УДК 665.642:547.9

DOI: 10.15372/KhUR2023460

EDN: TUOXWW

Состав продуктов термического крекинга SARA фракций тяжелой метановой нефти

Г. С. ПЕВНЕВА, Н. Г. ВОРОНЕЦКАЯ

Институт химии нефти СО РАН, Томск (Россия)

E-mail: pevneva@ipc.tsc.ru

Аннотация

Исследованы изменения состава SARA (Saturates, Aromatics, Resins, Asphaltenes) фракций — насыщенных и ароматических углеводородов, смол и асфальтенов — метановой нефти Зюзеевского месторождения (Республика Татарстан) в процессе термического крекинга. Крекинг фракций проводили при 450 °C в течение 120 мин в изотермических условиях. Получены данные по материальному балансу процесса, составу жидких и газообразных продуктов крекинга. Показано, что углеводородный состав жидких продуктов и выход побочных — твердых и газообразных — продуктов зависит от состава исходных SARA фракций. Так, при крекинге фракции асфальтенов выход твердых продуктов максимален, а наибольшее количество газов образуется при крекинге фракции смол. Установлено, что в процессе крекинга SARA фракций происходит новообразование тех компонентов, которые изначально отсутствовали в реакционной среде. Показано, что на содержание и состав продуктов термолиза смол и асфальтенов оказывают влияние структурные особенности их молекул.

Ключевые слова: крекинг, насыщенные и ароматические углеводороды, смолы, асфальтены, состав

ВВЕДЕНИЕ

Одним из процессов углубленной переработки тяжелого нефтяного сырья является термический крекинг, который направлен на увеличение выхода дистиллятных фракций для последующего производства моторных топлив и масел. Качество продуктов, получаемых в процессах термической переработки, зависит от состава и свойств сырья, а также от применяемых технологий [1]. Для предотвращения проблем, возникающих в процессе переработки тяжелых нефтей вследствие высокого содержания смол и асфальтенов, необходимо изучение их реакционной способности [2-4], взаимного влияния на направленность превращений нефтяных компонентов в термических процессах, на формирование "вторичных" асфальтенов и смол [5-8]. Исследования в этой области посвящены, главным образом, изучению особенностей структурной организации молекул смол и асфальтенов. Проведение термолиза нефтяной дисперсной системы в целом не может корректно установить реакционную способность того или иного компонента без влияния прочих компонентов нефти. В связи с этим для изучения термических превращений ее компонентов используется такой прием, как "упрощение" состава за счет объединения всех компонентов в однородные по термической стабильности классы - насыщенные (алканы и циклоалканы) и ароматические (моно-, би- и полиарены) углеводороды, смолы (полярные соединения, обогащенные гетероатомами) и асфальтены (полярные соединения, не растворимые в избытке гексана или гептана) [9]. В настоящее время проводятся исследования термического крекинга насыщенных углеводородов (НУВ) [10-12], ароматических углеводородов (АУВ) [13-16], смол [17-19] и асфальтенов [20-22] для изучения кинетики и механизмов деструкции. Потенциальным резервом для углубления переработки тяжелого углеводородного сырья служат смолы и асфальтены, которые способны генерировать низкомолекулярные компоненты. Ранее авторами был проведен цикл исследований по изучению термических превращений компонентов тяжелой нафтеновой нефти и их взаимном влиянии [23–25]. Цель данной работы — изучение изменения состава SARA (Saturates, Aromatics, Resins, Asphaltenes) фракций — насыщенных и ароматических углеводородов, смол и асфальтенов — тяжелой нефти метанового типа в процессе термического крекинга.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования служит тяжелая метановая нефть Зюзеевского месторождения (Республика Татарстан), ее характеристики представлены в табл. 1 [24]. Нефть имеет высокую плотность ($940.0~{\rm kr/m^3}$) и вязкость ($742.9~{\rm mm^2/r}$), является высокосернистой ($4.5~{\rm mac.}$ %). Содержание высокомолекулярных смолисто-асфальтеновых компонентов достигает $40.3~{\rm mac.}$ %.

Выделение из нефти SARA фракций проводилось по методике, описанной в [24]. Пробу нефти разбавляли 40-кратным избытком n-гексана. Через сутки осадок асфальтенов отфильтровывали, промывали горячим гексаном для удаления соосажденных масел и смол в аппарате Сокслета. Полученные после деасфальтенизации мальтены наносили на силикагель АСК и в аппарате Сокслета и-гексаном экстрагировали масла (концентрат НУВ и АУВ), а затем смесью бензола и этанола (1 : 1 по объему) - смолы. Методом колоночной жидкостно-адсорбционной хроматографии на силикагеле масла разделяли на фракции НУВ и АУВ. Разделение масел контролировали методами УФ-спектроскопии и хромато-масс-спектрометрии.

Крекинг SARA фракций проводили в автоклаве объемом 12 см³ при температуре 450 °С и продолжительности 120 мин. Масса сырья, загружаемого в реактор, составляла 7 г. Условия крекинга выбраны на основании результатов исследований, изложенных в работе [18]. По окончании крекинга рассчитывали материальный баланс процесса. Выход газообразных продуктов определяли по потере массы реактора с образцом после удаления из реактора газовых продуктов. Жидкие продукты декантировали, отфильтровывали от твердых продуктов. После отбора жидких продуктов реактор промывали хлороформом и взвешивали. Выход коксоподобных твердых продуктов определялся как сумма массы осадка с фильтра и разности между массой реактора до эксперимента и после.

Методика определения вещественного состава жидких продуктов крекинга — содержание асфальтенов, смол и масел — подробно описана в [24]. Групповой углеводородный состав масел — содержание насыщенных углеводородов, моно-, би-, три- и полиренов исходной нефти и термолизатов — определяли методом тонкослойной хроматографии на пластинках Silufol с люминофором UV 254 нм по методике, описанной в [19].

Состав газообразных продуктов крекинга определяли с помощью метода газожидкостной хроматографии с использованием хроматографа "Хроматэк-Кристалл 5000" (Россия) согласно ГОСТ 31371.3-2008. Детектирование водорода, кислорода и азота осуществлено на колонке, наполненной молекулярными ситами NaX (фракция 80-100 меш, длина колонки 3 м, внутренний диаметр 2 мм). Скорость газа-носителя (аргон) — 30 мл/мин. Разделение углеводородов C_1 - C_6 проведено на колонке, наполненной полимерным сорбентом Рогарак R (фракция 80-100 меш, длина колонки 3 м, внутренний диаметр 2 мм). Скорость газа-носителя (гелий) — 30 мл/мин.

Расчет средних структурных параметров выполнен по эмпирическим формулам на основе данных ядерного магнитного резонанса (ЯМР), элементного состава и значений молекулярной массы [25]. Спектры ¹Н ЯМР регистрировали с помощью Фурье-спектрометра AVANCE AV 300 (Германия, растворитель — дейтерохлороформ, внутренний стандарт — гексаметилдисилоксан). Средние молекулярные массы асфальтенов измеряли криоскопическим методом в нафталине.

ТАБЛИЦА 1 Характеристика метановой нефти [24]

Показатель	Значение
Плотность, кг/м ³	940.0
Фракция н. к.*–360 °С, мас. $\%$	30.8
$S_{o6III}^{}$, mac. $\%$	4.5
Смолы, мас. %	28.1
Асфальтены, мас. %	12.2
Масла, % мас., в том числе:	59.7
Насыщенные углеводороды (НУВ), мас. %	21.6
Ароматические углеводороды (АУВ), мас. %	38.1

^{*} Начало кипения.

Элементный состав асфальтенов определяли с использованием CHNS-анализатора Vario EL Cube (Германия) методом прямого сожжения при 1200 °С с последующим разделением газов и продуктов сгорания в трех адсорбционных колонках (газ-носитель — гелий) и идентификацией с помощью детектора по теплопроводности.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Из данных по содержанию в зюзеевской нефти SARA фракций видно (см. табл. 1), что на долю фракций НУВ приходится 21.6 %, АУВ — 38.1 %, смол — 28.1 %, асфальтенов — 12.2 %. В дальнейшем эти фракции были подвергнуты крекингу и изучены составы их продуктов. Данные по материальному балансу процесса крекинга SARA фракций представлены в табл. 2.

Фракция насыщенных углеводородов

При крекинге фракции НУВ образуется 2.1 % газов и незначительное количество твердых продуктов, выход которых составляет 0.1 % (см. табл. 2). В составе газообразных продуктов присутствуют водород, монооксид углерода и углеводородные газы $C_1 - C_4$ (табл. 3). Присутствие водорода может быть следствием протекания реакций дегидрирования циклических НУВ. Монооксид углерода образуется за счет реакций декарбоксилирования карбонильных и/или карбоксильных соединений, которые могут присутствовать в составе фракции НУВ. Низкомолекулярные углеводороды С,-С, генерируются при крекинге НУВ в результате протекания реакций деструкции алканов и алкилзамещенных циклоалканов [10]. Содержание газообразных углеводородов в продуктах крекинга уменьша-

ТАБЛИЦА 2 Материальный баланс и состав продуктов крекинга SARA фракций

Продукты	Содержание фракции, мас. %			
	НУВ	АУВ	Смолы	Асфальтены
Газообразные	2.10	3.50	27.4	18.70
Твердые	0.10	1.20	6.2	56.10
Жидкие, в том числе:	97.80	95.30	66.4	25.20
Смолы	0.45	7.31	12.9	4.21
Асфальтены	0.02	0.23	13.2	3.81
Масла	97.37	87.74	40.3	17.14

Примечание. НУВ – насыщенные углеводороды; АУВ – ароматические углеводороды.

ется в ряду: $CH_4 > C_2H_6 > \Sigma C_4 > C_3H_8$. На долю метана приходится более 50 %. Состав газов согласуется с литературными данными [11, 12].

Образование твердых продуктов, а также смол и асфальтенов в жидких продуктах (термолизатах) крекинга фракции НУВ дает основания полагать, что в процессе термических превращений протекают не только реакции деструкции, которые приводят к образованию углеводородных газов и соединений с небольшой молекулярной массой, но и реакции конденсации углеводородных радикалов (см. табл. 2). Анализ данных группового углеводородного состава термолизата фракции НУВ показал, что в процессе крекинга также образуются АУВ, но их количество невелико (табл. 4). В работах [12, 14, 26] отмечено, что при термолизе алканов могут образовываться арены в результате реакций циклизации и ароматизации. Кроме того, к образованию моноаренов могут приводить реакции дегидрирования моноциклических нафтенов. Как показано в [10], пиролиз 1-н-бутилдекалина приводит к образованию четырех основных химических семейств продуктов (схема 1): нормальных алканов (метан, этан, пропан и н-бутан), бицикланов (декалин и 1-метилдекалин), нафтеноаренов (тетралин, 5-метилтетралин) и биаренов (нафталин и 1-метилнафталин). Нормальные алканы (кроме CH_4 и C_2H_6), а также бицикланы образуются при разрыве связи С-С боковой алкильной цепи 1-н-бутилдекалина. Метан и этан образуются при дальнейшей деструкции радикалов, включая разрыв кольца. Как нафтеноарены, так и биарены являются вторичными продуктами, которые образуются в результате реакций ароматизации декалина и 1-метилдекалина [10].

ТАБЛИЦА 3 Состав газообразных продуктов крекинга SARA фракций

Компоненты	Содержание фракции, мас. %				
	НУВ	АУВ	Смолы	Асфальтены	
$\overline{\mathrm{H}_{2}}$	0.17	0.03	0.38	0.20	
CO	0.05	0.24	0.25	0.09	
CO_2	0	0.05	4.99	0.75	
CH_4	1.11	1.63	11.36	7.85	
C_2H_6	0.42	0.72	5.60	5.27	
C_3H_8	0.07	0.54	2.94	2.90	
$\Sigma C_{\overline{4}}$	0.24	0.34	1.83	1.64	
Выход	2.06	3.55	27.35	18.70	

Примечание. Обозн. см. табл. 2.

ТАБЛИЦА 4	
Групповой углеводородный состав исходных SARA фракций и их термолиза:	гов

Углеводороды	Содержание фракции, мас. %							
	НУВ		АУВ		Смолы		Асфальтены	
	Исх.	Терм.	Исх.	Терм.	Исх.	Терм.	Исх.	Терм.
Насыщенные	100	90.1	_	11.0	_	10.2	_	5.5
Моноарены	_	7.3	32.5	7.0	_	7.0	_	1.9
Биарены	_	Отс.	12.5	19.8	_	2.4	_	1.3
Триарены	_	Отс.	17.5	4.0	_	3.0	_	1.1
Полиарены	-	Отс.	37.9	45.8	_	17.6	_	7.3

Примечания. 1. Исх. – исходная фракция; терм. – фракция после термолиза. 2. Прочерк – отсутствуют.

При термическом воздействии параллельно протекает множество как первичных, так и вторичных реакций. Реакции конденсации, в которые вовлекаются образующиеся при крекинге фракции НУВ радикалы высокомолекулярных циклических насыщенных и ароматических УВ, способствуют образованию смол, асфальтенов, твердых продуктов.

Таким образом, при крекинге фракции НУВ, состоящей из алканов и циклоалканов, за счет реакций деструкции и деалкилирования образуются углеводороды с небольшой молекулярной массой, в том числе и газообразные С₁-С₄. Вероятный механизм образования моноароматических углеводородов — это реакции дегидрирования моно- и бициклических нафтенов с образованием углеводородов ряда бензола и тетралина. Образованию смол, асфальтенов, твердых продуктов способствуют реакции поликонденсации углеводородных радикалов.

Фракция ароматических углеводородов

Главной термической реакцией алкилзамещенных АУВ является деструкция боковой цепи по β-связи, приводящая к образованию как низкомолекулярных алканов, так и метилированных аренов [27, 28]. Образовавшиеся в процессе крекинга фракции АУВ углеводородные радикалы также могут участвовать в реакциях поликонденсации, приводящих к последовательному образованию смол, асфальтенов и далее твердых коксообразных продуктов уплотнения [16, 26, 27].

При крекинге фракции АУВ образуется больше газообразных и твердых продуктов, а также смол и асфальтенов, чем при крекинге фракции НУВ (см. табл. 2). Больший выход газообразных продуктов при крекинге этой фракции обусловлен меньшими энергозатратами, требующимися для разрыва связи С-С в β-положении к ароматическому кольцу [13].

Присутствие низкомолекулярных углеводородов C_1 – C_4 в составе газов обусловлено реакциями деалкилирования алкилзамещенных АУВ [14, 16]. Видно (см. табл. 3), что содержание газообразных углеводородов в термолизатах АУВ уменьщается в ряду: $\mathrm{CH_4} > \mathrm{C_2H_6} > \mathrm{C_3H_8} > \mathrm{\Sigma C_4}$.

На основе анализа группового углеводородного состава термолизата фракции АУВ установлено, что при ее крекинге образуются НУВ, смолы и асфальтены, отсутствующие в исходной смеси (см. табл. 4). Образование насыщенных соединений, вероятнее всего связано с реакциями деалкилирования алифатических заместителей по связи С-С в β-положении по отношению к ароматическому кольцу [28]. Авторы [13] показали, что в первую очередь крекингу подвергаются нафтенозамещенные арены, а затем алкил- и метилзамещенные. Отмечено значительное уменьшение содержания моно- и триаренов на фоне увеличения би- и полиароматических соединений. Реакции дегидрирования гибридных нафтеномоноароматических соединений и рекомбинация моноароматических радикалов с образованием углеводородов мостикового типа способствуют увеличению содержания биаренов [10, 12]. Увеличение содержания полиаренов наряду с уменьшением содержания моно- и триаренов может быть обусловлено наличием реакций рекомбинации радикалов, которые приводят

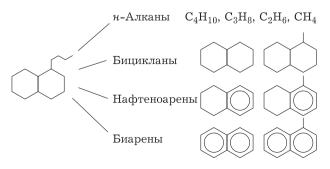


Схема 1.

ТАБЛИЦА 5 Структурные параметры исходных смод и асфальтенов

Показатель	Смолы	Асфальтены
Молекулярная масса, а. е. м.	827	1800
Число атомов в средней молекуле:		
C	54.9	124.4
H	74.7	154.2
N	0.7	2.1
S	1.9	4.4
Ο	1.5	1.5
H/C	1.37	1.25
Число углеродных атомов		
разного типа в средней молекуле:		
C_a	15.9	51.1
$C_{_{_{\rm H}}}$	25.2	38.0
$C_{_{\Pi}}$	13.8	35.3
Количество колец:		
$K_{_{ m o}}$	10.2	22.7
K_{a}	4.0	13.2
$ m K_{_{Hac}}$	6.2	9.5
$m_{_{ m a}}$	1.75	3.7
Распределение атомов С, отн. %		
$f_{ m a}$	29.0	41.1
$f_{_{ m H}}$	45.9	30.6
f_{π}	25.1	28.3

Примечание. C_a — углерод ароматический; C_H — углерод в нафтеновых кольцах; C_H — углерод в алкильных заместителях; K_o — общее количество колец; K_a — количество ароматических колец; K_H — количество нафтеновых колец; f_a , f_H , f_H — доля атомов углерода в ароматических, нафтеновых и парафиновых фрагментах; m_o — число блоков в молекуле.

к образованию фенилзамещенных тетрациклоароматических соединений [29]. Дальнейшее увеличение размеров полиаренов приводит к снижению их растворимости и образованию твердых продуктов, не растворимых в хлороформе [16].

Фракция смол

На основе данных ¹Н ЯМР-спектроскопии, элементного анализа и значений молекулярной массы проведен структурно-групповой анализ (СГА) молекул смол — рассчитаны их средние структурные параметры (табл. 5). Молекулярная масса смол равна 827 а. е. м., отношение Н/С — 1.37, содержание S составляет 7.2 мас. %. Средние молекулы смол являются двухблочными, их полициклические ядра в среднем состоят из 4 ароматических и 6 нафтеновых колец, атомы углерода преимущественно расположены в нафтеновых фрагментах, и их доля составляет 45.9 %. Высокое содержание атомов серы и углерода в алифатических фрагментах

смол будет способствовать увеличению выхода углеводородов — компонентов масел.

По данным материального баланса, выход газообразных продуктов при крекинге фракции смол максимален по сравнению с таковыми для остальных SARA фракций (см. табл. 2). Видно, что количество образовавшихся газов при крекинге смол превышает количество продуктов конденсации - асфальтенов и кокса, что указывает на превалирование реакций деструкции над реакциями конденсации. Газообразные продукты крекинга смол представлены водородом, СО и СО $_2$, углеводородами С $_1$ -С $_4$ (см. табл. 3). Отличительной особенностью состава этих газов является высокое содержание в них СО и газообразных углеводородов $C_1 - C_4$. Выход твердых продуктов крекинга фракции смол значительно выше, чем аналогичных продуктов крекинга фракций НУВ и АУВ, и составляет 6.2 % (см. табл. 2).

Анализируя состав жидких продуктов, следует отметить, что в процессе крекинга фракции смол образуются 13.2 % асфальтенов и 40.3 % масел (см. табл. 2). При этом в термолизате присутствуют и преобразованные "вторичные" смолы (12.9 %). Масла преимущественно состоят из АУВ, среди которых преобладают полициклические ароматические соединения. Доля НУВ составляет 25 отн. %. Это подтверждает данные СГА о том, что структура исходных смол обогащена алкильными заместителями.

Фракция асфальтенов

Асфальтены имеют молекулярную массу, равную 1800 а. е. м. (см. табл. 5). По данным элементного состава, отношение Н/С равно 1.25, а содержание серы составляет 7.7 %. Средние молекулы асфальтенов состоят из 4 структурных блоков, в которых содержится 13 ароматических и 9 нафтеновых колец, имеющих в своем окружении 35 атомов углерода в алкильном обрамлении. Атомы углерода преимущественно расположены в ароматических фрагментах. Выявленные структурные особенности асфальтенов определяют содержание и состав продуктов крекинга [30]. Термическая обработка асфальтенов приводит к отщеплению алифатических цепей, к потере водорода и обогащению углеродом с последующим образованием кокса. Асфальтены превращаются в мальтены, газ и кокс, при этом мальтены также трансформируются в асфальтены и кокс [31].

Содержание газообразных углеводородов в продуктах термолиза асфальтенов уменьшается в ряду: $\mathrm{CH_4} > \mathrm{C_2H_6} > \mathrm{C_3H_8} > \Sigma\mathrm{C_4}$ (см. табл. 3).

Несмотря на большой выход газообразных продуктов (18.7 %), количество продуктов конденсации в термолизате асфальтенов превышает выход продуктов их распада. Следовательно, реакции конденсации доминируют над реакциями деструкции (см. табл. 2). При крекинге асфальтенов выход твердых продуктов составляет 56.1 мас. %, кроме того образуется 25.2 мас. % жидких продуктов, основную долю которых составляют масла (68.0 отн. %). Крекинг асфальтенов сопровождается образованием 4.2 мас. % смол. В термолизате асфальтенов также присутствуют преобразованные "вторичные" асфальтены (3.8 мас. %), структура которых отличается от структуры исходных асфальтенов.

По данным группового углеводородного состава, в термолизате асфальтенов, так же как и в термолизате смол, присутствуют НУВ и АУВ (см. табл. 4). В составе термолизата преобладают АУВ, доля НУВ составляет 32.2 %. Концентрация аренов в термолизате изменяется в ряду: полиарены > моноарены > триарены > биарены.

ЗАКЛЮЧЕНИЕ

Изучены изменения состава SARA фракций – НУВ, АУВ, смол и асфальтенов, выделенных из тяжелой метановой нефти в процессе термического крекинга. Крекинг всех фракций сопровождается образованием газообразных, твердых и жидких продуктов. Установлено, что выход газов увеличивается в ряду $HУВ \to AУВ \to$ асфальтены \to смолы, а твердых – в ряду $HУВ \to AУВ \to$ асфальтены.

Показано, что в процессе крекинга SARA фракций происходит новообразование тех компонентов, которые изначально отсутствовали в реакционной среде. При крекинге фракции НУВ, состоящей преимущественно из алканов и циклоалканов, образуются углеводороды с небольшой молекулярной массой, в том числе и газообразные $C_{_1}$ – $C_{_{4+}}$, моноароматические углеводороды, смолы, асфальтены, твердые продукты. На основе анализа группового углеводородного состава термолизата фракции АУВ установлено, что при ее крекинге образуются НУВ, смолы и асфальтены, отсутствующие в исходной смеси. В составе термолизата этой фракции уменьшается содержание моно- и триаренов на фоне увеличения би- и полиароматических соединений по сравнению с их содержанием в исходной фракции. В составе термолизата смол присутствуют НУВ, АУВ, асфальтены и "вторичные" смолы. При крекинге асфальтенов образуются НУВ и АУВ, смолы. В этом термолизате также присутствуют преобразованные "вторичные" асфальтены.

Показано, что на содержание и состав продуктов термолиза смол и асфальтенов оказывают влияние структурные особенности их молекул.

Работа выполнена в рамках государственного задания ИХН СО РАН по проекту FWRN-2021-0005, финансируемого Министерством науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- 1 Халикова Д. А., Петров С. М., Башкирцева Н. Ю. Обзор перспективных технологий переработки тяжелых высоковязких нефтей и природных битумов // Вестн. Казанского технол. ун-та. 2013. № 3. С. 217–221.
- 2 Корнеев Д. С., Певнева Г. С. Состав продуктов низкотемпературной деструкции асфальтенов тяжелой нефти и нефтяных остатков // Химия уст. разв. 2020. Т. 28, № 3. С. 252—257.
- 3 Nguyen N. T., Park S., Jung J., Cho J., Lee C. W., Park Y.-K. Comparative reactivity between thermal and catalytic hydrocracking of vacuum residue: Effect of asphaltenes // J. Ind. Eng. Chem. 2018. Vol. 61. P. 32-38.
- 4 Корнеев Д. С., Певнева Г. С., Воронецкая Н. Г. Влияние состава и молекулярной структуры асфальтенов тяжелых нефтей на их реакционную способность в термодеструктивных процессах // Нефтехимия. 2021. Т. 61, № 2. С. 172–183.
- 5 Leon A. E., Guzman A., Laverde D. Termal cracking and catalytic hydrocracking of a Colombian vacuum residue and its maltenes and asphaltenes fractions in toluene // Energy Fuels. 2017. Vol. 31, No. 4. P. 3868-3877.
- 6 Hauser A., AlHumaidan F., Al-Rabiah H., Halabi M. A. Study on thermal cracking of Kuwaiti heavy oil (vacuum residue) and its SARA fractions by NMR spectroscopy // Energy Fuels. 2014. Vol. 28. P. 4321–4332.
- 7 Tannous J. H., de Klerk A. Asphaltenes formation during thermal conversion of deasphalted oil // Fuel. 2019. Vol. 255. Art. 115786.
- 8 Певнева Г. С., Воронецкая Н. Г., Гринько А. А., Головко А. К. Влияние смол и асфальтенов на термические превращения углеводородов на примере тяжелой нефти метанового типа // Нефтехимия. 2016. № 5. С. 461–468.
- 9 Varfolomeev M. A., Galukhin A., Nurgaliev D. K., Kok M. V. Thermal decomposition of Tatarstan Ashal'cha heavy crude oil and its SARA fractions // Fuel. 2016. Vol. 186. P. 122-127.
- 10 Rakotoalimanana D. A., Bounaceur R., Sirjean B., Béhar F., Burklé-Vitzthum V., Marquaire P.-M. Thermal cracking of 1-n-butyldecalin at high pressure (100 bar) // J. Anal. Appl. Pyrolysis. 2017. Vol. 123. P. 204-215.
- 11 Bounaceur R., Burkle-Vitzthum V., Marquaire P. M., Fusetti L. Mechanistic modeling of the thermal cracking of methylcyclohexane near atmospheric pressure, from 523 to 1273 K: Identification of aromatization pathways // J. Anal. Appl. Pyrolysis. 2013. Vol. 103. P. 240-254.
- 12 Burklé-Vitzthum V., Bounaceur R., Marquaire P. M., Montel F., Fusetti L. Thermal evolution of *n* and *iso*-alkanes in oils. Part 1: Pyrolysis model for amixture of 78 alkanes

- $\rm (C_1-C_{32})$ including 13,206 free radical reactions // Organic Geochemistry. 2011. Vol. 42, No. 5. P. 439–450.
- 13 Darouich T. Al., Behar F., Largeau C. Thermal cracking of the light aromatic fraction of Safaniya crude oil – Experimental study and compositional modelling of molecular classes // Organic Geochemistry. 2006. Vol. 37, No. 9. P. 1130-1154.
- 14 Behar F., Lorant F., Mazeas L. Elaboration of a new compositional kinetic schema for oil cracking // Organic Geochemistry. 2008. Vol. 39, No. 6. P. 764-782.
- 15 Fusetti L., Behar F., Bounaceur R., Marquare P. M., Grice K., Derenne S. New insights into secondary gas generation from the thermal cracking of oil: Methylated monoaromatics. A kinetic approach using 1,2,4-trimethylbenzene. Part I: A mechanistic kinetic model // Organic Geochemistry. 2010. Vol. 41, No. 2. P. 146-168.
- 16 Leininger J. P., Lorant F., Minot C., Behar F. Mechanism of 1-methylnaphthalene pyrolysis in a batch reactor and relevance with other methylated polyaromatics // Energy Fuels. 2006. Vol. 20, No. 6. P. 2518-2530.
- 17 Певнева Г. С., Воронецкая Н. Г., Корнеев Д. С., Головко А. К. Взаимное влияние смол и углеводородов на направленность их термических превращений // Нефтехимия. 2017. Т. 57, № 4. С. 479–486.
- 18 Дмитриев Д. Е., Головко А. К. Превращения смол и асфальтенов при термической обработке тяжелых нефтей // Нефтехимия. 2010. Т. 50, № 2. С. 102-109.
- 19 Дон А. Р., Воронецкая Н. Г., Гринько А. А., Головко А. К. Влияние смолисто-асфальтеновых веществ на термические превращения углеводородов природных битумов // Вестн. Томского гос. ун-та. 2015. № 393. С. 244-249.
- 20 Chacon-Patino M. L., Blanco-Tirado C., Orrego-Ruiz J. A., Gomez-Escudero A., Combariza M. Y. Tracing the compositional changes of asphaltenes after hydroconversion and thermal cracking processes by high-resolution mass spectrometry // Energy Fuels. 2015. Vol. 29, No. 10. P. 6330-6341.
- 21 AlHumaidan F. S., Hauser A., Rana M. S., Lababidi H. M. NMR Characterization of asphaltene derived from residual oils and their thermal decomposition // Energy Fuels. 2017. Vol. 31, No. 4. P. 3812-3820.

- 22 Lababidi H. M. S., Sabti H. M., AlHumaidan F. S. Changes in asphaltenes during thermal cracking of residual oils // Fuel. 2014. Vol. 117. P. 59-67.
- 23 Воронецкая Н. Г., Певнева Г. С., Корнеев Д. С., Головко А. К. Влияние асфальтенов на направленность термических превращений углеводородов тяжелой нефти // Нефтехимия. 2020. Т. 60, № 2. С. 183-191.
- 24 Певнева Г. С., Воронецкая Н. Г., Копытов М. А. Исследование процесса коксообразования SARA фракций методом термогравиметрии // Химия уст. разв. 2022. Т. 30, № 4. С. 406–412.
- 25 Певнева Г. С., Воронецкая Н. Г., Свириденко Н. Н. Крекинг мальтенов нафтеновой нефти в присутствии WC/Ni-Cr // Нефтехимия. 2020. Т. 60, № 3. С. 410-416.
- 26 Dominé F., Bounaceur R., Scacchi G., Marquaire P. M., Dessort D., Pradier B., Brevart O. Up to what temperature is petroleum table? New insights from a 5200 free radical reactions model // Organic Geochemistry. 2002. Vol. 33, No. 12. P. 1487-1499.
- 27 Tian H., Xiao X., Gan H., Yang L., Guo L., Shen J. A comparative experimental study on gas generation from saturated and aromatic hydrocarbons isolated from a Cambrian oil in Tarim basin // Geochemical Journal. 2010. Vol. 44, No. 2. P. 151–158.
- 28 Burklé-Vitzthum V., Michels R., Scacchi G., Marquaire P.-M., Dessort D., Pradier B., Brevart O. Kinetic effect of alkylaromatics on the thermal stability of hydrocarbons under geological conditions // Organic Geochemistry. 2004. Vol. 35, No. 1. P. 3-31.
- 29 Смирнов М. Б., Бродский Е. С., Ванюкова Н. А. Новый тип ароматичесикх углеводород нефти: три- и тетрациклоароматические фенилзамещенные соединения // Нефтехимия. 2020. Т. 60, № 3. С. 298–306.
- 30 Воронецкая Н. Г., Певнева Г. С. Структурные преобразования смол и асфальтенов тяжелой нефти при термическом крекинге // Химия твердого топлива. 2021. № 3. С. 37–42.
- 31 Nguyen N. T., Kang K. H., Seo P. W., Kang N., Pham D. V., Ahn C., Kim G. T., Park S. Hydrocracking of $\rm C_5$ -isolated asphaltene and its fractions in batch and semi-batch reactors // Energies. 2020. Vol. 13, No. 17. Art. 4444.