УДК 536.24

Движение межфазной поверхности гелий II – пар в U-образном канале^{*}

Ю.Ю. Пузина, А.П. Крюков

Национальный исследовательский университет «МЭИ», Москва

E-mail: Puzina2006@inbox.ru

В работе выполнено экспериментальное исследование по движению сверхтекучего гелия в U-образном цилиндрическом канале. Представлено описание экспериментальной ячейки, методики проведения исследований, измерения параметров и обработки полученных данных. Установлено, что при подаче тепловой нагрузки вблизи нагревателя может образовываться пар и межфазная поверхность совершает постоянные колебания макроскопической амплитуды с постоянной частотой. Приводятся зависимости положения межфазной поверхности и соответствующих параметров от времени. На основании ранее полученного аналитического решения интерпретируются полученные экспериментальные результаты.

Ключевые слова: эксперимент, сверхтекучий гелий, колебания межфазной поверхности, канал, уравнение движения.

Введение

Последние десятилетия ознаменовались появлением прикладной сверхпроводимости и вспомогательной гелиевой криогенной техники в качестве ключевых технологий, применяемых при создании оборудования для различных разделов физики. Примером этого является увеличение общей холодопроизводительности при температуре жидкого гелия, установленной в ЦЕРНЕ — Европейской организации ядерных исследований в Женеве (Швейцария) [1].

В физике конденсированных сред, исследованиях квантовых эффектов, астрономических наблюдениях необходимость применения охлаждения ниже 1 К связана с несколькими аспектами [2]:

— некоторые квантово-механические явления, например, в сверхпроводниках, происходят только при очень низких температурах;

 вследствие низкой удельной теплоемкости твердых тел при температуре ниже 1 К становится возможным применение высокочувствительных датчиков;

 наконец, самый важный аспект: подавление тепловых шумов, прямо или косвенно влияющих на показания инфракрасных и других типов датчиков.

^{*} Работа выполнена при поддержке РНФ (проект № 23-29-00342).

За последние десятилетия было разработано и введено в производство множество крупномасштабных и малогабаритных холодильных установок на He II. В состав указанных систем входят гелиевые ванны, используемые в условиях насыщения. Недостатками применения такой ванны являются возможные утечки гелия во время работы, трудности с ее заправкой и стоимость жидкого гелия [3]. Подобные коммерчески доступные системы используются как в микромасштабе, так и в крупных промышленных установках, например, для MPT или радиотелескопов.

В криостатах растворения для достижения охлаждения используются свойства смесей ³He-⁴He. При проектировании таких криостатов разработчики сталкиваются со множеством проблем [4]. Первой и самой сложной из них является то, что сборка установки осуществляется при комнатной температуре, а работает она при низких температурах. В конструкции применяются различные материалы, и из-за их линейного расширения возникают напряжения, которые могут привести к разрушению конструкции. Во-вторых, при температурах ниже 2,17 К ⁴He становится сверхтекучим. Это приводит к тому, что и при сборке, и при испытаниях с жидким азотом утечка отсутствует, но как только установка начинает работать при гелиевых температурах, утечка имеет место, но ее очень трудно, иногда невозможно обнаружить.

Рост энергии и градиента ускорения на линейных ускорителях со сверхпроводящими радиочастотными резонаторами ограничены доступной криогенной мощностью, т.е. общей тепловой нагрузкой либо плотностью теплового потока. Для преодоления криогенных ограничений используются схемы с переохлажденным сверхтекучим гелием вместо насыщенного, что приводит к необходимости существенного изменения конструкции криомодуля [5]. В работе [6] отмечалось, что сверхпроводящий магнит с однородным магнитным полем с нулевым испарением жидкого гелия представляет все больший интерес для различных приложений, включая сверхпроводящие накопители магнитной энергии, спектрометры ядерного магнитного резонанса, микроволновые приложения и т.д.

Значимость и актуальность проведения данных исследований обусловлены возможностью изучения динамических и тепловых свойств сверхтекучего гелия. Применение гелия II для охлаждения сверхпроводников имеет некоторые преимущества по сравнению с использованием других криогенных жидкостей: поскольку температура сверхтекучего гелия не превышает 2,17 К, то при охлаждении им сверхпроводников можно увеличить критическую плотность тока, а следовательно, критическое магнитное поле. При конструировании криогенных систем важное значение имеет изучение процессов теплообмена в гелии II, т.к. скачки теплового потока в сверхпроводнике могут привести к аварийным ситуациям, таким как перегрев части обмотки, механические повреждения вследствие резкого вскипания гелия и т.п.

Настоящая работа продолжает цикл исследований поведения гелия II в каналах при подаче осевой тепловой нагрузки [7–10]. Обнаруженный эффект колебаний границы раздела фаз не воспроизводится в классических жидкостях, однако может быть интерпретирован с использованием методов молекулярно-кинетической теории и полуэмпирической теории Гортера – Меллинка для описания теплопереноса в квантовой жидкости [11]. Данный подход был предложен авторами в работе [12].

Экспериментальная ячейка и методика проведения исследований

Общая схема экспериментальной установки для исследования процессов теплои массообмена в сверхтекучем гелии, подготовка и методика заправки подробно описывались в публикациях [8, 13]. К настоящему времени установка была модернизирована новыми вспомогательными устройствами [14]. Ее оснащение автоматической системой сбора и обработки данных позволяет анализировать информацию непосредственно во время эксперимента; давление гелия во внутреннем сосуде контролируется с помощью ртутного чашечного манометра и автоматически с помощью датчика давления Barathron (модель 235); подача нагрузки на нагреватель обеспечивается источником питания Rigol DP821A.

Экспериментальная ячейка (см. рис. 1) представляет собой U-образную хлорокальциевую пробирку TX-U-19/26. Нагреватель выполнен в виде спирали из нихромовой проволоки диаметром 50 мкм. Эта спираль помещается под поверхность медного диска диаметром 5,5 мм. Диск запрессовывается в керамическую подложку, которая, в свою очередь, вставляется во фторопластовую втулку. Втулка устанавливается в верхнем патрубке U-образной трубки враспор. Вся сборка дополнительно обрабатывается герметизирующим клеем для предотвращения утечек сверхтекучего гелия. Ячейка на держателе, который соединяется со штоком, закрепленным на крышке криостата, полностью погружается в объем сверхтекучего гелия на некоторую глубину. Над поверхностью насыщенного гелия II поддерживается постоянное давление. Видеозапись осуществляется с одновременным сбором данных.

Проведение экспериментов разделяется на несколько этапов.

1. На подготовительном этапе проводится вакуумная откачка внутреннего сосуда Дьюара до давления около 100 Па, а затем он «промывается» газообразным гелием из транспортного сосуда СТГ-40 для удаления паров воды и других примесей. Следующий шаг — заливка жидкого азота во внешний сосуд. Падение давления из-за охлаждения гелия во внутреннем сосуде контролируется с помощью ртутного чашечного манометра, а также в автоматическом режиме с помощью емкостного датчика Баратрон. По показаниям термопар определяется момент охлаждения внутреннего сосуда до азотных температур. Далее следует завершающий этап заправки — заполнение внутреннего сосуда жидким гелием из транспортного сосуда СТГ-40 с помощью переливного сифона. Откачкой паров гелия с использованием вакуумной системы достигается температура перехода в сверхтекучее состояние. Фазовый переход второго рода наблюдается визуально — по прекращению интенсивного кипения жидкости. Рабочий диапазон температур в гелиевом сосуде Дьюара достигается путем непрерывной откачки паров.

2. Экспериментальная серия начинается с момента включения нагревателя. В это время контролируются все характерные параметры в системе: давление в криостате, нагрузка нагревателя и его глубина погружения под уровень свободного зеркала жидкости. Одновременно проводится видеосъемка. Подача тепловой нагрузки на нагреватель

Рис. 1. Схема экспериментальной ячейки.

может приводить к образованию на нем паровой пленки и к дальнейшему развитию тепломассопереноса, выражающегося в виде движения или колебаний межфазной поверхности. Эти процессы сопровождаются повышением давления над зеркалом жидкости, поэтому в ходе эксперимента продолжается непрерывная откачка паров гелия, что, в свою очередь, приводит к понижению уровня жидкости в криостате. В некоторых сериях наблюдался переход через λ -точку, т.е. имеет место переход из сверхтекучего состояния в классическую жидкость — гелий I, при этом скорость изменения давления в криостате и характер поведения жидкости в канале изменялись (см. ниже).

3. После выключения тепловой нагрузки жидкий гелий вновь заполняет полость внутри канала, паровая пробка постепенно схлопывается и жидкость приходит в контакт с нагревателем. Для подготовки новой серии необходимо откачать пары гелия до минимального уровня (в разных сериях он варьировался от 350 до 3000 Па), а также повторно заполнить внутренний сосуд Дьюара жидким гелием из транспортного сосуда, если уровень гелия опускается на уровень экспериментальной ячейки.

Результаты экспериментов

На основании проведенных экспериментальных исследований (всего 28 сессий) в интервале давлений 262 ÷ 5050 Па и нагрузок 3 ÷ 90 кВт/м², исходя из данных видеозаписи и анализа поведения межфазной поверхности, можно выделить следующее характерное поведение гелия II в U-образном канале:

 отсутствие пара/межфазной поверхности при относительно высоком давлении и низкой нагрузке (11 серий);

возникновение постоянных колебаний (11 серий);

 уменьшение амплитуды колебаний с ростом давления в криостате, а следовательно, и температуры жидкости (4 серии);

— затухание колебаний с уменьшением нагрузки (2 серии).

Для нормальных жидкостей (азот, гелий I) имело место возникновение паровой пробки определенной величины, при этом формировалась гладкая межфазная поверхность (на гелии — 3 серии, на азоте — 2 серии).

На рис. 2 представлены начальные параметры эксперимента, при которых возникал или не возникал пар вблизи нагревателя. Видно, что пар образуется при превышении

определенной тепловой нагрузки q_w (пиковое значение). При одинаковой глубине погружения нагревателя *h* пиковое значение теплового потока зависит от давления пара P_b в криостате и соответствующей ему по линии насыщения температуры жидкости. При средних давлениях (800–1000 Па) при располагаемых в экспериментах уровнях тепловой нагрузки пар в основном не возникал, тогда как при низких давлениях (ниже 500 Па) при той же тепловой нагрузке наблюдалось его образование.

Рис. 2. Условия возникновения/невозникновения пара.

пар появляется и начинаются колебания,
 2 — пар отсутствует.

Рис. 3. Рост и схлопывание паровой пробки в канале (интервал между кадрами ~ 0,067с) при $q_{\rm w} = 11$ кВт/м². $a - P_{\rm b} = 1286$ Па, $b - P_{\rm b} = 4570$ Па.

Оценить величину пиковой нагрузки возможно косвенным образом на основании данных о восстановительной нагрузке, которую можно рассчитать аналитически на основании методики [15]. Приложение указанной методики расчета к настоящей форме канала представлено в работе [12].

Вследствие образования пара вблизи нагревателя происходит рост объема парового пространства, межфазная поверхность начинает смещаться в направлении от нагревателя. По достижении определенного размера паровой пробки рост останавливается, а затем начинается движение границы раздела фаз в сторону нагревателя, т.е. паровой объем начинает уменьшаться. Достигнув нагревателя, паровой объем практически исчезает, схлопывание сопровождается характерным звуковым эффектом, затем процесс повторяется вновь (рис. 3). Таким образом, реализуются колебания с постоянными амплитудой и частотой на протяжении длительного (несколько минут) времени.

При некотором сочетании параметров эксперимента амплитуда колебаний превышает видимое пространство канала (~90 мм), межфазная поверхность уходит в другое колено, то есть оценивать амплитуду можно только на основании экстраполяции данных в закрытую область. Однако частоту колебаний можно определить по схлопыванию, в том числе по подсчету звуковых сигналов вскипания. На рис. 4 приведена зависимость положения границы раздела фаз от времени для рассматриваемого случая (за ноль принят момент подачи тепловой нагрузки). На основании кадров видеозаписи измерялось

Рис. 4. Начальные колебания границы раздела фаз при $q_{\rm w} = 11~{\rm \kappa Br/m^2}~(P_{\rm b} = 373~{\rm \Pi a}).$

положение границы раздела фаз пар-жидкость в определенные моменты времени, и полученные данные наносились на график в виде точек, которые для наглядности соединены линиями. Скорость границы раздела фаз изменялась в интервале 0 ÷ 1 м/с, частота развитых колебаний составляла 2,79 Гц.

Положение границы раздела фаз в зависимости от времени представлено на рис. 5 при разных значениях давления в криостате. При повышении давления для используемой

Рис. 6. Положение межфазной поверхности гелия I.

тепловой нагрузки колебания границы раздела фаз видны в полном объеме. Эта серия проводится при выключенной откачке.

Исходя из экспериментальных данных, можно сделать вывод о том, что амплитуда колебаний при повышении давления в сосуде, а значит, и температуры жидкости, уменьшается. Как видно на последнем графике (рис. 5*d*), уменьшение колебаний приводит к нестабильности с непостоянной амплитудой.

Переход от сверхтекучего состояния в нормальное сопровождается прекращением колебаний, межфазная поверхность останавливается в определенном положении (расстояние до нагревателя составляет около 4 мм), при этом она остается гладкой (рис. 6). Дальнейшее изменение размера паровой области связано с изменением давления.

Математическое моделирование и сравнение полученных результатов с экспериментальными данными

Рассматривается нестационарная задача о движении сверхтекучего гелия в U-образном канале внутренним диаметром d_k и длиной L_k , в одном колене которого располагается нагреватель (рис. 1). При подаче тепловой нагрузки q_w на нагреватель около него образуется пар и начинается движение межфазной поверхности, координата границы раздела фаз записывается как x(t). Весь канал располагается в объеме сверхтекучего гелия на определенной глубине h. Над свободной поверхностью жидкости поддерживается постоянное давление пара P_b , при этом считается, что жидкость находится в равновесии при температуре $T_b = T_s(P_b)$. Задача расчета состоит в определении временных зависимостей характерных параметров процесса, в том числе в описании динамики границы раздела фаз пар-жидкость. Для корректного сравнения с экспериментальными данными предполагается, что $x(t) < L_k/2$.

Следует отметить, что в работах [7, 9] рассматривалось стационарное течение гелия в канале с паром. Вследствие такой постановки задачи колебательных режимов в численных решениях получено не было. В настоящей работе исследуются именно нестационарные эффекты и движение межфазной поверхности с ускорением.

В работе [16] на основе уравнения Рэлея, учитывающего массовый поток от границы раздела фаз, была проанализирована динамика границы раздела фаз пар-жидкость при кипении сверхтекучего гелия на поверхности нагревателя в условиях микрогравитации. В качестве исходных данных использовались эмпирические величины скорости и размера пузырька в определенный момент времени [17]. Прогноз, полученный с помощью математической модели, в разумных пределах соответствовал эмпирическим зависимостям размера пузырька пара от времени.

В работе [18] решение для сферического нагревателя в объеме сверхтекучего гелия было улучшено на основе уравнений двухскоростной гидродинамики Ландау – Халатникова, где было выведено новое уравнение, описывающее движение границы раздела пар – жидкость. Это уравнение существенно отличается от классического уравнения Рэлея и включает дополнительные диссипативные члены для учета взаимного влияния нормального и сверхтекучего движений. Численные решения продемонстрировали различия в данных по скоростям затухания колебаний межфазной поверхности и лучшее

согласование с результатами эксперимента по сравнению с подходом, когда жидкость рассматривается как единое целое.

Известно, что при некоторой скорости движения в гелии II возникают вихревые линии, петли и клубки, пронизывающие весь заполненный им исследуемый объем. Эти вихри взаимодействуют с нормальным компонентом, т.е. безвихревое сверхтекучее движение перестает существовать и возникает сила взаимного трения двух компонентов гелия II. Помимо этого, как и для обычных жидкостей, здесь существует критическая скорость $V_{n,cr}$, при которой осуществляется переход от ламинарного режима течения нормального компонента движения к турбулентному. Этот переход соответствует числу Рейнольдса Re_{n,cr} = 1200 [19]. Тогда оценку критического теплового потока $q_{n,cr}$ можно провести для диаметра экспериментального канала $d_k = 16$ мм при температуре 2 К на основании следующего соотношения:

$$q_{\rm n,cr} = \rho' STV_{\rm n,cr} = ST \frac{\text{Re}_{\rm n,cr} \cdot \eta'}{d_{\rm k}} = 207, \text{ Bt/m}^2,$$

где S — энтропия жидкости, ρ' — плотность жидкости, η' — вязкость нормального компонента.

Величину критической скорости движения сверхтекучего компонента $V_{s,cr}$ можно определить на основании размерной эмпирической зависимости [19], в которой d_k представлено в см, а $V_{s,cr}$ — в см/с:

$$V_{\rm s,cr} = \frac{1}{{d_k}^4} = 0,889 \text{ cm/c}.$$

Для неподвижного гелия выполняется условие: $\rho_{\rm s}V_{\rm s} + \rho_{\rm n}V_{\rm n} = 0$, следовательно, критический тепловой поток для сверхтекучей компоненты $q_{\rm s,cr}$ определяется как

$$q_{\rm s,cr} = \rho' STV_{\rm s,cr} \frac{\rho_{\rm s}}{\rho_{\rm n}} = 1930 \text{ Bt/m}^2,$$

где $\rho_{\rm s}$ и $\rho_{\rm n}$ — соответственно плотности сверхтекучего и нормального компонента при данной температуре.

В рассматриваемых экспериментах реализовывались существенно большие тепловые потоки, поэтому предлагается исследовать в первом приближении движение всего объема гелия II, имея в виду взаимодействие его компонент. Безусловно, более строгое описание должно учитывать особенности такого взаимодействия. Оно может быть осуществлено методами гидродинамики сверхтекучей турбулентности [20], что является предметом и перспективой дальнейшего изучения.

Запишем следствие из уравнения баланса сил, действующих на жидкость в канале при условии, что мениск находится в колене с нагревателем $(\sum F = ma)$:

$$\Delta P \cdot \frac{\pi d_k^2}{4} - \rho' \frac{\pi d_k^2}{4} gx(t) = \rho' \frac{\pi d_k^2}{4} (L_k - x(t)) \frac{d^2 x(t)}{dt^2}.$$
 (1)

Оно представляет собой уравнение движения для невязкой несжимаемой жидкости. Здесь $\frac{d^2 x(t)}{dt^2} = x''(t)$ — ускорение межфазной поверхности гелий II-пар (см. рис. 1), ΔP — разность давлений в жидкости между межфазной поверхностью и свободным объемом, ρ' — плотность жидкости, g — ускорение силы тяжести. Давление пара вблизи нагревателя *P*" определяется с помощью уравнения, полученного при решении кинетического уравнения Больцмана для задач испарения – конденсации в линейной постановке [21] при условии равенства нулю потока массы с межфазной поверхности:

$$P'' - P_{\rm s}(T_1) = 0,44 \frac{q_{\rm w}}{\sqrt{2R_{\rm h}T_1}},\tag{2}$$

где $P_{\rm s}(T_1)$ — равновесное давление насыщения, соответствующее температуре межфазной поверхности T_1 , $R_{\rm h}$ — индивидуальная газовая постоянная.

Как следует из визуальных наблюдений, межфазная поверхность остается плоской, поэтому давление пара на межфазной поверхности приравнивается к давлению в жид-кости:

$$P_1 = P''. \tag{3}$$

Разность температур в сверхтекучем гелии, заключенном в канале, определяется на основании полуэмпирической теории Гортера – Меллинка [11]:

$$T_{1} - T_{b} = f(T)q_{w}^{3} (L_{k} - x(t)),$$
(4)

где f(T) — функция Гортера – Меллинка.

Используя уравнение Клапейрона–Клаузиуса, можно получить соотношение для разности давлений в жидкости ΔP :

$$\Delta P = P_1 - (P_b + \rho'gh) = \frac{0.44q_w}{\sqrt{2R_hT_1}} + P_s(T_1) - (P_b + \rho'gh) = \frac{0.44q_w}{\sqrt{2R_hT_1}} + \frac{h_{LG}P_b}{R_hT_b^2} f(T)q_w^3 (L_k - x(t)) - \rho'gh.$$
(5)

При подстановке (5) в (1) получим соотношение для анализа в окончательном виде:

$$\frac{d^2 x(t)}{dt^2} = \frac{1}{L_{\rm k} - x(t)} \left[\frac{0.44q_{\rm w}}{\rho' \sqrt{2R_{\rm h}T_{\rm l}}} - \left(x(t) + h\right)g \right] + \frac{h_{\rm LG}P_{\rm b}}{\rho' R_{\rm h}T_{\rm b}^2} f(T)q_{\rm w}^{-3}.$$
(6)

Поскольку уравнение (6) представляет собой обыкновенное дифференциальное уравнение второго порядка, необходимо задать начальные условия:

$$t = 0, \quad x(t) = 0, \quad x'(t) = 0,$$
 (7)

здесь $\frac{dx(t)}{dt} = x'(t)$ — скорость движения границы раздела фаз. Решение уравнения для

данных рис. 4, 5 приводит к результатам, отображенным на рис. 7.

Результаты расчета отображают изменения амплитуды и частоты колебаний. Необходимо отметить, что поскольку уравнение (6) справедливо только в пределах $L_k/2$, то данные рис. 5*d* оказываются за пределами применимости расчетной модели.

Сопоставление результатов расчета и экспериментальных данных (рис. 8) показывает, что значения расчета амплитуды колебаний отклоняются систематически не менее, чем на 35 %. При этом в эксперименте по мере роста давления амплитуда колебаний монотонно снижается (так же, как и частота), тогда как при расчете оказывается, что зависимость носит немонотонный характер с минимумом около 2000 Па. Такая тенденция отмечалась еще в работе [12], и, по всей видимости, она соотносится с зависимостью

Рис. 7. Расчет движения границы раздела фаз для данных, изображенных на рис. 5.

функции Гортера – Меллинка в этом интервале температур, которая также имеет минимум. По мере приближения к λ -точке расхождения между теоретическими и экспериментальными данными оказываются существенными и согласование с результатами эксперимента можно отметить только в контексте наличия колебаний.

На рис. 9 для сопоставления представлены данные по колебаниям, полученные в расчете и в эксперименте при $q_w = 11 \text{ kBt/m}^2$ и $P_b = 1286 \text{ Па}$. По амплитуде расхождение составляет около 35 %, а отклонение по частоте — 38 %. Тем не менее, здесь можно проследить согласованность с результатами эксперимента, так как воспроизводятся колебания границы раздела фаз, которые обусловлены следующими факторами. По мере удаления границы раздела фаз от нагревателя температура жидкости уменьшается, следовательно, уменьшается и давление вблизи границы раздела фаз. При этом межфазная поверхность разгоняется и по инерции смещается дальше, чем точка равновесия, в которой давление пара равно давлению на свободном конце канала. После этого движение жидкости замедляется, она останавливается и начинается обратное движение. Межфазная

1 — результаты расчета, *2* — данные эксперимента.

поверхность снова разгоняется уже в обратную сторону, при этом пар начинает конденсироваться и еще больше разгоняет движение — настолько, что межфазная поверхность ударяет в поверхность нагревателя. Однако на видеозаписи не удалось обнаружить кадр, в котором совсем отсутствуют признаки пара. По всей видимости, пока нагрузка непрерывно подается на нагреватель, пар всегда существует около его поверхности, если он образовался в начальный момент времени. В классической жидкости процессы тепломассопереноса ограничены низкой, по сравнению со сверхтекучим гелием, эффективностью теплопередачи теплопроводностью в жидкости, в результате чего температура межфазной поверхности повышается, а обратного процесса (охлаждения жидкости ниже точки насыщения) не происходит, то есть тепловые и, как следствие, гидродинамические колебания отсутствуют.

Эффекты, приводящие к отклонению экспериментальных и расчетных данных, предстоит определить на основании анализа влияния тепловой нагрузки на полученные параметры. Возможно также, что наблюдаемое отличие результатов расчета и эксперимента обусловлено простотой физической модели, не учитывающей в нужной степени особенности сверхтекучего и нормального турбулентных движений He II.

Заключение

Проведены экспериментальные исследования движения межфазной поверхности гелия II в U-образном канале. Представлено описание экспериментальной ячейки, методики проведения исследований и полученных результатов. При подаче тепловой нагрузки ниже определенной величины пар на поверхности нагревателя не образуется и жидкость находится в непосредственном контакте с нагревателем. Представлена диаграмма параметров, при которых возникает или не возникает пар. В случае подачи тепловой нагрузки выше пиковой происходит образование пара и межфазная поверхность совершает макроскопические колебания с постоянными амплитудой и частотой, которые зависят от параметров эксперимента — температуры жидкости и глубины погружения экспериментальной ячейки. Результаты решения уравнения движения для сверхтекучего гелия, выведенного авторами, согласуются с полученными экспериментальными данными при средних давлениях по амплитуде и частоте колебаний в некотором диапазоне параметров. Наибольшие расхождения расчетных и опытных данных наблюдаются при больших давлениях вблизи λ -точки. При переходе гелия из сверхтекучего состояния в нормальное колебания прекращаются и формируется гладкая граница раздела фаз пар-жидкость.

Авторы благодарят Ячевского И.А., Корнякова И.А., Евко Е.А. за помощь в подготовке и организации экспериментов.

Список литературы

- 1. Lebrun Ph. Cryogenics for high-energy particle accelerators: highlights from the first fifty years // IOP Conf. Series: Materials Sci. and Engng. 2017. Vol. 171. P. 012001-1–012001-10.
- 2. Zu H., Dai W., de Waele A.T.A.M. Development of dilution refrigerators A review // Cryogenics. 2022. Vol. 121. P. 103390-1–103390-5.
- **3. Jahromi A.E., Miller F.K.** Modeling, development, and experimental validation of a Joule–Thompson superfluid refrigerator using a pulse tube cryocooler // Cryogenics. 2014. Vol. 61. P. 15–24.
- 4. Dolzhikov A., Gorodnov I., Borisov N., Usov Yu. A dilution cryostat for experiments with the polarized target // AIP Conf. Proceedings. 2019. Vol. 2163. P. 080003-1–080003-5.
- 5. Putselyk S. Application of sub-cooled superfluid helium for cavity cooling at linac-based free electron lasers, energy recovery and proton linacs // IOP Conf. Series: Materials Sci. and Engng. 2020. Vol. 755. P. 012098-1–012098-8.

- 6. Zhang X., Ren Y., Wang F., Chen W. Development of a superconducting magnet system with zero liquid helium boil-off // The J. of Superconductivity and Novel Magnetism. 2014. Vol. 27. P. 1027–1030.
- 7. Королев П.В., Крюков А.П. Движение сверхтекучего гелия в капилляре с паром при наличии продольного теплового потока // Вестн. МЭИ. 2002. № 1. С. 43–46.
- 8. Королев П.В., Крюков А.П., Медников А.Ф. Экспериментальное исследование движения гелия-II в капилляре при наличии паровой полости вблизи нагревателя // Вестн. МЭИ. 2006. № 4. С. 27–33.
- 9. Пузина Ю.Ю., Королев П.В., Крюков А.П. Течение гелия-II в канале с пористой вставкой при безвихревом сверхтекучем движении // Вестн. МЭИ. 2017. № 4. С. 8–14.
- 10. Korolyov P.V., Kryukov A.P., Puzina Yu.Yu., Yachevsky I.A. Experiments of superfluid helium flow in a channel with a monodisperse backfill // J. of Physics: Conf. Series. 2020. Vol. 1683. P. 022017-1–022017-5.
- Gorter C.J., Mellink J.H. On the irreversible processes in liquid helium II // Physica. 1949. Vol. XV, No. 3–4. P. 285–304.
- 12. Крюков А.П., Пузина Ю.Ю. Колебания межфазной поверхности гелий II-пар при движении в канале относительно большого диаметра // Вестн. МЭИ. 2023. № 3 С. 285–304.
- 13. Крюков А.П., Королев П.В., Пузина Ю.Ю. Экспериментальное исследование кипения Не-II внутри пористого тела // Прикл. механика и технич. физика. 2017. № 4. С. 126–134.
- 14. Володин И.В., Корняков И.А., Ячевский И.А. Автоматизация экспериментального стенда по исследованию кипения сверхтекучего гелия // Материалы VI междунар. научно-практической конф.: Информатизация инженерного образования, 12–15 апреля 2022. М.: Изд-во МЭИ, 2022. С. 64–68.
- Kryukov A.P., Van Sciver S.W. Calculation of the recovery heat flux film boiling in superfluid helium // Cryogenics. 1981. Vol. 21, No. 9. P. 525–528.
- 16. Grunt K., Lewkowicz M., Pietrowicz S. et al. Dynamics of vapour bubbles induced during the boiling of superfluid helium under microgravity conditions // Intern. J. of Heat and Mass Transfer. 2019. Vol. 134. P. 1073–1083.
- Takada S., Kimura N., Pietrowicz S. et al. Visualization of He II boiling process under the microgravity condition for 4.7 s by using a drop tower experiment // Cryogenics. 2018. Vol. 89. P. 157–162.
- Nemirovskii S.K. Cavity evolution and the Rayleigh-Plesset equation in superfluid helium // Physical Review B. 2020. Vol. 102. P. 064511-1–064511-6.
- 19. Van Sciver S.W. Helium cryogenics. New York: Springer-Verlag. 2012. 470 p.
- Nemirovskii S.K. Quantum turbulence: theoretical and numerical problems // Physical Reports. 2013. Vol. 524. P. 85–202.
- 21. Муратова Т.М., Лабунцов Д.А. Кинетический анализ процессов испарения и конденсации // Теплофизика высоких температур. 1969. Т. 7, № 5. С. 959–976.

Статья поступила в редакцию 15 марта 2023 г.,

после доработки — 31 марта 2023 г.,

принята к публикации 16 июня 2023 г.