ЭЛЕКТРИЧЕСКИЙ ВЗРЫВ ПРОВОДНИКОВ ПОД ДАВЛЕНИЕМ И ПЕРЕХОД МЕТАЛЛА В НЕМЕТАЛЛ

М. М. Мартынюк, О. Г. Пантелеичук

(Москва)

Путем анализа термодинамических и электрических свойств жидкой металлической фазы при ее непрерывном охлаждении показано, что линия перехода металла в неметалл должна совпадать или находиться в непосредственной близости от линии спинодали — квазиспинодали. Для этой линии удовлетворительно выполняется закон соответствующих состояний. Измерена зависимость относительного электросопротивления \(R/R_0 \) от энталпии \(H = H_0 - H_0 \) \(R_0 \) и \(H_0 \) относится к \(T_0 = 298^\circ \text{K} \) для Cu, Ag, Au и Al при напряже проволочного образца импульсом тока длительностью менее \(10^{-7} \text{ cek} \) под давлением \(p \) до 15 кбар. Изучено влияние давления на относительное сопротивление \(R/R_0 \) и энталпию \(H \) этих металлов в твердом и в жидком состоянии. Показано, что при \(p > 1 \text{ кбар} \) линия зависимости начальной точки электрического взрыва проводника от давления соответствует линии перехода металла в неметалл. С использованием этой зависимости определены критическая температура и критическое давление Cu, Ag, Au и Al.

1. Процесс электрического взрыва проводника рассматривается с точки зрения термодинамики и кинетики перехода жидкого металла в пар в условиях большой скорости его нагрева. Можно ожидать, что при нагреве проводника под давлением импульсом тока длительностью \(10^{-7} \text{ cek} \) начальная точка электрического взрыва, после которой электросопротивление металла резко возрастает, а в окружающей среде возникает ударная волна, будет находиться в окрестности верхней границы существования жидкокристаллической фазы при ее непрерывном изменении. Эта граница в переменных, давление \(p \) — объем \(V \), определяется квазиспинодалью

\[
\left(\frac{\partial p}{\partial V} \right)_T = 0, \quad \left(\frac{\partial^2 p}{\partial V^2} \right)_T > 0 \quad \text{при} \ p < p_c
\]

критической точкой

\[
\left(\frac{\partial p}{\partial V} \right)_T = 0, \quad \left(\frac{\partial^2 p}{\partial V^2} \right)_T = 0 \quad \text{при} \ p = p_c
\]

и квазиспинодалью (кривая закритических переходов)

\[
\left(\frac{\partial p}{\partial V} \right)_T < 0, \quad \left(\frac{\partial^2 p}{\partial V^2} \right)_T = 0 \quad \text{при} \ p > p_c
\]

(\(p_c \) — критическое давление, \(T \) — температура). Так как производная \(\partial p / \partial V \) обратно пропорциональна флуктуациям удельного объема \(\Delta V^2 \) [8]

\[
\left(\frac{\partial p}{\partial V} \right)_T = kT / \Delta V^2
\]

(\(k \) — постоянная Больцмана), то при приближении к этой границе со стороны жидкой фазы в силу (1.1) — (1.4) флуктуации резко возрастают.
Это приводит к резкому повышению электропроводности жидкого металла вследствие локализации электронов проводимости атомами, находящимися в местах с пониженной плотностью. Другой причиной уменьшения электропроводности является рассеяние электронов проводимости на флуктуациях концентрации заряда в жидкок металле. Таким образом, при непрерывном изменении жидкокометаллической фазы ее переход в пар сопровождается электронным переходом металла в неметалл.

Резкое увеличение электросопротивления жидкой ртути вблизи квазиспинодального и критической точки подтверждается экспериментом [8]. Как следует из (1.1) и (1.4), увеличение электросопротивления должно иметь место и в окрестности спинодала, но при медленном нагреве жидкого металла наблюдать это явление нельзя из-за трудности реализации больших перегревов жидкой фазы. Возможность повышения в области метастабильной металлической жидкости в условиях электрического взрыва проводников в воздухе рассматривалась в [3].

Расчет спинодалов для ртути по формуле [7], а также расчет квазиспинодалов для закритической области по данным [9] показывают, что линия спинодаль — квазиспинодаль в приведенных координатах \(\pi = p / p_c \), \(\tau = T / T_c \) (индекс с относится к критическим параметрам) приближенно может быть представлена прямой линией

\[
\pi = 11.1 \tau - 10.1
\]

(1.5) Спинodal, рассчитанный по формуле [7] для цезия, а также экспериментальные данные для спинодала ряда органических жидкостей [8] описываются уравнением

\[
\pi = 10\tau - 9
\]

(1.6) которое близко к (1.5). Это указывает на выполнимость закона соответственных состояний для линии спинодала — квазиспинодала различной жидкостей.

Так как при пересечении линии спинодаль — квазиспинодаль флуктуации плотности достигают максимального значения, то можно считать, что эта линия совпадает с линией перехода металл — неметалл. В пользу этого утверждения свидетельствует приближенное совпадение относительной критической плотности ряда металлов с плотностью в точке перехода металл — неметалл, рассчитанной для модели из проводящих зарядов в диэлектрической среде [9].

В [10] рассматривался переход жидкой ртути в неметаллическое состояние без учета влияния флуктуаций, исходя из представлений о зонной структуре этого металла. Установлен следующий приближенный критерий для определения точки перехода

\[
g = \frac{N(E_F)}{N(E_F)_t} = \frac{1}{a}
\]

(1.7) что соответствует удельному сопротивлению ртути \(\sim 300 \text{ см}^{-1} \text{см}^{-1} \), \(N(E_F) \) — плотность состояний на уровне Ферми в жидкок металле; \(N(E_F)_t \) — плотность состояний для модели свободных электронов. Если принять критерий (1.7), то согласно данным [9] линия перехода металл — неметалл для ртути не совпадает с линией спинодаль — квазиспинодаль. Она в интервале давлений до 1.7 \(p_c \) приближенно может быть представлена прямой, сдвинутой параллельно линии (1.5) в сторону более низких температур на 0.05 \(T_c \). Продолжение этой прямой в область метастабильной жидкости дает точку 0.87 \(T_c \) при \(p = 0 \). Экспериментальные данные для электропроводности калия в закритической области [11] дают освоение полагать, что для щелочных металлов линия перехода металла — неметалл совпадает с линией спинодала — квазиспинодала. Согласно (1.6)
эта линия пересекает ось температур в точке 0.90 T_c. Из этих оценок следует, что точка перехода металла — неметалл T_{t0} при $p = 0$ связана с T_c соотношением

$$T_{t0} = b T_c$$

где $b = 0.87$ по подобию с ртутью и $b = 0.90$ по подобию с цинком.

Исходя из таких представлений, начальную точку электрического взрыва проводника, после которой сопротивление жидкого металла резко возрастает, можно отождествить с точкой перехода металла — неметалл. Такое отождествление справедливо при следующих условиях: а) влияние магнитного поля тока на форму образца должно быть исключено, б) при $p < p_c$ время импульсного нагрева должно быть настолько малым, чтобы испарение металла через поверхность образца и через поверхность гетерогенных зародышей пара можно было пренебречь; в то же время оно не должно быть настолько малым (не менее 10$^{-2}$ сек), чтобы нарушить стационарность процесса гомогенного зародышеобразования [2].

На возможность перехода жидкого металла в состояние с плохой проводимостью в процессе электрического взрыва проводника указывалось в [12]. Экспериментальные подтверждения этого предположения были получены при взрывах медных проволочек в капилярах [13] и при взрывах в пластинчатой среде под давлением [1].

Так как при электрическом взрыве проводника в воздухе существует опасность его преждевременного разрушения магнитным полем, а также не исключено возникновение разрыва, щуруирующеего образец и искажающего форму осциллограмм, то в данной работе, так же как и в [1], для устранения этих факторов производился электрический взрыв проводников в пластинчатой среде, находящейся под давлением. В отличие от [1] в данной работе благодаря повышению точности импульсных измерений получены количественные результаты. Этот метод дает возможность исследовать влияние давления на высокотемпературные свойства металлов и получить зависимость начальной точки электрического взрыва от давления, которая сопоставляется с линией перехода металл — неметалл.

2. Методом нагрева проволочного образца (диаметр 0.2 — 0.3 мм, длина 20 мм) импульсом тока длительностью ~100 мксек производено осциллографическое измерение зависимости относительного электросопротивления R / R_0 от энтальпии $H = H_T = H_0$ (H_0 и R_0 отнесены к $T_0 = 298^\circ$ К) для Cu (99.96), Ag (99.97), Au (99.99) и Al (99.99). Для таких импульсов влияние индуктивных наводок на форму осциллограмм незначительно и может быть учтено [14]. Образец, запрессованный в таблетке из фторила 3 (тфлон), находился внутри стальной камеры типа поршень — цилиндр при постоянном давлении, которое для различных опытов изменялось в интервале до 15 кбар. Для заданного давления осциллограммам тока и напряжения на образце на ЭВМ «Минск-22» рассчитывалась зависимость R / R_0 от H [14]; расчеты производились для температуры от комнатной (298$^\circ$ К) до начальной точки электрического взрыва.

Эта зависимость представлена для меди (фиг. 1) и золота (фиг. 2). Аналогичные кривые в диапазоне давлений до 15 кбар получены для серебра и алюминия. На фиг. 1 кривая I — результаты опыта в воздухе; 2—5 — опыты в тфлоне под давлением: 2—0.2, 3—3, 4—6, 5—15 кбар. На фиг. 2 кривая I — опыт в воздухе; 2—5 — опыты в тфлоне под давлением: 2—0.2, 3—4, 4—3, 5—6 кбар.

На полученных кривых начало плавления металла определялось точкой R_1 / R_0, H_1, после которой зависимость R / R_0 от H отклонялась от линейной; конец плавления отмечался точкой излома R_2 / R_0, H_2. По этим
точкам определялось изменение сопротивления металла при плавлении R_2 / R_1 и теплота плавления $\Lambda = H_2 - H_1$.
Опыт показал, что по мере увеличения давления значения R_1 / R_0, R_2 / R_0, R_0 / R_1 для данного металла убывали, а H_1, H_2 и Λ возрастили. Для опытов в тефлоне под давлением до 6 кбар зависимость этих величин от давления близка к линейной. Влияние давления на электросопротивление жидкого металла более сильное, чем для твердого: барический коэффициент сопротивления $\beta = -dR / Re dp$ вблизи температуры плавления T_2 для жидкого металла почти на порядок выше, чем для твердого. Для жидкого состояния вплоть до нормальной температуры кипения T_b (значение $H = H_1$, при T_b взято из [16]) величина β слабо увеличивается с возрастанием температуры. Реактивное увеличение β для четырех исследованных металлов наблюдалось при приближении к начальной точке электрического взрыва (фиг. 1, 2).
Зависимость R / R_0 от H для данного металла при заданном давлении p характеризуется параметром
\begin{equation}
\delta = (1 / R_0) (dR / dH)_p = \alpha_p / C_p
\end{equation}
где $\alpha_p = (1 / R_0) (dR / dT)$ — температурный коэффициент электросопротивления, $C_p = (dH / dT)_p$ — теплоемкость при постоянном давлении. Два твердого состояния δ постоянно. Аналогичная зависимость наблюдается для жидкого состояния в интервале от T_2 до температур, превышающих T_b. С увеличением давления для твердого и жидкого состояний величина δ убывает. Влияние давления на уменьшение α_p более сильное, чем на C_p.
В опытах в воздухе и при небольшом давлении в тефлоне образцы разрушились вскоре после плавления. Это может быть обусловлено проявлением гидромагнитных неустойчивостей жидкого цилиндра. При $p > (1+2) кбар$ для Cu, Ag и Au и при $p > 3 кбар$ для Al наблюдаются значения соответствующие жидкому состоянию при $T > T_b$ (фиг. 1, 2). По-видимому, при $p > 3 кбар$ давление достаточным для подавления неустойчивостей образца. Давление замедляет рост зародышей структуры, что при $p < p_c$ способствует перегреву жидкого металла выше температуры его кипения. При $p > p_c$ образование зародышей структуры невозможно.
Начальная точка электрического взрыва проводника R_1 / R_0, H_1, до которой рассчитывалась зависимость R / R_0 от H (фиг.1, 2), фиксировалась при уменьшении напряжения на образце и изломе на осциллограмме тока, после которого ток быстро убывал до нуля. В случае подавления гидромагнитных неустойчивостей это указывает на резкое падение электропроводности металла после начальной точки электрического взрыва. В этой точке в окружающей среде возникла сильная ударная волна, фронт которой регистрировался резким увеличением напряжения на шезо-
электрическом датчике из титаната бария, который был вмонтирован в дно камеры высокого давления. При увеличении давления амплитуда ударной волны уменьшалась.

При подавлении неустойчивостей жидкого образца электросопротивление \(R_t / R_0 \) в начальной точке электрического взрыва для исследованных металлов достигало 30 — 60, а значение энталпии \(H_t \) в этой точке превышало оценочные данные для \(H_0 \) при \(T_b \) [12]. Зависимость \(H_t \) от \(p \) в этом случае была близка к линейной, причем \(H_t \) слабо возрастала с уве-

личением \(p \)

\[
H_t = H_{t0} + \gamma p
\]

где \(p \) — давление, рассчитанное по усилию пресса и сечению пуансона камеры высокого давления; \(H_{t0} \) — значение \(H_t \), полученное линейной экстраполяцией зависимости \(H_t \) от \(p \) к нулевому значению \(p \). Значения \(H_{t0} \) и производной \(\gamma = dH_t / dp \) для использованных металлов приведены в таблице.

<table>
<thead>
<tr>
<th>Металл</th>
<th>(H_{t0}) ккал/моль</th>
<th>(H_{t0}^{*}) ккал/моль</th>
<th>(\gamma) ккал/моль-кбар</th>
<th>(T_c), °К</th>
<th>(p_c), бар</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>155</td>
<td>145</td>
<td>2.5</td>
<td>5330</td>
<td>420</td>
</tr>
<tr>
<td>Ag</td>
<td>120</td>
<td>110</td>
<td>2.0</td>
<td>4140</td>
<td>150</td>
</tr>
<tr>
<td>Au</td>
<td>213</td>
<td>196</td>
<td>3.0</td>
<td>7610</td>
<td>2510</td>
</tr>
<tr>
<td>Al</td>
<td>112</td>
<td>107</td>
<td>2.2</td>
<td>4140</td>
<td>90</td>
</tr>
</tbody>
</table>

3. Слабая линейная зависимость \(H_t \) от \(p \) указывает на то, что она не может быть аналогом температурной зависимости давления насыщенного пара (биподаль). Эта особенность зависимости \(H_t \) от \(p \) и резкое увеличение сопротивления металла вблизи этой линии в условиях проведенных опытов свидетельствует о том, что она может быть сопоставлена с линией перекона металл — неметалл [15, 16].

Эта аналогия подтверждается также значением удельного сопротивления исследованных металлов в начальной точке электрического взрыва. Если учесть, что в этой точке объем меди больше чем в два раза превышает объем при \(T_0 = 298 \) °К, и если учесть, что изменение объема жидкого металла при импульсном нагреве происходит только в радикальном направлении образца [16], то для исследованных металлов удельное сопротивление \(\rho_0 \) в начальной точке взрыва превышает в 60—120 раз его значение \(\rho_0 \) при \(T_0 = 298 \) °К. Это отношение по порядку величин согласуется со значением \(p / \rho_0 \) для ртути в точке перехода металл — неметалл [9, 10].

Значение энталпии в начальной точке электрического взрыва при \(p = 0 \) является величиной, характеризующей термодинамические свойства взрываемого металла; оно должно быть отнесено к точке перехода металл — неметалл, расположенной в окрестности спиоанди при \(p = 0 \). Полученное значение \(H_{t0} \) нельзя отнести к нулевому давлению, так как было обнаружено, что при импульсном нагреве проводника в тefлоне среда производила в его поверхность дополнительное давление \(\Delta p_d \), действие которого проявлялось в снижении \(R_2 / R_0 \) на \(\Delta R_2 / R_0 \) при опыте в тefлоне при слабом давлении (0.2 кбар) в сравнении с \(R_2 / R_0 \) для опытов в воздухе. Дополнительное давление связано с действием сил инерции, которые возникают при быстром тепловом расширении образца в тefлоне. Величина \(\Delta p_d \) была определена с помощью соотношения \(\Delta p_d = (\Delta R_2 / R_0) / \beta_2 \), где \(\beta_2 \) — значение барического коэффициента сопротивления жидкого металла вблизи температуры плавления для опытов в тefлоне. Для Cu, Ag и Au \(\Delta p_d \) составляло 4 — 6 кбар, для Al ~ 2 кбар.
С учетом этого давление при допущении, что Δρ₄ оставалось неизменным во всем интервале жидкого состояния, значение ΔH₁₀ было уменьшено на Δ H₁₀ = γΔρ₄, и таким образом получено H₁₀* = H₁₀ − ΔH₁₀ (табл. 1). Вследствие слабой зависимости H₁ от p поправка ΔH₁₀ составляла не более 8% H₁₀. Найденная таким способом поправка ΔH₁₀ преувеличенна, так как Δρ₄ уменьшается через некоторое время после окончания плавления образца. Среднеквадратичный разброс экспериментальных значений H₁ в области линейной зависимости H₁ от p составлял 5 ± 6% H₁₀*.

Полученное в [4] значение H₁₀ = 152 кДж/моль для меди при взрыве в воздухе медной проволоки импульсом тока длительностью менее 10 μксек (время нагрева жидкой фазы Δt = 1.6 μксек) согласуется с результатами данной работы, оно заключено между значениями H₁₀ и H₁₀*.

Для Au H₁₀ = 129 кДж/моль из [6], полученное при взрыве в воздухе при Δt = 7.7 μксек, было получено из таблицы. Это сравнение показывает, что в [8] скорость нагрева для Cu была достаточной для того, чтобы жидкий металл успел нагреться до точки перехода металла — неметалла прежде, чем образец разрушился из-за действия магнитного поля и роста гетерогенных зародышей пара. Для Au скорость нагрева в [8] меньше минимальной скорости, которая обеспечивает достижение окрестности спинодали и получение сильного электрического взрыва, связанного с переходом метастабильной жидкости в стабильное состояние.

В результате (1.5), (1.6) и (1.8) отмечалось подобие в приведенных координатах для линии спинодали — квазиспинодали и линии перехода металла — неметалла различных веществ. Если допустить, что соотношение (1.8) выполняется для исследованных металлов, то по полученным значениям H₁₀* можно определить для них значение T_e (=)

\[T_e = \frac{T_{10}}{b} = \frac{1}{b} \left[T_1 + \frac{H_{10} - H_2}{c_2} \right] \]

где cₐ — среднее значение теплоемкости жидкого металла, которое с учётом данных [14] мало при температуре плавления T₁. Значения T_e, полученные при b = 0.87, представлены в таблице. Там же приведены оценки критического давления P_e, полученные экстраполяцией температурной зависимости давления насыщенного пара из [14] к Т = Т_e.

Из оценок следует, что в условиях проведенных опытов линейный участок зависимости H₁ от p следует отнести к квазиспинодали и что линии перехода металла в неметалл достигались в области закритического состояния исследованных металлов. При малых давлениях эта линия не достигалась из-за преждевременного разрушения образцов под действием магнитного поля и из-за роста гетерогенных зародышей пара.

Поступила 22 IV 1974

ЛИТЕРАТУРА

1. Мартынюк М. М., Танжела Н. Ф. Исследование электрического сопротивления медных проводников при импульсном нагревании. Изв. вузов, Физика, 1970, № 3, стр. 30—34.
2. Карышев И., Мартынюк М. М. Оптическое исследование электрического взрыва меди и золота. ПМГФ, 1974, № 3.
3. Семченко В. Р. К термодинамике полимеров. 1. Термодинамика мезофаз. Кolloидн. ж., 1962, т. 24, вып. 3.
4. Семченко В. Р., Мартынюк М. М. К термодинамике полимеров. 2. Сравнение выводов термодинамики мезофаз с экспериментальными данными. Кolloидн. ж., 1962, т. 24, вып. 5.
13. Некрашевич И. Г., Лабуда А. А. К вопросу о природе наузы тока в электрическом разряде проволок. Изв. физ. ж., 1953, № 9, стр. 94—101.