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ВВЕДЕНИЕ

Лазерные доплеровские измерители

скорости, основанные на методе гетеродин-
интерферометра (PDV) [1], позволяют в

непрерывном режиме регистрировать скорость

отражающих объектов, попадающих в пятно
луча зондирования [2–4]. При этом величи-
на перемещения исследуемых поверхностей

рассчитывается путем интегрирования экс-
периментальных зависимостей скорости от

времени. Однако указанный способ определе-
ния координат движущихся объектов является

косвенным и зачастую бывает неприменим.
Для интегрирования необходимо наличие од-
нозначной непрерывной зависимости скорости

от времени, которую в ряде случаев получить
невозможно. Так, в отсутствие четко выра-
женной границы раздела сред из-за процессов
развития неустойчивостей [5–8] и, как след-
ствие, выброса микрокумулятивных струй,
разрушения и дробления материала в волнах

разрежения с последующим диспергирова-
нием, методом PDV регистрируется спектр

скоростей частиц и фрагментов материала, и
запись носит дискретный характер. Неопреде-
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ленность в данных гетеродин-интерферометра
также может быть обусловлена попаданием

в поле зондирования датчика движущихся

объектов по мере развития регистрируемого

процесса. Для этих объектов отсутствует

привязка по пространственному положению, и
операция интегрирования в целях получения

зависимости x−t окажется неприменимой.
Кроме того, следует учитывать накопление

ошибки в результате применения операции

интегрирования, которая при увеличении

длительности регистрируемых процессов

может стать значительной. Наконец, в ряде
случаев информация, полученная методом

PDV, оказывается недостоверной. Как из-
вестно, гетеродин-интерферометр позволяет

корректно измерять только одну компоненту

скорости — вдоль оси установки датчика [9], в
то время как истинное направление движения

исследуемой поверхности может оставаться

неизвестным или изменяться с течением

времени, как это реализуется в ряде экспери-
ментальных постановок. Обойти указанные

ограничения можно с помощью метода лазер-
ного дальномера [10, 11] посредством прямой

регистрации в опыте величины перемещения

отражающих поверхностей.
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1. ЛАЗЕРНЫЙ ДАЛЬНОМЕР

Принцип измерения перемещения отра-
жающей поверхности посредством лазерного

дальномера основан на регистрации интер-
ференционного сигнала, получаемого с помо-
щью волоконного интерферометра Майкель-
сона и дисперсионного элемента, с последу-
ющим нахождением частоты биений посред-
ством программно-математической обработки.
Источником подсветки мишени является воло-
конный импульсный сверхширокополосный ла-
зер. После прохождения очередным импульсом
интерферометра Майкельсона, в одном из плеч
которого расположен исследуемый объект, на
выходе формируются два импульса, смещен-
ные друг относительно друга по времени на

величину, пропорциональную разнице оптиче-
ских длин плеч интерферометра и, соответ-
ственно, расстоянию до образца. С помощью

дисперсионного элемента длиной L [км] соот-
ветствующие импульсы хроматически уширя-
ются во времени и приобретают частотную

модуляцию. В результате уширения импуль-
сов на фотодетекторе возникает интерферен-
ционный сигнал с частотой, пропорциональной
сдвигу импульсов во времени. При движении
отражающей поверхности изменяется оптиче-
ская длина сигнального плеча интерферомет-
ра, меняется величина сдвига импульсов друг
относительно друга и, соответственно, частота
интерференционного сигнала. Искомая часто-

Рис. 1. Принципиальная схема лазерного дальномера

та (которой соответствует максимальное зна-
чение спектральной амплитуды сигнала) нахо-
дится с помощью оконного преобразования Фу-
рье. Перемещение далее определяется по следу-
ющей формуле:

x = f
λ2DL

2
, (1)

где f — частота интерференционного сигнала,
λ — центральная длина волны зондирующе-
го излучения, D — дисперсионная характери-
стика волокна (для применяемого волокна типа
Corning SMF-28 D ≈ 17 пс/нм/км).

Схема лазерного дальномера, разработан-
ная и применяемая авторами с 2015 г. [12, 13],
представлена на рис. 1.

В качестве источника зондирующего излу-
чения используется импульсный фемтосекунд-
ный волоконный лазер с длиной волны излу-
чения λ = 1 550 нм и средней выходной мощ-
ностью 200 мВт. Лазерный импульс на вы-
ходе из апертуры попадает в волоконный ин-
терферометр Майкельсона, в котором разде-
ляется на два пучка с помощью волоконно-
го делителя. Один из пучков используется как
опорный, а второй, сигнальный, направляет-
ся через волоконную линию (патчкорд, цир-
кулятор, коллиматор) непосредственно на ми-
шень, отражается от нее и вновь с помощью то-
го же коллиматора собирается и попадает об-
ратно в интерферометр. Отраженный сигнал
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усиливается с помощью эрбиевого усилителя и

суммируется с опорным сигналом. Далее, про-
ходя через дисперсионный элемент (бухта во-
локна Corning SMF-28 длиной 25 км), излуче-
ние передается на фотодетектор, где интерфе-
ренционный оптический сигнал преобразуется

в электрический, который затем регистриру-
ется с помощью широкополосного осциллогра-
фа. Максимальная база регистрации с помо-
щью данной оптической схемы лазерного даль-
номера составляет 22 мм. Погрешность изме-
рений относительных перемещений не превы-
шает ±1.62 %.

Разработанный алгоритм обработки дан-
ных лазерного дальномера выполняет преоб-
разование Фурье на окнах конечной длитель-
ности, последовательно формируемых из мас-
сива зарегистрированных мгновенных значе-
ний сигнала в интервале времени, выбираемом
пользователем в рамках диапазона регистра-
ции. Влияние нелинейности дисперсии третье-
го порядка на данные лазерного дальноме-
ра [14] компенсируется с помощью следующего
программного решения. Для корректной обра-
ботки данных необходимо найти лишь положе-
ние максимума распределения, соответствую-
щего интервалу частот, несущему наибольшую
энергию сигнала. Это реализуется посредством
использования оконных функций для отсечения

низкоэнергетических хвостов сигнала. Для это-
го выборки сигнала умножаются поэлементно

на оконную функцию гауссовской формы. Фор-
му оконной функции, а соответственно и об-
ласть сигнала, вносящего вклад в спектраль-
ное распределение мощности, оператор изменя-
ет за счет вариации непосредственно коэффи-
циента оконной функции.

Наиболее трудоемкой и затратной по вре-
мени операцией при выполнении измерений

по представленной выше схеме является пред-
варительная настройка лазерного дальноме-
ра. Задача заключается в обеспечении усло-
вий формирования устойчивого интерференци-
онного сигнала и сводится к необходимости вы-
равнивания длин сигнального и опорного плеч

интерферометра с точностью до половины мак-
симальной базы регистрации, а следователь-
но, к потребности в прецизионных измерениях
длины соответствующих оптических трактов.
В самом доступном варианте она решается с

использованием штриховых мер длины и оп-
тических рефлектометров путем итерационно-
го подбора, однако при этом процесс может за-

Рис. 2. Схема устройства измерения задержки
распространения оптического сигнала:

1, 2 — лазеры; 3 — волоконный затвор 1, соеди-
ненный с лазером; 4 — волоконный затвор 2, со-
единенный с волоконным затвором 1; 5, 6 — дели-
тель 90/10; 7 — высокочастотный фотодетектор;
8 — широкополосный осциллограф

нимать значительное время. Альтернативным
способом является применение специализиро-
ванных систем рефлектометрии с точностью

измерений до сотен микрон [15], однако подоб-
ные приборы труднодоступны ввиду их высо-
кой стоимости и ограниченного числа произво-
дителей. С учетом этого авторами разработано
и запатентовано устройство измерения задерж-
ки распространения оптического сигнала [16],
которое за счет программного корреляцион-
ного анализа двух наборов данных, получен-
ных с помощью пары фемтосекундных лазеров

с различным периодом повторения импульсов,
позволяет проводить прецизионные измерения

временной задержки распространения оптиче-
ского сигнала в волоконных линиях протяжен-
ностью более 2 000 м и получать значения их
длины с точностью до 0.02 м. Общая схема ра-
боты устройства представлена на рис. 2.

Излучение двух импульсных фемтосе-
кундных инфракрасных сверхширокополосных

лазеров, различающихся периодом повторения
импульсов, поочередно подается на два после-
довательно подключенных волоконных затвора

для формирования короткого цуга импульсов.
С помощью двух оптических делителей 90/10
осуществляется перенаправление зондирующе-
го излучения в тестируемую волоконную ли-
нию, а также прием излучения из нее. Данные
регистрируются широкополосным осциллогра-
фом и высокочастотным фотодетектором. По-
сле этого выполняется математическая обра-
ботка регистрограмм. К двум массивам дан-
ных, соответствующим каждой из пары ла-
зерных установок, применяется операция авто-
корреляции. Далее два результирующих набо-
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ра значений поэлементно умножаются друг на

друга, и по максимуму итоговой функции опре-
деляются искомые характеристики волоконной

линии. Использование описанного устройства
позволяет значительно упростить и сократить

по времени предварительную настройку схемы

лазерного дальномера.

2. ПОСТАНОВКА И РАСЧЕТНОЕ
МОДЕЛИРОВАНИЕ ЭКСПЕРИМЕНТОВ

Совмещенная диагностика с помощью ме-
тодов гетеродин-интерферометра и лазерного
дальномера использовалась в серии опытов по

регистрации параметров пыления и откольно-
го разрушения образцов из стали, меди и свин-
ца в условиях ударно-волнового нагружения.
Нагружение лайнеров ∅90 × 2 мм осуществля-
лось с помощью шашек из пластифицирован-
ного тэна ∅15 × 2 мм и пластифицированного
октогена ∅15 × 10 мм. На расстоянии 34 мм
от свободной поверхности размещался изме-
рительный приемник с двумя коллиматорами,
установленными на радиусе 5 мм от центра

сборки. По одному из коллиматоров регистри-
ровалось перемещение свободной поверхности

образца (лазерный дальномер), по второму —
скорость ее движения (метод PDV).

Предварительно для приведенной поста-
новки экспериментов было выполнено двумер-
ное численное моделирование. В расчетах урав-
нение состояния (УРС) металлов задавалось в
форме Ми — Грюнайзена с постоянным пара-
метром Грюнайзена [17, 18]. В табл. 1 пред-
ставлены параметры выбранных моделей: ρ0 —
начальная плотность материала, c0 — объем-
ная скорость звука, s1 — коэффициент в линей-
ном соотношении DU , Г — коэффициент Ми —
Грюнайзена.

При моделировании использовались дан-
ные близких пластифицированных составов

тэна (XTX8003) и октогена (LX-10-1). Соот-
ветствующие параметры моделей приведены

Та блиц а 2

Параметры УРС JWL

ВВ ρ0,
г/см3

A,
ГПа

B,
ГПа

ω R1 R2
DCJ,
км/с

ECJ,
Дж/мм3

PCJ,
ГПа

LX-10-1 1.865 880.7 18.36 0.38 4.62 1.32 8.82 10.4 37.5

XTX-8003 1.54 2 714 17.93 0.35 7 1.6 7.35 6.6 17

Та блиц а 1

Параметры УРС «Shock»

Образец ρ0, г/см3 c0, км/с s1 Γ

Нержа-
веющая

сталь

7.86 4.61 1.73 1.67

Медь 8.9 3.958 1.497 2

Свинец 11.34 2.006 1.429 2.74

в табл. 2: ρ0 — начальная плотность материа-
ла; A, B, ω, R1, R2 — набор эмпирических кон-
стант для уравнения состояния JWL [19, 20];
DCJ — скорость детонации в точке Чепмена —
Жуге; ECJ — внутренняя энергия в точке Чеп-
мена — Жуге; PCJ — давление в точке Чепме-
на — Жуге. Инициирование заряда тэна элек-
тродетонатором задавалось равномерным пят-
ном по радиусу 2.5 мм.

Полученные расчетные диаграммы разру-
шения образцов радиусом R из стали, меди
и свинца показаны на рис. 3–5. Представлен-
ные данные соответствуют состоянию лайне-
ров в указанные моменты времени. Здесь и да-
лее время для расчетных данных отсчитыва-
ется от момента выхода ударной волны на сво-
бодную поверхность образца.

Как следует из приведенных расчетных

диаграмм, отражение ударной волны от сво-
бодной поверхности металлических образцов

обусловливает множественный откол в матери-
але, при этом, так как диаметр шашек взрыв-
чатого вещества мал по сравнению с диамет-
ром исследуемого лайнера (см. рис. 3), отколь-
ные явления начинают развиваться лишь в его

центральной области. Таким образом, разгру-
женные периферийные участки образца пре-
пятствуют полному отрыву материала, рас-
тягивая и тормозя центральную область. По-
сле окончательного отрыва первого откольно-
го слоя центральная часть образца испытывает

ускорение, в то же время периферийные обла-
сти лайнера резко замедляются. При этом на
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Рис. 3. Расчетное моделирование процесса разрушения образца из стали

Рис. 4. Расчетное моделирование процесса разрушения образца из меди
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Рис. 5. Расчетное моделирование процесса разрушения образца из свинца

границе образовавшегося таким образом раз-
рыва формируется множество фрагментов раз-
рушенного материала. Оптические датчики в
экспериментах ориентированы в область, близ-
кую к указанному разрыву, что с учетом изло-
женного выше позволяет регистрировать боль-
шое количество объектов, движущихся с раз-
личной скоростью.

Для моделирования откольного течения

использовался критерий мгновенного разруше-
ния, в соответствии с которым откольное раз-
рушение происходит при достижении извест-
ных критических значений растягивающего

напряжения [21].

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Проведено три эксперимента с образцами

из стали 20 (толщина 2 мм, шероховатость по-
верхности Rz 10), меди М1 (толщина 2 мм, ше-
роховатость поверхности Rz 10) и свинца С1
(толщина 2 мм, шероховатость поверхности
Ra 0.63).

3.1. Стальной образец

В эксперименте со стальным образцом

∅90 × 2 мм на спектрограмме перемещения

(рис. 6) наблюдается движение свободной по-
верхности с соответствующей средней скоро-
стьюW ≈ 1.12 км/с (давление нагружения P =
23.6 ГПа, скорость детонации D = 5.4 км/с).

Рис. 6. Результаты опыта со стальным образ-
цом
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Также с помощью лазерного дальномера реги-
стрируется несколько треков (линия подобных
сигналов) со скоростью W ≈ 1.12 ÷ 1.31 км/с.
По всей видимости, эти треки соответствуют
движению отдельных фрагментов материала,
максимальное удаление которых от свободной

поверхности достигает ∆x ≈ 2.5 мм. Длитель-
ность регистрации с помощью лазерного даль-
номера составила порядка 16 мкс, смещение
свободной поверхности на момент обрыва за-
писи достигает 18.5 мм.

На спектрограмме скорости (рис. 6, врез-
ка) методом PDV зарегистрированы отколь-
ный импульс и движение откольного слоя со

скоростью W = 1.12 км/с, а также движение
нескольких фрагментов образца со скоростью

1.26÷ 1.31 км/с. Отмечается хорошее согласие
данных, полученных двумя методами. Толщи-
на откольного слоя и откольная прочность ста-
ли, рассчитанные по известным соотношениям,
составили 0.6 мм и 2.43 ГПа соответственно.

3.2. Медный образец

Спектрограммы перемещения и скорости,
зарегистрированные в опыте с медным образ-
цом (рис. 7), представляют собой сложную кар-
тину, обусловленную отражением лазерного

излучения от значительного числа движущих-
ся фрагментов. В работе [22] описан высокоско-
ростной процесс проникания медных шариков

через отверстие меньшего размера в стальной

пластине, в частности, показано, что при этом
происходят растяжение и пластическая дефор-
мация медной струи с ее последующим раз-
рывом и образованием фрагментов материала.
Можно предположить, что в настоящей работе
реализовался аналогичный механизм формиро-

Рис. 7. Результаты опыта с медным образцом

вания медных фрагментов вследствие пласти-
ческой деформации канавок на шероховатой по-
верхности исследуемого образца (Rz 10).

На спектрограмме перемещения регистри-
руется движение множества отдельных фраг-
ментов (W = 0.7 ÷ 2.85 км/с). Длительность
записи лазерного дальномера в опыте соста-
вила ≈14 мкс, максимальное зарегистрирован-
ное смещение достигает 20 мм. Из графиче-
ского материала, показанного на рис. 7, сле-
дует, что данные лазерного дальномера поз-
воляют оценивать расстояние между отдель-
ными движущимися фрагментами разрушен-
ного материала в различные моменты време-
ни. Так, например, в данном опыте предельное
смещение выбрасываемых частиц меди относи-
тельно свободной поверхности составило ∆x ≈
15.4 мм. На врезке с PDV-спектрограммой
максимальная скорость фрагментов достигает

W ≈ 2.15 км/с, на отдельных участках записи
также регистрируется множество треков ско-
рости со значениями W = 0.84 ÷ 2.15 км/с.

3.3. Свинцовый образец

На спектрограммах скорости и перемеще-
ния, полученных в опыте со свинцовым образ-
цом (рис. 8), в течение 16 мкс регистрируют-
ся исключительно спектр скоростей и спектр

перемещений пылевого потока соответственно.
Треки скоростей частиц, а также скорость сво-
бодной поверхности образца отсутствуют. Это
может быть связано с тем, что при давлениях
нагружения, реализовавшихся в опыте, свинец
после ударно-волнового нагружения практиче-
ски полностью теряет свою прочность и пла-
вится на волне разгрузки, что приводит к ин-

Рис. 8. Результаты опыта со свинцовым об-
разцом
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тенсивному выбросу жидких частиц с его по-
верхности. Данный поток частиц препятству-
ет прониканию лазерного излучения и не поз-
воляет регистрировать скорости нижележащих

слоев, в том числе скорость свободной поверх-
ности. Тем не менее информация, полученная
с помощью лазерного дальномера, включает
в себя полностью записанную x–t-диаграмму
движения фронта пылевого потока. Средняя
скорость частиц в потоке составила ≈1.5 км/с,
максимальная — порядка 2.1 км/с. Предельная
просвеченная толщина пылевого слоя достига-
ет 2.2 мм.

ВЫВОДЫ

В работе рассмотрена схема регистрации

перемещений отражающих поверхностей с ис-
пользованием лазерного дальномера. Описано
разработанное и запатентованное устройство

измерения задержки распространения оптиче-
ского сигнала, которое позволяет оперативно
выполнять предварительную настройку интер-
ферометра перемещений. Представлены дан-
ные двумерного численного моделирования и

результаты тестовых экспериментов по одно-
временной лазерной диагностике скорости и пе-
ремещения свободной поверхности и пылевых

потоков при ударно-волновом нагружении об-
разцов из стали, меди и свинца. Продемонстри-
рована эффективность комбинированных изме-
рений, показана согласованность данных, по-
лученных с помощью двух методов.
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