметры модели следующим образом:

	 w p p
p pi
i i

a

i
b

i
a�

�
�

,

где pi — искомый i-й параметр модели, pi
a  — минимальное значение параметра, pi

b  — максимальное 
значение параметра, wi — новый i-й параметр, изменяющийся от 0 до 1. Границы интервалов параме-
тров геофизической модели, используемые для вычислительных экспериментов, приведены в табл. 2.

Сформулируем задачу идентификации параметров как задачу минимизации невязки между Суму-
ду-образами реально измеренных сигналов и Сумуду-образами сигналов, полученных при решении за-
дачи (5), (6):

	 w* , ,

,

argmin ,�
� � ��

�
��

�

�
����

w i j

i j i j

i j

R S w
R

2

	 (7)

где w* — искомый вектор параметров, Ri,j— Cумуду-образ реально измеренного сигнала в катушке i в 
момент u = uj, Si,j(w) — Cумуду-образ сигнала в катушке i в момент u = uj, полученный в результате 
решения задачи (5), (6) для геофизической модели с параметрами, заданными в векторе w.

Т а б л и ц а  2 .  	 Границы интервалов, в которых ищутся параметры геофизической модели

Параметр модели Нижняя граница параметра модели Верхняя граница параметра модели

rt, Ом·м 10 100
x0, м 0 20
y0, м –5 10
hx,  м 1 20
hz, м 1 10

r0, Ом·м 100 500
m 0.1 0.85

τ, с 1·10–6 500·10–6

Рис. 3. Распределения поточечной относительной и абсолютной линейной невязок сигналов элек-
тромагнитного зондирования, рассчитанных численно и с помощью ИНС (данные тестовой под-
выборки, не задействованные непосредственно при обучении).
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В качестве метода решения задачи оптимизации будем использовать алгоритм PARS [Radulovic, 
2010], гарантирующий нахождение глобального минимума с вероятностью, равной единице, и облада-
ющий экспоненциальной скоростью сходимости.

Поскольку в процессе минимизации необходимо решить уравнения (5), (6) с различными значе-
ниями параметров геофизической модели множество раз (вплоть до сотен тысяч), естественным шагом 
будет построить оператор, отображающий вектор параметров w в вектор измерений S с некоторой точ-
ностью и требующий для своего построения и применения значительно меньших временных затрат по 
сравнению с решением краевой задачи. Для этого также воспользуемся аппаратом искусственных ней-
ронных сетей, позволяющим получать аппроксимации различных функций и операторов. В случае за-
дачи мониторинга состояния криолитозоны в окрестностях некоторого объекта решать обратную задачу 
будет необходимо множество раз. В этом случае искусственная нейросеть, построенная один раз с уче-
том особенностей конкретного объекта мониторинга, может быть использована многократно.

Построение архитектуры ИНС и ее обучение выполняются аналогичным образом с тем отличием, 
что синтетические сигналы импульсного электромагнитного зондирования используются в качестве 
входных данных, а параметры моделей среды — в качестве выходных. На рисунке 4 приведены свод-
ные гистограммы поточечных невязок истинных параметров модели и параметров, полученных с при-
менением нейросетевого алгоритма решения обратной задачи.

Имея два способа решения обратной задачи, можно построить третий, взяв некоторую комбина-
цию первых двух вариантов (например, среднее значение). Таким образом, получим три различных 
способа нахождения параметров геофизической модели.

Вычислительный Эксперимент

Рассмотрим результаты решения обратной задачи при помощи рассматриваемых в данной работе 
методов. В качестве измеренных сигналов Ri,j используются Сумуду-образы ЭДС, полученные при ре-
шении задачи (5), (6). Для имитации погрешностей измерения к вектору R добавляется нормально рас-
пределенный вектор (с нулевым математическим ожиданием и единичной дисперсией), умноженный на 
коэффициент, обеспечивающий заданный уровень относительной погрешности. Во всех последующих 
тестах значения параметров геофизической модели, отвечающие за физические свойства среды, фикси-
рованы: r0 = 200 Ом·м, m = 0.3, t = 10–4 с, rt = 50 Ом·м. Параметры, отвечающие за геометрические 
свойства модели, принимают различные значения.

Рис. 4. Распределения поточечной квадратичной невязки истинных параметров геоэлектрических 
моделей и параметров, полученных с применением нейросетевого алгоритма решения обратной 
задачи (данные тестовой подвыборки, не задействованные непосредственно при обучении).
Вертикальные оси — количество точек, горизонтальные оси — значение поточечной квадратичной невязки.
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В таблицах 3—8 приведены среднеквадратичные невязки решений обратной задачи, полученные 
тремя различными способами, где wnn — вектор параметров, полученный при помощи искусственной 
нейронной сети, которая аппроксимирует оператор, отображающий вектор измерений в вектор параме-
тров геофизической модели. Вектор параметров wmin получен в результате решения задачи минимиза-
ции (7), при этом вектор сигналов S получен при помощи искусственной нейронной сети, аппроксими-
рующей получение ЭДС в измерительных катушках при решении уравнения (5), (6). Вектор wcom 
получен как линейная комбинация предыдущих двух векторов w w wcom nn� � �0 5. ( )min .

Из приведенных данных следует, что ни у метода, использующего непосредственно искусствен-
ную нейронную сеть, ни у метода, основанного на решении задачи минимизации (7), нет подавляющего 
превосходства. В зависимости от значений параметров исходной задачи, худшая погрешность может 
быть как у первого, так и у второго метода; при неустановленной закономерности затруднительно ска-
зать, в каком случае следует отдавать предпочтение тому или иному методу. При этом вектор пара
метров, полученный как линейная комбинация других двух решений, всегда демонстрирует не самую 
высокую погрешность, и в некоторых случаях она является наименьшей среди всех трех методов.

Т а б л и ц а  3. Истинные координаты угла талика (x0, y0) и среднеквадратичные невязки истинных параметров
	 геоэлектрических моделей и параметров, полученных при решении обратной задачи разными способами,  
	 при hxy = 10 м, hz = 5 м и относительном уровне шума измерений 0 %

x0, м y0, м ||w* – wnn|| ||w* – wmin|| ||w* – wcom||

5 –1.25 0.30 0.15 0.12
5 2.50 0.38 0.37 0.24
5 6.25 0.38 0.74 0.55
10 –1.25 0.29 0.96 0.54
10 2.50 0.44 0.40 0.31
10 6.25 0.27 0.91 0.56
15 –1.25 0.42 0.22 0.18
15 2.50 0.43 0.65 0.35
15 6.25 0.36 0.77 0.48

Т а б л и ц а  4. Истинные координаты угла талика (x0, y0) и среднеквадратичные невязки истинных параметров 
	 геоэлектрических моделей и параметров, полученных при решении обратной задачи разными способами,  
	 при hxy = 10 м, hz = 5 м и относительном уровне шума измерений 1 %

x0, м y0, м ||w* – wnn|| ||w* – wmin|| ||w* – wcom||

5 –1.25 0.32 0.26 0.12
5 2.50 0.36 0.40 0.30
5 6.25 0.45 1.07 0.72
10 –1.25 0.28 0.96 0.56
10 2.50 0.44 0.42 0.31
10 6.25 0.36 0.79 0.53
15 –1.25 0.49 0.61 0.48
15 2.50 0.40 0.72 0.41
15 6.25 0.36 0.44 0.33

Т а б л и ц а  5 .  Истинные координаты угла талика (x0, y0) и среднеквадратичные невязки истинных параметров 
	 геоэлектрических моделей и параметров, полученных при решении обратной задачи разными способами,  
	 при hxy = 10 м, hz = 5 м и относительном уровне шума измерений 5 %

x0, м y0, м ||w* – wnn|| ||w* – wmin|| ||w* – wcom||

5 –1.25 0.42 0.60 0.40
5 2.50 0.55 0.58 0.39
5 6.25 0.71 0.91 0.74
10 –1.25 0.38 0.71 0.53
10 2.50 0.63 0.41 0.38
10 6.25 0.77 0.49 0.43
15 –1.25 0.63 0.66 0.46
15 2.50 0.86 1.07 0.78
15 6.25 0.91 0.89 0.78
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ЗАключение

Исследована возможность применения методов глубокого обучения для инверсии сигналов им-
пульсных электромагнитных зондирований в задаче мониторинга многолетнемерзлых пород. По ре-
зультатам тестирования установлено, что разработанный нейросетевой алгоритм моделирования позво-
ляет рассчитывать сигналы импульсного электромагнитного зондирования с достаточной для практиче-
ского использования точностью в моделях среды с широким диапазоном электрофизических параметров. 
Достигнутое быстродействие алгоритмов моделирования открывает возможности для быстрой инвер-
сии с их помощью. Помимо этого, предложен альтернативный способ инверсии сигналов импульсного 
электромагнитного зондирования, также основанный на применении ИНС.

На основании результатов тестирования разработанных методов восстановления параметров гео-
физической модели можно сделать вывод, что в качестве оптимального следует выбирать метод, ис-
пользующий линейную комбинацию векторов параметров, полученных при помощи двух различных 

Т а б л и ц а  6 . Истинные координаты угла талика (x0, y0) и среднеквадратичные невязки истинных параметров 
	 геоэлектрических моделей и параметров, полученных при решении обратной задачи разными способами,  
	 при hxy = 5 м, hz = 2.5 м и относительном уровне шума измерений 0 %

x0, м y0, м ||w* – wnn|| ||w* – wmin|| ||w* – wcom||

5 –1.25 0.29 0.78 0.47
5 2.50 0.26 0.62 0.39
5 6.25 0.43 0.61 0.44
10 –1.25 0.39 0.30 0.31
10 2.50 0.25 0.65 0.42
10 6.25 0.36 0.48 0.40
15 –1.25 0.41 0.87 0.61
15 2.50 0.31 0.78 0.52
15 6.25 0.49 1.07 0.74

Т а б л и ц а  7 .  Истинные координаты угла талика (x0, y0) и среднеквадратичные невязки истинных параметров 
	 геоэлектрических моделей и параметров, полученных при решении обратной задачи разными способами  
	 при hxy = 5 м, hz = 2.5 м и относительном уровне шума измерений 1 %

x0, м y0, м ||w* – wnn|| ||w* – wmin|| ||w* – wcom||

5 –1.25 0.33 0.77 0.46
5 2.50 0.31 0.62 0.41
5 6.25 0.48 0.62 0.51
10 –1.25 0.41 0.31 0.27
10 2.50 0.30 0.81 0.51
10 6.25 0.46 0.60 0.49
15 –1.25 0.41 0.85 0.60
15 2.50 0.45 0.94 0.64
15 6.25 0.55 1.09 0.77

Т а б л и ц а  8 .  Истинные координаты угла талика (x0, y0) и среднеквадратичные невязки истинных параметров 
	 геоэлектрических моделей и параметров, полученных при решении обратной задачи разными способами,  
	 при hxy = 5 м, hz = 2.5 м и относительном уровне шума измерений 5 %

x0, м y0, м ||w* – wnn|| ||w* – wmin|| ||w* – wcom||

5 –1.25 0.54 0.61 0.41
5 2.50 0.77 0.61 0.54
5 6.25 0.91 1.16 0.90
10 –1.25 0.67 0.77 0.61
10 2.50 0.71 0.55 0.48
10 6.25 0.95 0.84 0.83
15 –1.25 0.80 0.75 0.68
15 2.50 0.89 0.93 0.82
15 6.25 1.075 1.35 1.13
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искусственных нейросетей (аппроксимирующих прямую и обратную задачи). В этом случае погреш-
ность восстановленных параметров будет ниже самой большой погрешности двух других методов, а в 
некоторых случаях будет наименьшей из всех трех.

Исследование выполнено за счет гранта Российского научного фонда № 22-17-00181 «Импульс-
ное электромагнитное зондирование многолетнемерзлых пород: теоретическое и экспериментальное 
развитие высокоразрешающего геофизического метода, научное обоснование и создание инновацион-
ной технологии мониторинга криолитозоны», https://rscf.ru/project/22-17-00181/.
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