2009. Том 50

Приложение

S123 – S130

УДК 546.02:549.67

УНИФИЦИРОВАННЫЕ ФОРМУЛЬНЫЕ И ОБЪЕМНЫЕ ХАРАКТЕРИСТИКИ В СРАВНИТЕЛЬНОЙ КРИСТАЛЛОХИМИИ ПРИРОДНЫХ ЦЕОЛИТОВ

© 2009 В.В. Бакакин¹*, Ю.В. Серёткин²

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск ²Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск

Статья поступила 2 марта 2009 г.

Формулы природных цеолитов, как правило, громоздки, трудно сопоставимы, в их написании существует большой разнобой. Для алюмосиликатных цеолитов с каркасами $[(Si,Al)_nO_{2n}]$ дана полная сводка формул, нормированных на n = 1. Предложены новые объемные параметры для каркаса (взамен величины *плотности каркаса* FD) и цеолита в целом, вычисленные как эффективный объем "среднего" (Si,Al,O)-атома и "среднего" атома всего соединения. Показана эффективность сравнительного кристаллохимического анализа цеолитов в единой шкале с использованием унифицированных характеристик.

Ключевые слова: кристаллохимия, цеолиты, каркасные силикаты, плотность каркасов, нормализованные объемы.

Важнейшим для классификации цеолитов является вопрос о написании химических формул. Г.Б. Бокий

Природные алюмосиликатные цеолиты характеризуются двумя структурными подсистемами: каркасной из тетраэдров (Si,Al)O₄ и внекаркасной из катионно-водных ассоциатов. Соответственно, их общую кристаллохимическую формулу (как и для всего разнообразия каркасных цеолитов [1]) принято представлять в виде двух составляющих — в квадратных и "линейных" скобках: $|M_m(H_2O)_x|[(Si,Al)_nO_{2n}]$. Здесь М чаще всего Na⁺, K⁺, Ca²⁺, Ba²⁺, реже H⁺, Li⁺, Mg²⁺, Sr²⁺, причем для многих цеолитовых минералов как соединений переменного состава обычны сложные изоморфные замещения. Важно, что данное выражение, согласно [1—3], должно содержать полный состав элементарной ячейки. Это связано с описанием архитектуры каркасахозяина (вторичные и составные строительные единицы, конфигурация и строение пор и т.п.). По номенклатуре IUPAC для микро- и мезопористых материалов [3] такие геометрические характеристики включаются в кристаллохимическую формулу. Рисунок 1 дает представление о сложности формульных конструкций для соединений со смешанными — из разных полиэдров — каркасами, а попутно подготавливает читателя к восприятию формул "средней визуальной тяжести".

Все тетраэдрические каркасы цеолитов и аналогов (около 190 типов [2]) инвентаризованы, их топология кодирована Международной цеолитовой ассоциацией (IZA). Поэтому для них кристаллохимическая формула ограничивается двумя первыми позициями (см. рис. 1) плюс кодом IZA, стандартизующим всю дополнительную информацию.

^{*} E-mail: bakakin@che.nsk.su

Но в минералогии существует тенденция сохранить в формулах цеолитов, даже в их кристаллохимическом приближении, традиционные отличия: 1) помещение H_2O в конце; 2) предпочтительное написание идеализированной формулы с минимальными целочисленными коэффициентами. Если первое отличие носит формально-безобидный характер, то второе — при сложной нестехиометрии состава цеолитов — часто приводит к разнобою в формулах, в том числе к ошибкам. Г.Б. Бокий в солидном труде "Систематика природных силикатов" [4] в разделе "Цеолиты" касается этого вопроса, справедливо указывая на важность такой структурной характеристики как число формульных единиц (*Z*) в элементарной ячейке. К сожалению, в [4] автором не выполняется собственное указание. Заметим, что и в отличной современного типа сводке по кристаллическим структурам природных цеолитов [5] (серия "Обзоры в минералогии и геохимии") содержится несколько неоговоренных исключений.

Насколько велик может быть разнобой в написании формулы цеолита одного структурного

в написании формулы цеолита одного структурного типа, показывает табл. 1 на примере технологически важного фоязита и его модифицированных ионным обменом или дегидратацией форм.

Оставляя в стороне пестроту технических деталей оформления, отметим принципиальный факт разбиения на "формулы" состава одинаковой элементарной ячейки (куб, $Fd\overline{3}m$, $a \approx 24,7$ Å, $V \approx$ ≈ 15000 Å³) восемью способами: Z = 1, 2, 8, 12, 16,32, 48, 192. Эти значения соответствуют каркасным миналам: [T₁₉₂O₃₈₄], [T₉₆O₁₉₂], [T₂₄O₄₈], [T₁₆O₃₂], [T₁₂O₂₄], [T₆O₁₂], [T₄O₈] и [TO₂], причем некоторые из них (№ 9, № 11) кратно "упрощены". Здесь № 1 формула, рекомендованная IZA; № 2 — ее предметный "минералогический" аналог; в № 6 — привлекательное объединение катионно-водного ассоциата, но при неверном общем согласовании с карка-

Рис. 2. Соотношение нормированных на $[(Al,Si)O_2]$ внекаркасных составов природных цеолитов и a — объемов каркаса $V_{\rm fr}$, нормированных на один атом (Al,Si,O), δ объемов соединения V_N , нормированных на один "средний" атом

Таблица 1

№	Формула	Ζ	Литература
1	$ (Ca^{2+},Mg^{2+},Na^{+}_{2})_{29}(H_2O)_{240} $ [Al ₅₈ Si ₁₃₄ O ₃₈₄] - FAU	1	[2]
2	$Na_{20}Ca_{12}Mg_8 [Al_{60}Si_{132}O_{384}] \cdot 235H_2O$	1	[5]
3	H ₅₉ [AlO ₂] ₅₉ [SiO ₂] ₁₃₃ (модифиц.)	1	[6], (Фоязит-1430)
4	Na _{7,28} Ce _{5,76} Al _{24,56} Si _{71,44} O ₁₉₂ (H ₂ O) ₈ (модифиц.)	2	[7]*
5	$(Na_2, Ca, Mg)_{3,5}[Al_7Si_{17}O_{48}] \cdot 32(H_2O)$	8	[8]
6	$[A1Si_3O_8]_4 \cdot Na_2Ca(H_2O)_{16}$	12	[9]
7	$(Na, Ca_{0,5}, Mg_{0,5}, K)_x[Al_xSi_{12-x}O_{24}] \cdot 16H_2O, 3, 2 \le x \le 4, 4$	16	[10]
8	$(Na, Ca_{0,5}, Mg_{0,5}, K)_{3-4}[Al_{3-4}Si_{9-8}O_{24}] \cdot 16H_2O$	16	[11]
9	(Na ₂ ,Ca,Mg) ₂ [Si ₈ Al ₄ O ₂₄]·15H ₂ O **	16	[4]
10	$Na_2Ca[AlSi_2O_6]_4 \cdot 16H_2O$	16	[12]
11	Са _{0,731} Si ₆ O _{12,731} (H ₂ O) _{0,894} (модифиц.)	32	[13]*
12	$(Na_2,Ca)Al_2Si_4O_{12}\cdot 8H_2O$	32	[14]
13	(Na ₂ Ca) _{0,225} H _{0,3} (Al _{1,2} Si _{2,8} O ₈) (модифиц.)	48	[15]*
14	[Na ₂ Ca] _{0,22} [Al _{0,3} Si _{0,7}]O ₂ ·1,37H ₂ O ***	192	[6], (Фоязит-1429)
15	Cu _{0,146} (AlO ₂) _{0,292} (SiO ₂) _{0,708} (H ₂ O) _{0,747} (модифиц.)	192	[16]*

Примеры различного представления формулы цеолита фоязита

** В [4], очевидно, опечатка — нет коэффициента 2 после круглых скобок.

сом; № 7 — наиболее распространенное и корректное выражение для изоморфной минеральной серии; № 8 и № 9 — конкретизированные варианты № 7; в № 11 — каркас [TO_{>2,0}] как результат ущербного расчета анализа (?). Наконец, № 14 и № 15 — примеры непривычного приведения сложной формулы к минимальному каркасному "кирпичику" [(Al,Si)O₂]. Найденные при подготовке данной работы, они привлекли особое внимание, так как подобную нормализацию каркасов, но в более общих целях, авторы применили ранее для Са-цеолитов [17]. Результат развития и использования такой методики унификации формул каркасных алюмосиликатов представляется ниже.

Природные цеолиты насчитывают более сорока структурных типов (каркасов разной топологии). Их формулы, как правило, визуально громоздки и трудно сопоставимы по деталям химического состава и соотношению каркасной и катионно-водной компонент. Даже в их упрощенных каркасных миналах [(Al,Si)_nO_{2n}] значения *n* кратны 2,·3,·4,·5,·6, 7,·8, 9,·17, 21 и т.д., и потому поиск для них общего сложного знаменателя контрпродуктивен. Однако задача легко решается при n = 1. Если нормировать все каркасы на *n*, т.е. привести их к виду [Al₂Si_{1-y}O₂], то при нормировке на *n* и внекаркасной компоненты получим формулы, где можно удобно и корректно анализировать соотношения разных катионов и молекул H₂O **на общей матричной основе** (при колебании лишь Al/Si).

Такая нормировка выполнена нами для всех природных алюмосиликатных цеолитов. Табл. 2 содержит их полную сводку, насчитывающую более 50 минеральных видов. Из-за наличия сложных изоморфных замещений и переменных количеств H_2O часть исходных формул идеализирована. Использованы данные из [2, 5, 10]. За основу модифицирования взят компромиссный вариант написания из [5] — состав на элементарную ячейку (Z = 1), но H_2O , "поминералогически", в конце формулы. В нормированных формулах, согласно [1, 2], внекаркасная компонента объединена, и это визуально облегчает их сравнительный анализ.

^{*} Данные из Inorganic Crystal Structure Database (ICSD).

^{*** [}Na₂Ca]_{0,22}, видимо, следует исправить на [Na,Ca]_{0,22}.

Таблица 2

N⁰	Название Индекс IZA *	Формулы: на элементарную ячейку [5] нормированная на [(Al,Si)O ₂]		$V_{\mathrm{fr}}, \mathrm{\AA}^3$	$V_{\rm N}, {\rm \AA}^3$
1	2	3	4	5	6
1	Лейцит АNA	$K_{16}[Al_{16}Si_{32}O_{96}]$ $[K_{0,33}][Al_{0,33}Si_{0,67}O_2]$	0,36	16,4	14,7
2	Бикитаит BIK	$Li_{2}[Al_{2}Si_{4}O_{12}] \cdot 2H_{2}O$ $ Li_{0,33}(H_{2}O)_{0,33} [Al_{0,33}Si_{0,67}O_{2}]$	0,33	16,4	11,4
3	Вайракит АNA	$\begin{array}{c} Ca_8[Al_{16}Si_{32}O_{96}] \cdot 16H_2O \\ & Ca_{0,165}(H_2O)_{0,33} [Al_{0,33}Si_{0,67}O_2] \end{array}$	0,41	17,6	12,6
4	Анальцим АNA	$\begin{split} Na_{16}[Al_{16}Si_{32}O_{96}] \cdot 16H_2O \\ & \mathbf{Na_{0,33}(H_2O)_{0,33}} [Al_{0,33}Si_{0,67}O_2] \end{split}$	0,50	18,0	12,4
5	Югаваралит YUG	$Ca_{2}[Al_{4}Si_{12}O_{32}] \cdot 8H_{2}O$ $ Ca_{0,125}(H_{2}O)_{0,5} [Al_{0,25}Si_{0,75}O_{2}] $	0,56	18,2	11,8
6	Монтесоммаит MON	$\begin{split} & K_9[Al_9Si_{23}O_{64}] \cdot 10H_2O \\ & \mathbf{K}_{0,28}(\mathbf{H}_2\mathbf{O})_{0,31} [Al_{0,28}Si_{0,72}O_2] \end{split}$	0,62	18,4	13,1
7	Натролит NAT	$Na_{16}[Al_{16}Si_{24}O_{80}] \cdot 16H_2O$ $ Na_{0,4}(H_2O)_{0,4} [Al_{0,4}Si_{0,6}O_2]$	0,60	18,7	12,2
8	Феррьерит FER	$\begin{array}{l} (Na,K)Mg_{2}Ca_{0,5}[Al_{6}Si_{30}O_{72}]\cdot 20H_{2}O\\ (Na,K)_{0,03}Mg_{0,06}Ca_{0,01}(H_{2}O)_{0,55} [Al_{0,17}Si_{0,83}O_{2}]\end{array}$	0,59	18,8	11,9
9	Мутинаит (MFI)	$\begin{array}{c} Ca_4Na_3[Al_{11}Si_{85}O_{192}]\cdot 60H_2O \\ Ca_{0,04}Na_{0,03}(H_2O)_{0,625} [Al_{0,11}Si_{0,89}O_2] \end{array}$	0,66	18,9	11,4
10	Эпистильбит ЕРІ	$\begin{array}{c} Ca_{3}[Al_{6}Si_{18}O_{48}] \cdot 16H_{2}O \\ \\ Ca_{0,125}(H_{2}O)_{0,67} [Al_{0,25}Si_{0,75}O_{2}] \end{array}$	0,73	18,9	11,0
11	Томсонит ТНО	$\begin{array}{c} Ca_8Na_4[Al_{20}Si_{20}O_{80}]\cdot 24H_2O\\ [Ca_{0,2}Na_{0,1}(H_2O)_{0,6}][Al_{0,5}Si_{0,5}O_2]\end{array}$	0,75	18,9	11,1
12	Гусекрикит GOO	$Ca_{2}[Al_{4}Si_{12}O_{32}] \cdot 10H_{2}O \\ Ca_{0,125}(H_{2}O)_{0,625} [Al_{0,25}Si_{0,75}O_{2}] $	0,69	18,9	11,3
13	Мезолит NAT	$\frac{Na_{16}Ca_{16}[Al_{48}Si_{72}O_{240}]\cdot 64H_2O}{ Na_{0,13}Ca_{0,13}(H_2O)_{0,53} [Al_{0,4}Si_{0,6}O_2]}$	0,66	19,0	11,7
14	Дакиардит DAC	$\begin{array}{c} (Na,K,Ca_{0,5})_{4}[Al_{4}Si_{20}O_{48}]\cdot 14H_{2}O\\ (Na,K,Ca_{0,5})_{0,17}(H_{2}O)_{0,58} [Al_{0,17}Si_{0,83}O_{2}]\end{array}$	0,68	19,0	11,6
15	Сколецит NAT	$Ca_{8}[Al_{16}Si_{24}O_{80}] \cdot 24H_{2}O$ $ Ca_{0,2}(H_{2}O)_{0,6} [Al_{0,4}Si_{0,6}O_{2}]$	0,70	19,1	11,5
16	Брюстерит ВRE	$(Sr,Ba)_{2}[Al_{4}Si_{12}O_{32}] \cdot 10H_{2}O$ $ (Sr,Ba)_{0,125}(H_{2}O)_{0,625} [Al_{0,25}Si_{0,75}O_{2}]$	0,76	19,2	11,5
17	Tommapduum (NES)	$\begin{array}{c} Ca_{5}Na_{3}Mg_{3}[A1_{19}Si_{117}O_{272}] \cdot 93H_{2}O \\ [Ca_{0,04}Na_{0,02}Mg_{0,02}(H_{2}O)_{0,68}][A1_{0,14}Si_{0,86}O_{2}] \\ \end{array}$	0,71	19,2	11,2
18	LAU	$Ca_{4}[AI_{8}SI_{16}O_{48}] \cdot 18H_{2}O \\ Ca_{0,165} (H_{2}O)_{0,75} [AI_{0,33}Si_{0,67}O_{2}]$	0,83	19,2	10,7
18′	к, Na-ломонтит LAU	$\begin{array}{c} Ca_{2,2}Na_{1,8}K_{1,8}[AI_8SI_{16}O_{48}] \cdot I4H_2O \\ [Ca_{0,09}Na_{0,075}K_{0,075}(H_2O)_{0,58}][AI_{0,33}Si_{0,67}O_2] \end{array}$	0,75	18,8	11,4
19	Гетранатролит NAT	$Na_{7}Ca[Al_{9}Si_{11}O_{40}] \cdot 10H_{2}O$ $[Na_{0,35}Ca_{0,05}(H_{2}O)_{0,50}][Al_{0,45}Si_{0,55}O_{2}]$	0,70	19,2	11,8
20	1 оннардит NAT	$\frac{Na_5Ca_2[Al_9Si_{11}O_{40}] \cdot 11H_2O}{ Na_{0,25}Ca_{0,1}(H_2O)_{0,55} [Al_{0,45}Si_{0,55}O_2]}$	0,72	19,2	11,6
21	Морденит MOR	$\begin{array}{c} Na_{3}Ca_{2}K[Al_{8}Si_{40}O_{96}]\cdot 28H_{2}O\\ \mathbf{Na}_{0,06}Ca_{0,04}K_{0,02}(\mathbf{H_{2}O})_{0,58} [Al_{0,17}Si_{0,83}O_{2}]\end{array}$	0,65	19,4	11,9
22	Террановаит TER	$\begin{array}{l} Na_{4}Ca_{4}[Al_{12}Si_{68}O_{160}] \cdot > 29H_{2}O \rightarrow \underline{48}H_{2}O^{a} \\ Na_{0,05}Ca_{0,05}(H_{2}O)_{0,6} [Al_{0,15}Si_{0,85}O_{2}] \end{array}$	0,65	19,5	<u>11,9</u>

Унифицированные формулы природных цеолитов и их нормированные объемные характеристики (в порядке возрастания $V_{\rm fr}$)

ФОРМУЛЬНЫЕ И ОБЪЕМНЫЕ ХАРАКТЕРИСТИКИ В СРАВНИТЕЛЬНОЙ КРИСТАЛЛОХИМИИ ПРИРОДНЫХ ЦЕОЛИТОВ 8127

	Продолжение табл. 2				
1	2	3	4	5	6
23	Клиноптилолит HEU	$(Na,K)_{6}[Al_{6}Si_{30}O_{72}] \cdot 20H_{2}O$ $ (Na,K)_{0,17}(H_{2}O)_{0,56} [Al_{0,17}Si_{0,83}O_{2}]$	0,70	19,5	12,0
24	Гейландит НЕ U	$Ca_4(Na,K)[Al_9Si_{27}O_{72}] \cdot 24H_2O$ $ Ca_{a_{11}}(Na,K) _{a_{22}}(H_2O) $	0,75	19,6	11,1
25	Эдингтонит EDI	$Ba_{2}[Al_{4}Si_{6}O_{20}] \cdot 8H_{2}O$ $Ba_{2}[Al_{4}Si_{6}O_{20}] \cdot 8H_{2}O$	1.02	20,0	10,7
26	Паранатролит-К NAT	$Na_{16}K_{2}[Al_{18}Si_{22}O_{80}] \cdot 24H_{2}O$ $Na_{16}K_{2}[Al_{18}Si_{22}O_{80}] \cdot 24H_{2}O$	0.86	20,0	11,4
27	Стеллерит STI	$Ca_{4}[Al_{8}Si_{28}O_{72}] \cdot 28H_{2}O$	0.84	20,4	11,2
28	Стильбит STI	$Ca_4Na[Al_9Si_{27}O_{72}] \cdot 30H_2O$	0.90	20,45	11,0
29	Баррерит STI	$Na_4K_2Ca[Al_8Si_{28}O_{72}] \cdot 26H_2O$ $Na_4K_2Ca[Al_8Si_{28}O_{72}] \cdot 26H_2O$	0.85	20,5	11,5
30	Перлиалит (LTL)	$K_{9}Na(Ca,Sr)[Al_{12}Si_{24}O_{72}] \cdot 15H_{2}O$	0.73	20,6	13,3
31	Маццит МА Д	$Mg_{2,5}K_2Ca_{1,5}[Al_{10}Si_{26}O_{72}] \cdot 30H_2O$ $ Mg_{0,07}K_{0,06}Ca_{0,06}(H_2O)_{0,02} [Al_{0,75}Si_{0,77}O_2]$	0.92	20,7	11,0
32	Мерлиноит МЕ В	$K_{5}Ca_{2}[Al_{9}Si_{23}O_{64}] \cdot (H_{2}O)_{22}$ $K_{6}Ca_{16}$	0,90	20,8	11,8
33	Эрионит ERI	$K_2(Ca_{0,5},Na)_7[Al_9Si_{27}O_{72}] \cdot 28H_2O$ $ K_0 \circ c(Ca_0 \cdot 5,Na)_0 \circ c(H_2O)_0 \cdot 2^{-1}[Al_0 \cdot 5Si_0 \cdot 5O_2]$	0,95	20,8	11,0
34	Филлипсит РНІ	$K_{2}(Ca_{0,5},Na)_{4}[Al_{6}Si_{10}O_{32}] \cdot 12H_{2}O$ $[K_{0,125}(Ca_{0,5},Na)_{0,15}(Ca_{0,5},Na)_{0,25}(H_{2}O)_{0,75}][Al_{0,37}Si_{0,63}O_{2}]$	1,01	20,9	11,4
35	Гармотом РНІ	$Ba_{2}(Na,Ca_{0,5})[Al_{5}Si_{11}O_{32}] \cdot 12H_{2}O$ $ Ba_{0,125}(Na,Ca_{0,5})_{0,06}(H_{2}O)_{0,75} [Al_{0,31}Si_{0,69}O_{2}]$	0,92	20,9	11,5
36	Гоббинсит GIS	$Na_{5}[Al_{5}Si_{11}O_{32}] \cdot 11H_{2}O$ $[Na_{0,31}(H_{2}O)_{0,69}][Al_{0,31}Si_{0,69}O_{2}]$	0,85	21,0	11,6
37	Кальборсит Е DI	$\begin{array}{c} K_{12}Cl_{2}(B(OH)_{4})_{2}[Al_{8}Si_{12}O_{40}] \\ [K_{0,6}Cl_{0,1}(B_{0,1}(OH)_{0,4})][Al_{0,4}Si_{0,6}O_{2}] \end{array}$	1,10	21,1	13,8
38	Гарронит GIS	$\begin{array}{c} Ca_{2,5}Na[Al_6Si_{10}O_{32}]\cdot 14H_2O \\ \textbf{Ca}_{0,16}\textbf{Na}_{0,06}(\textbf{H}_2\textbf{O})_{0,88} [\textbf{Al}_{0,38}\textbf{Si}_{0,62}\textbf{O}_2] \end{array}$	0,99	21,2	10,9
39	Боггсит BOG	$\begin{array}{c} Ca_8Na_3[Al_{19}Si_{79}O_{192}]\cdot 70H_2O\\ Ca_{0,08}Na_{0,03}(H_2O)_{0,73} [Al_{018}Si_{0,82}O_2]\end{array}$	0,79	21,4	12,1
40	Полингит РАU	$\begin{array}{c} Ca_{59}K_{36}Na_{14}Ba_2[Al_{172}Si_{500}O_{1344}]\cdot 550H_2O\\ Ca_{0,09}K_{0,05}Na_{0,02}(H_2O)_{0,82} [Al_{0,26}Si_{0,74}O_2]\end{array}$	0,94	21,4	11,4
41	Оффретит OFF	$\begin{array}{l} KCaMg[Al_{5}Si_{13}O_{36}]\cdot15H_{2}O\\ K_{0,05}Ca_{0,06}Mg_{0,06}(H_{2}O)_{0,83} [Al_{0,28}Si_{0,72}O_{2}]\end{array}$	0,92	21,5	11,4
42	Черничит (BEA)	$\begin{array}{c} Ca_{8}[Al_{16}Si_{48}O_{128}] \cdot 64H_{2}O \\ & Ca_{0,125}(H_{2}O)_{1,0} [Al_{0,25}Si_{0,75}O_{2}] \end{array}$	1,06	21,6	10,6
43	Жисмондин GIS	$Ca_{4}[Al_{8}Si_{8}O_{32}] \cdot 16H_{2}O$ $ Ca_{0,25}(H_{2}O)_{1,0} [Al_{0,5}Si_{0,5}O_{2}]$	1,12	21,8	10,4
44	Амичит GIS	$\begin{array}{c} K_4 Na_4 [Al_8 Si_8 O_{32}] \cdot 10 H_2 O \\ [K_{0,25} Na_{0,25} (H_2 O)_{0,63}] [Al_{0,5} Si_{0,5} O_2] \end{array}$	1,08	21,9	12,2
45	Левин-Са LEV	$\begin{array}{c} Ca_8Na_2K[Al_{19}Si_{35}O_{108}]\cdot 50H_2O\\ Ca_{0,15}Na_{0,04}K_{0,02}(H_2O)_{0,93} [Al_{0,35}Si_{0,65}O_2]\end{array}$	1,06	21,9	10,9
46	Уиллхендерсонит СНА	$\frac{K_{2}Ca_{2}[Al_{6}Si_{6}O_{24}]\cdot 10H_{2}O}{[K_{0,17}Ca_{0,17}(H_{2}O)_{0,83}][Al_{0,5}Si_{0,5}O_{2}]}$	1,10	22,4	11,5
47	Белльбергит (EAB)	$\begin{array}{c} K_2 Sr_2 Ca_6 [Al_{18}Si_{18}O_{72}] \cdot 30H_2 O \\ [K_{0,05}Sr_{0,05}Ca_{0,17}(H_2O)_{0,83}] [Al_{0,5}Si_{0,5}O_2] \end{array}$	1,02	22,5	11,7
48	Гмелинит-Na GME	$Na_{8}[Al_{8}Si_{16}O_{48}] \cdot 22H_{2}O$ $ Na_{0,33}(H_{2}O)_{0,92} [Al_{0,33}Si_{0,67}O_{2}]$	1,08	22,8	11,3

В.В. БАКАКИН, Ю.В. СЕРЁТКИН

		Око	нчание	е таб	л. 2
1	2	3	4	5	6
48′	Гмелинит-Са	$(Ca,Sr)_{3,5}Na[Al_8Si_{16}O_{48}] \cdot 23H_2O$		22,8	11,3
	GME	$ (Ca,Sr)_{0,15}Na_{0,04}(H_2O)_{0,96} [Al_{0,33}Si_{0,67}O_2] $	1,08		
49	Шабазит-Са	$Ca_2[Al_4Si_8O_{24}] \cdot 13H_2O$		23,0	10,8
	СНА	$ Ca_{0,17}(H_2O)_{1,08} [Al_{0,33}Si_{0,67}O_2] $	1,17		
49′	Шабазит-Na	$Na_3K[Al_4Si_8O_{24}] \cdot 11,5H_2O$		23,3	11,3
	СНА	$ Na_{0,25}K_{0,08} (H_2O)_{0,96} [Al_{0,33}Si_{0,67}O_2] $	1,18		
50	Каулсит ^{b)}	$Ca_6[Al_{12}Si_{18}O_{60}] \cdot 33H_2OZ = 8$ (?)		24,7	11,4
	—	$ Ca_{0,20}(H_2O)_{1,1} [Al_{0,40}Si_{0,60}O_2] $	1,2		
51	Фоязит	$Na_{20}Ca_{12}Mg_{8}[Al_{60}Si_{132}O_{384}] \cdot 235H_{2}O$		26,0	11,3
	FAU	$ Na_{0,10}Ca_{0,06}Mg_{0,04}(H_2O)_{1,22} [Al_{0,31}Si_{0,69}O_2] $	1,3		
52	Чертнерит	$Ca_6SrKCu_3(OH)_9[Al_{12}Si_{12}O_{48}] \ge 20H_2O Z = 16$		27,4	≤12,4
	TSC	$ Ca_{0,25}Sr_{0,04}K_{0,04}Cu_{0,125}(OH)_{0,38}(H_2O)_{\geq 0,83} [Al_{0,5}Si_{0,5}O_2]$	≈1,4		

* IZA — код согласно номенклатуре IZA; в скобках даны аналоги синтетических цеолитов.

** ∑ — сумма |H₂O+1,1(K,Ba)+0,5(Na,Ca)|.

^{а)} Следуя графической закономерности, (H₂O)_{≈0.6}, т.е. в формуле 48H₂O и $V_N \approx 11.9$.

^{b)} Структура не определена, числовые характеристики версионны.

Примечание. *Курсивом* выделены единичные или редкие цеолиты.

В сводку не включены два алюмосиликатных цеолита с паракаркасной структурой (с разорванным каркасом, т.е. с [TO_{>2,0}]), оба редкие:

Партеит	— PAR	$Ca_8[Al_{16}Si_{16}O_{60}(OH)_8] \cdot 16H_2O,$
Марикопаит	— MOR	$Pb_7Ca_2(OH)_7[Al_{11}Si_{37}O_{92}(OH)_8] \le 25H_2O.$

Минералы лейцит и кальборсит включаются, согласно [10], как безводные представители структурных типов анальцима и эдингтонита соответственно.

Для характеризации свойств цеолита издавна введена величина "плотности каркаса" — FD (Framework Density), выражаемая числом Т-атомов, обычно (Si,Al), на 1000 Å³. Несмотря на некоторую вычурность, этот параметр (а других нет!?) широко применяется, в том числе и для минералов со смешанными каркасами, где наряду с Т-атомами в расчет включаются также пяти-, шестикоординированные Nb, Ti, Zr, Mn, Ca и т.п. [18]. Но FD не связана впрямую с "плотностью" структуры цеолита в целом. Авторы предлагают выражать степень пористости каркаса не через его "плотность" FD, а через удельный объем, приходящийся на один атом (Si,Al,O). Новый параметр V_{fr} (Å³) — "нормализованный объем каркаса" — получается делением объема элементарной ячейки на число [Si,Al,O] в ней. И от V_{fr} остается один шаг (через психологический барьер) до параметра V_N (Å³) — "нормализованного объема соединения". Он вычисляется как эффективный объем "среднего атома". т.е. делением объема элементарной ячейки на число N всех (разных!) атомов в ней: $V_N = V_{2,n}/N$. Таким образом, V_N соединения соответствуют его формуле, в которой сумма стехиометрических индексов приведена к единице. Например, для лейцита K[AlSi₂O₆] — число атомов в формуле 10 и Z = 16, $N = 10 \times 16 = 160$ и $V_N = 2335$ Å³/160 = = 14,7 Å³, что отвечает "нормализованной единице" лейцита — (K_{0,1}Al_{0,1}Si_{0,2}O_{0,6})_{$\Sigma_{1,0}$}. Как показано ранее [17, 19], параметр V_N, фигурально выражаясь, может восприниматься как *нормализо*ванный эквивалент самого вещества — в его соответствии данному составу и строению в единой количественной шкале.

Параметр V_N может быть вычислен (в том числе для некристаллических веществ) и через молярный объем $V_{\rm M} = M/d$ (см³/моль), где M — молярная масса и d — удельный вес; от молярных объемов легко перейти к атомным — делением на число Авогадро, а практически умножением величины $V_{\rm M}$ на 1,66.

Таблица 3

FD: "плотность каркаса" — число атомов Si, Al на 1000 Å ³ . FD = 1000 <i>n</i> _(Si,Al) / <i>V</i> _{э.я.}	<i>V</i> _{fr} — объем каркаса [(Si,Al) _n O _{2n}], нормированный на один "средний" атом Si, Al, O, т.е. на [<i>n</i> +2 <i>n</i>] атомов	V_N — объем цеолита $M_m(H_2O)_x [(Si,A1)_nO_{2n}],$ нормированный на один "средний" атом $N;$ N = m+3x +[n+2n].				
Hamponum [Na. (H.O), $ [\Lambda], Si, O, 1]$; $V = 2240 ^{3}$						
mampe						
$[(S_{1},A_{1})_{40}O_{80}]$	$[(S_{1},A_{1})_{40}O_{80}]$	$ Na_{16}(H_2O)_{16} [AI_{16}S_{124}O_{80}] $				
$FD = (1000 \cdot 40) / 2240 = 17,85$	[n+2n] = 120	$N = \{16+48\} + [120] = 184$				
	$V_{\rm fr} = 2240 \text{\AA}^3 / 120 = 18,7 \text{\AA}^3$	$V_{\rm N} = 2240 \text{ Å}^3 / 184 = 12,2 \text{ Å}^3$				
Фоязит $ Na_{20}Ca_{12}Mg_8(H_2O)_{235} [Al_{60}Si_{132}O_{384}]; V_{3.я.} = 15000 Å^3$						
$[Al_{60}Si_{132}O_{384}]$	$[Al_{60}Si_{132}O_{384}]$	$ Na_{20}Ca_{12}Mg_8(H_2O)_{235} [Al_{60}Si_{132}O_{384}] $				
$FD = (1000 \cdot 192) / 14978 = 12,8$	[n+2n] = 576	N = 40+705 + [576] = 1321				
	$V_{\rm fr} = 15000 \text{ Å}^3 / 576 = 26,0 \text{ Å}^3$	$V_{\rm N} = 15000 \text{ Å}^3 / 1321 = 11,3 \text{ Å}^3$				

Примеры расчета объемных характеристик цеолитов

Надо иметь в виду, что реальные химические вещества и, тем более, минералы всегда находятся в тесном взаимодействии с окружающей средой, содержат многие дефекты, развитую поверхность, и потому их реальные свойства могут отличаться от идеальных. Это справедливо и для величины (свойства) "среднего" объема V_N . Вычисленная по структурным данным, она является идеализированной и в принципе требует корректировки за счет широко трактуемой "граничной области" как результата взаимодействия вещества и среды. Важно, что среда с ее *PTX*-параметрами (составом и плотностью) также может быть оценена в единой шкале, и существует корреляция между V_N среды и V_N реальных веществ. Однако в обсуждении многих минералогических аспектов полезно использование и идеализированных величин V_N .

По параметру V_N разные классы веществ занимают определенные характерные интервалы, отражающие — при анализе в шкале — специфику их свойств. Так, для типичных органических соединений значения V_N равны 8—11 Å³, для сульфидов 13 (пирит FeS₂) — 28 Å³ (карлинит Tl₂S). Все оксиды, включая и синтезированные в специфических условиях, характеризуются значениями V_N от 7 до 33 Å³, но природные оксиды и оксосоли, геологически равновесные со средой, лежат в интервале 7—19 Å³, а породообразующие — в еще более узком — 8—15 Å³. Параметр V_N "внешней среды", например стандартной близповерхностной, можно оценить, ориентируясь на преобладающую массу силикатов и воды (с ее $V_N \approx 10$ Å³) как ≈ 11 Å³. (Любопытно усмотреть вероятную корреляцию с V_N органики как основы живой материи.)

В чисто каркасных структурах $V_{\rm fr} = V_N$. Так, для SiO₂ у фазы высокого давления — коэсита — V_N 11,4 Å³, у кварца 12,6 Å³, у кристобалита 14,3 Å³, а тридимит с V_N 14,7 Å³ уже нуждается в стабилизации за счет примесных атомов, понижающих V_N . Как видно из табл. 2, для природных цеолитов значения $V_{\rm fr}$ варьируют в широком интервале — от 16,4 Å³ для бикитаита до 27,4 Å³ для чертнерита. Однако параметр V_N цеолита укладывается в интервал 11,5 ± 1,1 Å³, и это обеспечивается за счет соответствующей атомной суммы внекаркасной водно-катионной компоненты.

В табл. 3 даны примеры расчета объемных характеристик для цеолитов.

Нормированные формулы (см. табл. 2) содержат "в чистом виде" показатель кремнистости цеолита — $T_{Si} = Si/\Sigma(Al,Si)$: это коэффициент при Si в $[Al_ySi_{1-y}O_2]$. Его значения лежат в пределах 0,5 (томсонит)—0,89 (мутинаит). Содержание H₂O и катионов дано в одной шкале. Так, диапазон количества H₂O 0,33—1,22, и легко сравнивать, например, соотношения H₂O/M. Наглядна роль К как позиционного конкурента H₂O, по сравнению с Na, Ca, (см. амичит—жисмондин с одинаковой топологией каркаса). Существенны (в минерагенетическом аспекте) повышенные значения V_N у высококалиевых цеолитов с относительно меньшей водностью.

Таблица 2 содержит графу суммарного количества нормированных катионов и H₂O, хотя и с условными коэффициентами. Принято, что основной объемный вклад дают молекулы H₂O.

В.В. БАКАКИН, Ю.В. СЕРЁТКИН

Координирующие их крупные катионы K⁺ и Ba²⁺ увеличивают долю эффективно контролируемого пространства (с коэфициентом $\approx 1,1$). "Расталкивающий" эффект среднеразмерных катионов Na⁺ и Ca²⁺ оценен в 0,5, а мелких Li⁺ и Mg²⁺ как нулевой. Рис. 2 отражает попытку использования этих величин для сопоставления с $V_{\rm fr}$ и V_N . Первое распределение (*a*) показывает в общем ожидаемую корреляцию — чем больше количество водно-катионных ассоциатов, тем больше $V_{\rm fr}$. На другом графике (*б*) выявляются различия в поведении составов Na·H₂O, Ca·H₂O и K·H₂O.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 07-05-00742).

СПИСОК ЛИТЕРАТУРЫ

- 1. Baerlocher Ch., Meier W.M., Olson D.H. Atlas of zeolite framework types. 5th ed. L.: Elsevier, 2001.
- 2. Database of Zeolite Structures. http://www.iza-structure.org/databases.
- 3. McCusker L.B. // Rev. Mineral. Geochem. 2005. 57. P. 1.
- 4. *Бокий Г.Б.* Систематика природных силикатов. // Итоги науки и техники. Сер. Кристаллохимия. М.: ВИНИТИ, 1997, т. **31**.
- 5. Armbruster T., Gunter M.E. // Rev. Miner. Geochem. 2001. 45. P. 1.
- 6. WWW-МИНКРИСТ (2009). Кристаллографическая и кристаллохимическая База данных для минералов и их структурных аналогов. http://database.iem.ac.ru/mincryst
- 7. Olson D.H., Kokotailo G.T., Charnell J.F. // J. Colloid Interface Sc. 1968. 28. P. 305.
- 8. Athena Mineralogy Database. http://un2sg4.unige.ch/athena/mineral/mineral.html.
- 9. Годовиков А.А. Минералогия. М.: Недра, 1983.
- 10. Coombs D.S. et al. // Canad. Mineral. 1997. 35. P. 1571.
- 11. MinMax Mineral Information System. http://www.minmax.net/index.php.
- 12. Поваренных А.С. Кристаллохимическая классификация минеральных видов. Киев: Наукова думка, 1966.
- 13. Bennett J.M., Smith J.V. // Mat. Res. Bull. 1968. **3**. P. 933.
- 14. Mineralogy Database by D. Barthelmy (2000-2005). http://webmineral.com/index.shtml.
- 15. Bergerhoff G., Baur W.H., Nowacki W. // N. Jb. Mineral., Mh. 1958. S. 193.
- 16. Maxwell I.E., de Boer J.J. // J. Phys. Chem. 1975. 79. P. 1874.
- 17. Bakakin V.V., Balko V.P., Seryotkin Yu.V. // Zeolite'97, 5th International Conf., Ischia, Naples, Italy. 1997. Abstracts. P. 47.
- 18. Пеков И.В., Турчкова А.Г., Ловская Е.В., Чуканов Н.В. Цеолиты щелочных массивов. М.: Ассоциация "Экост", 2004.
- 19. Балко В.П., Бакакин В.В. // Матер. IV Междунар. минералогич. семинара "Теория, история, философия и практика минералогии". Сыктывкар, 17—20 мая 2006 г. С. 17.

S130