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Предложен и опробован комплексный подход к оценке зоны влияния углепородного массива 
на очистной забой по газовому фактору, основанный на изучении изотопии шахтного метана. 
Установлено количественное соотношение изотопов углерода метана в угольной пробе 
и рудничной атмосфере в условиях семи действующих шахт Кузбасса. Определены геомет-
рические параметры рассматриваемых зон, а также максимальное значение объема метана, 
которое может оказать нагрузку на очистной забой в ходе отработки выемочного участка. 
Показано существенное отличие объема газа и параметров зоны миграции метана при обще-
принятом и комплексном подходах с применением метода оценки изотопного состава угле-
рода метана в рудничной атмосфере и угле рабочего горизонта.  
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С развитием подземных горных работ увеличивается глубина их проведения, что сопро-
вождается ростом газоносности угольных пластов. При этом газовый фактор ограничивает 
нагрузку на очистной забой и предопределяет необходимость совершенствования технологий 
и оборудования вентиляции горных выработок и дегазации угольных шахт с учетом газового 
баланса очистных и подготовительных участков, обусловленного массопереносом метана 
в шахтную атмосферу из рабочего пласта и пластов-спутников [1 – 3]. В зависимости от филь-
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трационных свойств углепородного массива, характера движения подземных вод и диффузи-
онных процессов миграция метана может происходить на значительные расстояния из-за 
большой скорости его перехода из сорбированного состояния в свободное пространство уголь-
ной матрицы [4 – 7]. 

В соответствии с действующими нормативно-правовыми актами в области промышленной 
безопасности проведение дегазации обязательно при газоносности разрабатываемых угольных 
пластов более 9 м3/т. Необходимо также учитывать расстояние между разрабатываемым и 
сближенными пластами, которое для условий Кузбасса в среднем составляет 300 м для подра-
батываемых и 35 м для надрабатываемых пластов относительно рабочего горизонта. На основе 
определения изотопного состава углерода метана с целью повышения эффективности дегаза-
ции выполнено исследование источников метановыделения на ряде шахт Кузбасса [8 – 11]. По 
мере старения исходного биологического материала и его химической трансформации проис-
ходит постепенное увеличение содержания 13С [12], поэтому по изотопному составу углерода 
метана можно судить о происхождении газа и времени его образования [13 – 15]. 

МЕТОДИКА ИССЛЕДОВАНИЙ 

Из рабочих пластов выбуривались угольные керны и размещались в герметичные сосуды, 
из которых затем отбирались пробы десорбировавшегося метана [16 – 17]. Также выполнен от-
бор метановоздушной смеси (МВС) с применением газоотборного пакета с запирающим вен-
тилем в комплекте с ручным насосом [18]. Всего отобраны 31 проба десорбировавшегося мета-
на из угольных образцов и 37 проб рудничного воздуха в девяти очистных забоях семи уголь-
ных шахт. В лабораторных условиях методом резонансно-усиленной спектроскопии поглоще-
ния с применением анализатора DLT- 100 (MCIA) выполнено изучение содержания изотопов 
углерода метана в отобранных пробах. Определено смещение изотопного состава углерода ме-
тана 

13Сδ , отклонение изотопной сигнатуры 13C / 12C от сигнатуры стандартного образца, вы-
раженное в промилле: 

 

обр13

12
13 3

13

12

С
С

= 1 10
С
С

PDBδ С

  
  
   − ⋅       

  ,                    (1) 

где 13 12 обр( С / С)  — отношение содержания 13С и 12С исследуемого образца; 13 12( C / C)PDB  — от-
ношение содержания 13С и 12С стандартного образца морских окаменелостей мелового периода 
Belemnitella Americana формации Pee Dee в Южной Каролине (PDB). 

На основе выполненных измерений установлено различие δ13C для проб метана, содержа-
щегося в угле и МВС (рис. 1). При этом подтверждено наличие в рудничной атмосфере очист-
ного забоя метана, который поступает из пластов-спутников посредством массопереноса. От-
мечено, что на шахте № 1, выемочных участках 1 и 2 шахт № 2 и № 7 различие δ13C — незна-
чительно, а на выемочном участке 2 шахты № 2 не наблюдается вовсе. Эти данные подтвер-
ждают отсутствие влияния на выемочный участок шахты № 2 метана отличного геологическо-
го возраста. 
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Рис. 1. Количественное соотношение изотопов углерода метана в угле и метановоздушной смеси: 
1 — шахта № 1; 2 — шахта № 2, выемочный участок 1; 3 — шахта № 2, выемочный участок 2; 
4 — шахта № 3; 5 — шахта № 4; 6 — шахта № 5; 7 — шахта № 6; 8 — шахта № 7, выемочный 
участок 1; 9 — шахта № 7, выемочный участок 2 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 

Для выявления области влияния на рабочий горизонт по газовому фактору, а также опреде-
ление ресурсов метана, который содержится в выделенном объеме, на первоначальном этапе 
выполнена оцифровка горно-графической документации путем преобразования растрового 
изображения горного отвода в векторизованную форму при помощи CAD-систем. При необхо-
димости выполнялось масштабирование для получения координат в единой размерности с ис-
пользованием поправочного коэффициента: 
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=
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где d — действительное расстояние между геологоразведочными скважинами с координатами 
(x1, y1) и (x2, y2). 

В рамках исследования на каждой шахте рассмотрена область действующего и планируе-
мого выемочных участков (рис. 2). Из-за низкой плотности разведочной сети скважин вычис-
ление значений мощности, плана газоносности, влажности, зольности и плотности угля выпол-
нено методом интерполяции (рис. 3).  

 
Рис. 2. Границы расчетного блока и расположения геологоразведочных скважин в координатах x и y  
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Рис. 3. Изменение мощности пласта-спутника А шахты № 2 (а) и пространственное распределе-
ние мощности рабочего угольного пласта шахты № 1 (б)   

В [7, 19] получена зависимость усредненных значений смещения изотопного состава угле-
рода метана δ13С от глубины залегания угольных пластов. В ходе проведения настоящих ис-
следований эмпирическая зависимость была дополнена результатами измерений (рис. 4), уточ-
ненная формула приняла следующий вид: 

 13 0.0065C 1000 He−= − ⋅δ ,                                  (3) 
где H — глубина залегания угольного пласта, м. 

 
Рис. 4. Зависимость смещения изотопного состава углерода шахтного метана δ13С от глубины H 
залегания угольного пласта в условиях шахт Кузбасса 
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С учетом полученной зависимости (3) и формулы (1) выполнен расчет влияния на метановы-
деление вышележащих и нижележащих пластов-спутников для каждого выемочного участка семи 
шахт. На основе модели газового баланса выемочного участка описано формирование изотопного 
состава углерода шахтного метана в очистном забое при поступлении в него метана из i и j пла-
стов-спутников:  
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где Ср, СНП, СВП — изотопы углерода шахтного метана, выделившихся из разрабатываемого 
пласта, нижних и верхних пластов-спутников, ppm; Vр, VНП, VВП — объем выделившегося ме-
тана из рабочей зоны, нижних и верхних пластов-спутников, м3; i = 1,…, N,  j = 1,…, K — коли-
чество нижележащих и вышележащих пластов-спутников, вовлеченных в формирование газово-
го баланса очистного участка; “12”, “13” — индексы, соответствующие изотопам углерода-12 
и углерода-13; NНП и NВП — общее количество вышележащих и нижележащих пластов-
спутников; δ13Cоч.з. — смещение изотопного состава углерода метана очистного забоя, установ-
ленное в натурных наблюдениях в шахтных условиях. 

Результаты оценки влияния пластов-спутников на основе модели (4), (5) представлены 
в таблице. Метан из пластов-спутников идентифицировался на основе зависимости (3), а коли-
чество пластов-спутников определялось с учетом выполнения равенства (4). 

Оценка мощности блоков по анализу изотопного состава углерода метана 

Номер шахты / 
выемочный 

участок 

Количество пластов-спутников* Мощность блока, м Минимальное 
расхождение, 

%** 
Общепринятый 

подход 
Комплексный 

подход 
Общепринятый 

подход 
Комплексный 

подход 
1 5 н.п. 1 в.п., 1 н.п. 157.22 131.66 1.72 

2 / 1 6 в.п., 1 н.п. 15 в.п., 1 н.п. 205.75 371.45 4.79 
2 /2 6 в.п., 1 н.п. 13 в.п., 3 н.п. 216.57 350.0 0.48 

3 8 в.п., 1 н.п. 1 в.п., 3 н.п. 247.14 116.15 1.31 
4 6 в.п., 2 н.п. 5 н.п. 346.72 160.83 11.78 
5 3 в.п., 1 н.п. 5 н.п. 290.84 375.84 1.01 
6 6 в.п., 1 н.п. 6 в.п., 1 н.п. 335.02 328.74 2.40 

7 / 1 6 в.п., 1 н.п. 5 в.п., 1 н.п. 298.67 328.90 10.35 
7 / 2 7 в.п., 1 н.п. 3 в.п., 3 н.п. 335.93 200.63 4.33 

* в.п. — вышележащий пласт; н.п. — нижележащий пласт; ** по отношению к значению смещения изотопного 
состава углерода метана в исходящей струе очистного забоя. 

 
На основании выполненных расчетов построены разрезы по простиранию действующего 

и планируемого выемочных участков (рис. 5). На разрезы вынесены области влияния пластов-
спутников, вычисленные согласно действующей нормативной документации и комплексному 
подходу сопоставления измеренного и расчетного значений смещения изотопов углерода 
шахтного метана на исходящей струе выемочного участка. На примере разреза для шахты № 5 
показано, что на очистной забой по газовому фактору оказывают влияние 5 нижележащих пла-
стов. Результаты расчетов, представленные на рис. 5, подтверждаются низкой газоносностью 
вышележащих пластов-спутников (А, Б, В), попадающих в зону выветривания. 
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Рис. 5. Шахта № 5 с указанием зон влияния по газовому фактору, рассчитанных двумя метода-
ми: 1 — на основе рекомендаций по аэрологической безопасности угольных шахт; 2 — по опре-
делению изотопного состава углерода шахтного метана; А – З — пласты-спутники  

ПРОГНОЗИРОВАНИЕ МЕТАНОВЫДЕЛЕНИЯ 

Для прогнозирования метановыделения выполнен расчет ресурсов метана в зонах 1 и 2 (рис. 5) 
с последующей разработкой рекомендаций по дегазации для рассматриваемых угольных шахт. 
Полученные распределения плотности угля ρ (x, y), мощности m(x, y), зольности A(x, y), влажности 
W(x, y) и газоносности пласта χ (x, y) в точках с координатами (x, y) использованы для расчета ре-
сурсов метана i-ого угольного пласта f (x, y), вычисленных как сумма ресурсов метана в пределах 
расчетного блока; вмещающих si — рассматриваемый угольный пласт (рис. 6): 

 ( ,  ) ( ,  )( ,   ( ,  ) ( ,  ) ( ,  ) 1 ,)
100

A x y W x yf x y m x y ρ x y χ x y + = − 
 

  (6) 

 пласт
1

( , )n
i i

S

V f x y dxdy
=

=  , (7) 

где n — количество блоков в i-пласте; k — количество угольных пластов. 
Заметим, что при подходе с использованием исследования изотопного состава углерода ме-

тана ресурсы газа, которые потенциально могут оказать влияние на действующий выемочный 
участок, оказываются выше. Для шахт № 3 и 7 (выемочный участок 1) ситуация противопо-
ложна описанным. Это связано с тем, что при разработанном подходе установленное количе-
ство вышележащих пластов было больше, а нижележащих — меньше, чем при расчете по об-
щепринятому подходу. Кроме того, вышележащие пласты попадают в зону выветривания, в то 
время как у нижележащих пластов с увеличением глубины газоносность увеличивается.  

 
Рис. 6. Ресурсы метана в границах расчетных блоков шахт, определенные общепринятым под-
ходом и методом исследования изотопного состава; в. п. — вышележащие, н. п. — нижележа-
щие пласты 
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ВЫВОДЫ 

В ходе пополнения базы данных изотопного состава углерода метана в условиях шахт Куз-
басса скорректирована зависимость смещения изотопного состава углерода метана δ13С от глу-
бины залегания угольных пластов. На основе этой зависимости разработана математическая 
модель, позволившая установить влияние выше- и нижележащих угольных пластов на выемоч-
ный участок по газовому фактору. Определены геометрические размеры зоны влияния на 
очистной забой шахтного метана выше- и нижележащих угольных пластов по фактическим из-
мерениям изотопного состава углерода метана рудничной атмосферы и метана, находящегося 
в рабочем угольном пласте. Выполнены расчеты максимального значения объема метана, ко-
торый может оказать влияние на очистной забой в процессе отработки выемочного участка.  
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