УДК: 538.953

Температуры Дебая жидких металлов

К.Б. Панфилович, Э.Э. Валеева

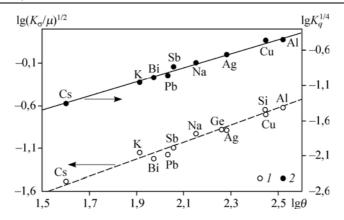
Казанский национальный исследовательский технологический университет

E-mail: elviravaleeva75@yandex.ru

На основании теории размерностей была определена взаимосвязь температур Дебая с интегральными полусферическими потоками теплового излучения и коэффициентами поверхностного натяжения жидких металлов. Получены соотношения для расчета температур Дебая жидких металлов. Установлена периодичность изменения температур Дебая жидких металлов в соответствии с периодическим законом Д.И. Менделеева.

Ключевые слова: жидкие металлы, температура Дебая, поверхностное натяжение, тепловое излучение.

Температура Дебая характеризует прочность химической связи [1]. В работе [2] утверждается, что применение температуры Дебая к расплавам предпочтительнее, чем к твердым телам; здесь же найдены температуры Дебая для небольшого числа жидких металлов по скорости звука и вязкости.


В работах [3, 4] были получены зависимости для интегральных полусферических потоков теплового излучения q и коэффициентов поверхностного натяжения σ жидких металлов:

$$q = K_q \left(\frac{\rho}{\rho_m}\right)^{\frac{2}{3}} \exp\left(1,4414\frac{S}{R}\right), \quad K_q \approx \frac{(k\theta)^4}{h^3 c^2},\tag{1}$$

$$\sigma = K_{\sigma} \left(\frac{\rho}{\rho_{m}}\right)^{\frac{2}{3}} \exp\left(-0.0594 \frac{S}{R}\right), \quad K_{\sigma} \approx \frac{m(k\theta)^{2}}{h^{2}},$$
 (2)

где ρ_m и ρ — плотность расплава при температуре плавления и текущей температуре, S — энтропия жидкого металла, R — газовая постоянная, K_q — масштабный поток теплового излучения, K_σ — масштабный коэффициент поверхностного натяжения, h и k — постоянные Планка и Больцмана, θ — температура Дебая, c — скорость света, m — масса атомов (кг).

Масштабные потоки теплового излучения $K_q^{-1/4}$ и масштабные комплексы поверхностного натяжения $(K_\sigma/\mu)^{1/2}$ (μ — атомная масса, кг/кмоль) в логарифмических координатах в зависимости от температуры Дебая по данным работы [2] изменяются линейно (рис. 1) и имеют одинаковый угловой коэффициент, равный единице. Масштабные коэффициенты поверхностного натяжения K_σ (в Н/м) и

 $Puc.\ I.$ Масштабные комплексы $(K_{\sigma}/\mu)^{1/2}\ (I)$ и потоки $K_{q}^{-1/4}\ (2)$ для жидких металлов. $(K_{\sigma}$, H/м; θ , K по работе [2].)

масштабные потоки теплового излучения $K_a(BT/M^2)$ аппроксимированы уравнениями:

$$K_{\sigma} = 0.5495 \cdot 10^{-6} \,\mu \theta^{2},$$
 (3)
 $K_{q} = 1.585 \cdot 10^{-12} \,\theta^{4}.$ (4)

$$K_a = 1,585 \cdot 10^{-12} \,\theta^4. \tag{4}$$

Выражения (3) и (4) применены для расчета по поверхностному натяжению и тепловому излучению температур Дебая жидких металлов. В таблице приведено сравнение рассчитанных температур Дебая жидких металлов с имеющимися данными работы [2].

Температура Дебая жидких металлов изменяется периодически (рис. 2) в соответствии с номером элемента в периодическом законе Д.И. Менделеева. Максимумы во втором и третьем периодах соответствуют бериллию и алюминию, минимумы — литию и натрию. Четвертый, пятый и шестой периоды имеют четко выраженные пики, близкие по форме. Вблизи максимальных величин температура Дебая θ в четвертом периоде существует минимум, приходящийся на марганец. В этом же периоде на правой ветви имеется вторичный пик (германий, мышьяк), который для этих подгрупп в пятом и шестом периодах вырождается в небольшие



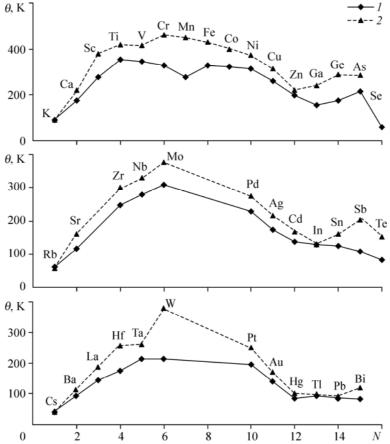

Рис. 2. Температуры Дебая жидких металлов, рассчитанные по уравнению (3).

Таблица Температуры Дебая жидких металлов

№	Металл	θ_{σ}, K по ур. (3)	$ heta_q$, K по ур. (4)	θ, Κ[2]	№	Металл	θ_{σ}, K по ур. (3)	θ_q, K по ур. (4)	θ, Κ [2]
1	Li	388	444		34	Sb	107	127	114
2	Be	591			35	Te	82		
3	В	554			36	Cs	44	38	40
4	Na	160	146	147	37	Ba	93		
5	Mg	266	311		38	La	144		
6	Al	318	314	332	39	Ce	130		
7	Si	302		279	40	Pr	152		
8	K	95	77	82	41	Nd	150		
9	Ca	175	183		42	Sm	121		
10	Sc	278			43	Eu	97		
11	Ti	355	303		44	Gd	142		
12	V	345	384		45	Tb	147		
13	Cr	327			46	Dy	142		
14	Mn	276			47	Но	141		
15	Fe	349	309		48	Er	139		
16	Co	340	312		49	Yb	89		
17	Ni	331	330		50	Lu	152		
18	Cu	267	305	280	51	Hf	182		
19	Zn	198	223		52	Та	221		
20	Ga	156	199	198	53	W	247		
21	Ge	176		183	54	Pt	189		
22	As	214			55	Au	146		
23	Se	59			56	Hg	87	72	
24	Rb	61	46		57	Tl	90	102	
25	Sr	116	121		58	Pb	90	97	108
26	Zr	247			59	Bi	80	89	94
27	Nb	280	225		60	Th	134		
28	Mo	308			61	U	174		
29	Pd	228			62	Pu	95		
30	Ag	173	193	192	63	Y	164		
31	Cd	138	143		64	Ru	297		
32	In	129	127		65	Rh	266		
33	Sn	124	124		66	Ir	223		

уступы на правых ветвях. Температуры Дебая жидких редкоземельных металлов имеют явно выраженную двойную периодичность. Европий и иттербий выпадают из общего ряда из-за особенностей их электронного строения [5].

Проведено сравнение (рис. 3) температур Дебая твердых и жидких металлов. При плавлении температуры Дебая уменьшаются. Это соответствует снижению максимальной частоты колебаний частиц и, соответственно, температуры Дебая за счет ослабления прочности межатомных связей при переходе из твердого состояния в жидкое [2]. Количественное изменение температуры Дебая зависит от глубины происходящих структурных преобразований. В случае щелочных и щелочно-земельных металлов изменение температур Дебая невелико и может составлять 10–20 %. Если процесс плавления идет по типу полуметалл-металл или

 $Puc.\ 3.\$ Температуры Дебая жидких (по уравнению (3)) (1) и твердых [1] (2) металлов 4, 5 и 6 периодов.

полупроводник-металл, более существенной перестройке кристаллической структуры и разрушению ковалентных связей (кремний, германий, сурьма, висмут) соответствуют и значительные изменения максимальной частоты колебаний. Ослабление ковалентной связи приводит к достаточно резкому уменьшению температур Дебая в жидкой фазе.

Список литературы

- 1. Глазов В.М. Основы физической химии. М.: Высшая школа, 1981. 456 с.
- **2.** Глазов В.М., Айвазов А.А. Энтропии плавления металлов и полупроводников. М.: Металлургия, 1980. 175с.
- **3. Панфилович К.Б., Сагадеев В.В., Голубева И.Л.** Тепловое излучение жидких металлов // Расплавы. 2005. № 4. С. 86–92.
- **4.** Панфилович К.Б., Валеева Э.Э. Поверхностное натяжение жидких металлов // Вестник Казанского технологического университета. 2006. №1. С. 131–139.
- **5.** Сухман А.Л., Кононенко В.И., Груверман С.Л., Торокин В.В. Поверхностное натяжение и плотность жидких редкоземельных металлов // Поверхностные свойства расплавов: сб. науч. тр. / под ред. Ю.В. Найдичю. Киев: Наукова думка, 1982. С. 107–117.

Статья поступила в редакцию 26 декабря 2011 г., после доработки—14 сентября 2012 г.