К ПРОСТРАНСТВЕННО-ВРЕМЕННОМУ РАЗВИТИЮ ВОЗМУЩЕНИЙ В ПОГРАНИЧНОМ СЛОЕ

М. Б. Зельман, А. Ф. Накоткин
(Новосибирск)

Согласно современным представлениям, переход к турбулентности в пограничном слое может происходить в результате неустойчивости течения и малым возмущениям. Начальная стадия такого процесса описывается линейной теорией гидродинамической устойчивости.

В естественных условиях флукутации локализованы в пространстве. В ходе эволюции возникают цепь совокупностей, изменения происходят в пространстве и времени.

Моделированию такого процесса служит задача с начальными данными. Ее исследование вызывает широкий интерес и имеет практическую ценность для определения зоны перехода [1—17]. Получены ряд данных об эволюции узких волновых пакетов в параллельных и слабонаправленных потоках [3—14]. Тем не менее остаются проблемы, требующие решения. В частности, нуждается в выяснении вопрос о поведении флукутаций произвольной формы в пограничном слое. В данной работе рассматривается пространственно-временное развитие волновых возмущений в параллельном пограничном слое.

Обычно в работах анализируется асимптотическое поведение пакета волн Толлянца — Шпихта (ГШ) без обсуждения связи с начальным распределением [1,3—13]. Между тем такое же распределение имеет важную роль в законе развития неустойчивости. Проявляется это на примере пакета ТШ-волн в двухмерном течении типа Брумса.

Поле возмущений в этом случае описывается безразмерной функцией тока ψ, которую представим в виде

$$\psi(x,y,t) = \int_{-\infty}^{\infty} d\alpha e^{i(\alpha_0 t + \xi \alpha y)} \alpha A(\alpha) \varphi(y, \alpha) e^{i\theta(\alpha)} + J_*$$

где $\theta(\alpha) = \alpha x - \Omega(\alpha) t$; $\Omega(\alpha) = \varphi(\alpha) + \psi(\alpha)$ — собственная частота; $\varphi(y, \alpha)$ — собственная функция задачи Орр — Зоммерфельда; α_0 — центральное волновое число; J_* — остаточный член; $A(\alpha)$ — начальная амплитуда;

$$\Delta \theta = -t(\alpha_0 + \alpha) + (\Omega'\alpha_0 - z/t) + \Omega''(\alpha_0)(\alpha - \alpha_0)/2,$$

$$d^2\Omega/d\alpha^2 = \Omega(\alpha).$$

Основной вклад вносится областью волновых чисел $(\alpha_0 - \delta, \alpha_0 + \delta)$, которая находится из условия

$$\delta^2 \max (|\psi'(\alpha_0)|, |\psi''(\alpha_0)|) \ll 1.$$

Если при $t = 0$ в распределении имеется пик, например,

$$A(\alpha) \sim A(\alpha_0) \exp \left(-\frac{\alpha^2 \Delta \alpha^2}{2} \right),$$

где $\Delta \alpha \sim \alpha_0 \ll \alpha_0$, то $\delta > \Delta \alpha$ и

$$\psi \simeq e^{i\theta(\alpha_0)} \varphi(y, \alpha_0) A(\alpha_0) \int d\alpha \exp \left[-t^2 (\Omega'\alpha_0 - x/t)^2/2 + \right.$$

$$\left. + it (\Omega'\alpha_0 - x/t)^2 \right] = e^{i\theta(\alpha_0)} A(\alpha_0) \varphi(y, \alpha_0) \exp \left\{ -t(\Omega'\alpha_0 - x/t)^2/2 + \right.$$

$$\left. \varphi(y, \alpha_0) A(\alpha_0) \right\}.$$

В теории гидродинамической устойчивости чаще рассматривается случай пространственно-локализованного возмущения. Тогда $\Delta \alpha \sim \alpha \sim \alpha_0 > \delta$ и в волновой пакет выделяется за счет существования $\alpha = m\gamma(\alpha_m)$, $\gamma(\alpha_m) = \max \gamma(\alpha) > 0$. При $t > \gamma^{-1}(\alpha_m) > 1$, $\alpha_0 \sim \alpha_m$ и

$$\psi \simeq \frac{A(\alpha_m) \varphi(y, \alpha_m)}{\sqrt{2\pi t \Omega''(\alpha_m)}} \exp i \left\{ \theta(\alpha_m) - \frac{t(\Omega'\alpha_m - x/t)^2}{2\Omega''(\alpha_m)} \right\}$$

42
в условиях

(3) \[|\Omega''(\alpha_m)(\alpha - \alpha_m)| > |\Omega'(\alpha_m) - x/t|, \quad |\Omega''(\alpha_m)/t| > |\Omega'(\alpha_m) - x/t|^2. \]

Условия (3) следуют из требования малости \(J \) и пренебрежения отклонением максимума подынтегральной функции (2) от \(\alpha = \alpha_m \). Метод проведенного анализа (метод Гаусса) хорошо известен в физике плазмы [18]. Заметим, что в теории гидродинамической устойчивости его применимость численно исследовалась в [5]. Неравенства (3) дают аналитические оценки его точности: решение (2) стремится к точному в окрестности \(L = \frac{|x/t|}{\omega'(\alpha_m)} \rightarrow 0 \), размеры которой убывают \((L \sim t^{-1/2}) \). В результате метод Гаусса пригоден для анализа эволюции максимума интенсивности пакета, но не его формы.

Из (1), (2) следует, что даже в параллельном течении, где волновые свойства полностью определяются дисперсионным уравнением \(\Omega = \Omega(\alpha) \), разные начальные условия обусловливают различия законов эволюции.

В непараллельном потоке задача существенно усложняется. Нет полного разделения поперечной и волновой структур [6]. Локальный спектр деформируется как по \(\alpha \), так и по \(x \). Формирование пучка из локализованного начального возмущения не имеет ясной физической основы. При \(t \gg 1 \) оно не обязательно вырежается в такую волну. Тем не менее известные работы ограничены рассмотрением этого случая и строятся в предположении об инвариантности несущей частоты пакета [8—12, 14]. Исследование эволюции возмущений пограничного слоя произвольного начального вида является основной целью данной работы.

Рассмотрим двумерное движение. Введем безразмерную функцию \(\Psi(x, y, t) = \Psi_0(x, y) + \psi(x, y, t) \), где \(\Psi_0 \) описывает невозмущенное поле, а \(\psi \) — его возмущение,

\[\max |\Psi_0|/\max |\psi| \gg 1. \]

С точностью до нелинейных по \(\psi \) членов имеем

\begin{equation}
Z \Psi = \left(\frac{\partial}{\partial t} + \frac{\partial \Psi_0}{\partial y} \frac{\partial}{\partial x} + \frac{\partial^2 \Psi_0}{\partial y^2}, \frac{\partial}{\partial x} - \frac{\partial^2}{\partial x^2} \right) + \frac{\partial^2 \Psi_0}{\partial x^2} \frac{\partial}{\partial x} \Re \right) \Psi = M(\Psi_0) \Psi,
\end{equation}

\[\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right) \Psi = 0 \quad (y = 0), \quad \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right) \Psi < \infty \quad (y \to \infty), \]

\[\psi = \psi(x, y, 0) \quad (t = 0), \]

\[M(\Psi_0) = -\frac{\partial}{\partial x} \Delta \Psi_0 \frac{\partial}{\partial y} + \frac{\partial^2}{\partial y^2} \Psi_0 \frac{\partial}{\partial x}. \]

Образование проводится стандартно по скорости набегающего потока \(U_\infty \) и подходящей длине \(l \).

Имеет место медленность продольного изменения:

\[\nu = \max \left| \Psi_0^{-1} \frac{\partial}{\partial x} \Psi_0 \right|_{x=0} \sim \Re^{-1}. \]

С точностью до \(O(\nu) \) приходим к линейной задаче устойчивости в параллельном потоке. Ее решение можно найти преобразованием Фурье — Лапласа [14, 41]:

\begin{equation}
\psi(x, y, t) = \sum_{n=1}^{\infty} \int \left(\sum_{m=1}^{\infty} A_n(\alpha) \varphi(y, \alpha) e^{-\imath \alpha x} + \int A_{n(k)}(\alpha) \Phi_{n(k)}(y, \alpha) \times \right. \end{equation}

\[\times \left. e^{-\imath \alpha x} \Delta \phi \right) e^{\imath \alpha x} d\alpha, \]

\[A_{n(k)} = -\frac{1}{2\pi} \int_0^\infty dy \int_{-\infty}^{\infty} dx e^{\imath \alpha x} \Delta \psi(x, y, 0) \Phi_{n(k)}(y, \alpha). \]
Здесь $\Omega_n(\alpha), \Phi_n(\alpha)$ определяются задачей Орра — Зоммерфельда; индексы n, k отвечают модам дискретного и сплошного спектров; $\Phi_n(\alpha)$ — решение сопряженной задачи.

Условие применимости локально-параллельного приближения $\alpha_0^2/\nu >> 1$ верно для возмущения с $A_n(\alpha)(\alpha)$, где $A_n(\alpha)(\alpha) \approx 0$ при $|\alpha| << |\alpha_0|$. Волновые свойства определяются дисперсионной связью

$$
\Omega_n(\alpha) = \omega_n(\alpha) + i\gamma_n(\alpha), \quad \Omega_n(\alpha) = -i\alpha^2 + k^2 + + i\alpha \Re U(\alpha)/\Re \Omega_n(\alpha).
$$

В пограничном слое имеется единственная, неустойчивая в некотором диапазоне Re, мода (III). В принципе для перехода могут оказаться важными и затухающие волны [19] прежде всего с $|\gamma/\omega| << 1$. Изменение профиля скорости основного потока в направлении движения меняет локальный спектр возмущения на масштабах, много больших $\lambda = \alpha_0^{-1}$.

Решение (4) можно найти разложением по параметру $v/\alpha_0 \sim v \ll 1$:

(6) \[\psi = \sum_{m=1}^{\infty} \int dx e^{i\eta_0 n(\alpha, \Omega_n(\alpha, \rho, \tau), \Phi_n(\alpha, \alpha, \rho, \Omega_n(\alpha, \rho, \tau))) + + i\int_0^\infty \int dx e^{i\eta_0 n(\alpha, \Omega_n(\alpha, \rho, \tau), \Phi_n(\alpha, \alpha, \rho, \Omega_n(\alpha, \rho, \tau))) + + \sum_{m=1}^{\infty} \Psi_{n(\alpha, \rho, \tau), m(\alpha, \rho, \tau)}}(y, x, \rho, \tau); \]

(7) \[\frac{\partial}{\partial t} a_n(\alpha, \rho, \tau) = -\gamma_n(\alpha, \rho, \tau) m(\alpha, \rho, \tau); \]

(8) \[\frac{\partial}{\partial x} \theta_n(\alpha, \rho, \tau) = -\omega_n(\alpha, \rho, \tau) + \sum_{m=1}^{\infty} \Psi_{n(\alpha, \rho, \tau), m(\alpha, \rho, \tau)}; \]

(9) \[\frac{\partial}{\partial x} \Psi_{n(\alpha, \rho, \tau), m(\alpha, \rho, \tau)} = \alpha, \]

где $\rho = x + v t$; $\tau = v t$; $a_n(\alpha, \rho, \tau) = A_n(\alpha, \rho, \tau)$; $\theta_n(\alpha, \rho, \tau)$ — фаза волны; $\Psi_{n(\alpha, \rho, \tau), m(\alpha, \rho, \tau)}$, $\Psi_{n(\alpha, \rho, \tau), m(\alpha, \rho, \tau)}$, $\Psi_{n(\alpha, \rho, \tau), m(\alpha, \rho, \tau)}$ требуют определения. Таким образом, решение строится в виде разложения по волнам с фиксированными волновыми числами (α_0 — постоянная постоянная), при этом предполагается медленность изменения параметров его спектра. Такой подход основан на идеях, предложенных в [20] для одномерных консервативных систем.

Из (4), (6)—(9) следует, выражение индекса $n(k)$:

(10) \[a_\Phi \left(\frac{\partial}{\partial y}, y, \rho, \alpha, -i\Omega \right) \Phi(\rho, y, \alpha, \Omega) = \left\{ \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial \alpha} \right) a_\Phi \right\} Z_{-i\phi} + + i\alpha \left(\frac{\partial}{\partial y} a_\Psi \right) Z_{-i\phi} + + \Phi_{\alpha}(\alpha) a_\Phi Z_{-i\phi} + + \nu M_1 \Psi_a + O(v) = 0, \]

где

$\Phi_{\alpha} = \frac{2\pi}{0} \left\{ \Phi(\rho, y, \alpha, \Omega) f(\rho, y, \alpha, \Omega) \right\} = \Delta + O(v); \]

$Z_{-i\Omega} = \frac{\partial}{\partial \Omega} \Psi_a = \Delta + O(v); \]

$Z_{-i\alpha} = \frac{\partial}{\partial \alpha} \Psi_a = \Delta + O(v); \]

$-2\alpha \frac{\partial}{\partial \alpha} \Psi_a - \Delta \frac{\partial}{\partial \alpha} \Psi_a, \Delta = \frac{\alpha^2}{\Omega} - \alpha^2. \]

В главном приближении (ρ, τ) фиксированы; (α, Ω, Φ) определяются решением задачи Орра — Зоммерфельда $\tilde{Z} \phi = 0$ (5). С точностью до $O(v)$ ψ_{α} имеет ограниченные значения при условии ортогональности ϕ.
выражению в фигурных скобках (10):

\[\left\langle \tilde{Z}_{-\omega} \Psi \right\rangle (F^{(1)} + i \Phi^{(1)}) + \left(\frac{\partial}{\partial \rho} - \frac{\partial \Omega}{\partial \rho} \right) a + \left(\frac{\partial}{\partial \Omega} \right) a \left\langle \tilde{Z}_{i\alpha} \Psi \right\rangle + \\
+ \left(\frac{\partial}{\partial \rho} \tilde{Z}_{i\alpha} \right) a + M_{\alpha} \left\langle \tilde{Z}_{\alpha} \left(\frac{\partial}{\partial \rho} + \frac{\partial \Omega}{\partial \rho} \right) \Psi \right\rangle \right| a = 0,
\]

\[\left\langle f_{\rho} \right\rangle = \int_{0}^{\infty} f_{\rho}(y, \alpha) f_{\rho} dy.
\]

Разделяя реальные и мнимые части, определим \(F^{(1)} \), \(\Phi^{(1)} \). Тогда с точностью до \(O(\nu^2) \) для каждого \((n, k); \alpha \) имеем

(11) \[\frac{\partial a}{\partial t} - \gamma a + \frac{\partial \omega}{\partial \rho} a + \left(\frac{\partial \Omega}{\partial \rho} \right) a + H_{\tau} = 0; \]
(12) \[\Phi^{(1)} = -\frac{1}{\sigma} \left\{ \frac{\partial \gamma}{\partial \alpha} + \frac{\partial \omega}{\partial \alpha} \frac{\partial \alpha}{\partial \rho} + H_{\tau} \right\} a; \quad a(x, \alpha) = a |_{\alpha=0}, \]

где \[\frac{\partial}{\partial \Omega} \omega = -\left\langle \tilde{Z}_{\alpha} \Psi \right\rangle / \left\langle \tilde{Z}_{-\omega} \Psi \right\rangle; \]
(11) \[H_{\tau} + i H_{i} = -\left\langle \alpha \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \right) + \frac{\partial^2 \Psi}{\partial y^2} \Delta \Psi \right\rangle + 2 \Delta^{2} \frac{\partial^2 \Psi}{\partial x^2 \partial y^2} \Psi + \frac{\partial^2 \Psi}{\partial x^2 \partial y} \frac{\partial}{\partial x} \frac{\partial^2 \Psi}{\partial y^2} \frac{\partial}{\partial y} + \\
+ \left(\alpha \Delta + \frac{\partial^2 \Psi}{\partial y} \Delta - 2 \alpha^2 \frac{\partial^2 \Psi}{\partial y^2} - \frac{\partial^2 \Psi}{\partial y^2} + 4 \alpha \Delta \frac{1}{Re} \frac{\partial}{\partial y} \right\rangle \left\langle \tilde{Z}_{\alpha} \Psi \right\rangle^{-1}. \]

Система (11), (12) описывает пространственно-временную эволюцию возмущений в неоднородном потоке. Уравнения справедливы для произвольного вида начального распределения и в отличие от случая квазигармонических пакетов [7—9, 12—15, 19] содержат производные по \(\alpha \) (\(\partial^2 / \partial x \partial y; \partial^2 / \partial x \partial \rho; \partial^2 / \partial y \partial \rho; \partial^2 / \partial y \partial \alpha; \partial^2 / \partial \rho \partial \alpha; \partial^2 / \partial \rho \partial \rho \)). Спектр трансформируется в пространстве \((x, t, \alpha) \) реальных переменных (ср. с [6, 7, 11]). По известным \(F^{(1)} \), \(\Phi^{(1)} \) определяется \(\Psi^{(1)} \). Повторяя процедуру для \(F^{(2)} \), \(F^{(3)} \), находим \(\Psi^{(2)} \) и т. д. При этом \(\Psi^{(m)} \) — решение однородного уравнения Орр — Зоммерфельда, а операторы \(F^{(m)} \), \(\Phi^{(m)} \) содержат члены \(\partial^m a / \partial x^m - i \partial^m \rho / \partial x^m \).

Из (11) можно получить условие существования цугов в неоднородном потоке. Если начальное возмущение представляется узким (в \(\alpha \) пакетом \(a \sim \exp(-\Lambda x^2 / 2) \), \(\Lambda x \sim z^{-1} \mu \ll 1 \), то

(13) \[\frac{\partial a}{\partial \rho} \sim \frac{\partial a}{\partial \omega} \sim za \sim \mu^{-1} \quad \text{и} \quad 1 > \frac{\partial a}{\partial \rho} \frac{\partial \omega}{\partial \rho} \frac{\partial a}{\partial \alpha} \frac{\partial a}{\partial \mu} > v. \]

Тогда (11) в первом приближении принимает вид \(\partial a / \partial \alpha = 0, a = a(\omega) \) и возмущение представляется квазигармонической волной с \(\omega_{\beta} = \omega(\alpha, \rho) = \) \[\text{=const.}, \quad \Psi = a_{\alpha} \Psi_{\alpha}(y, \rho) \exp i \theta \] и фазой \(\theta_{\beta} = -\omega t + \int a_{\beta} d\alpha, \quad a_{\beta} = a(\omega, \rho), \)

Задача сводится к учету влияния неоднородности \(\nu \geq 0 \) и конечности спектрального ширины пакета \(\mu^{-1} < \infty \) на его эволюцию в пространстве \((x, t) \) [7, 8, 12, 13, 21]. Решение можно найти разложением по двум параметрам \((\mu, \nu) \) [8, 12], оно имеет смысл при условии (13) \(\nu > \mu \).

Последнее означает, что ширина пакета \(z \sim \Delta x^{-1} \) должна оставаться больше характерной \(\lambda = \omega^{-1} \), но много меньше масштаба неоднородности \(v^{-1} [18] \).

Характеристики (11) \(dx / dt = \partial \omega / \partial x, \quad dx / dt = \partial \omega / \partial x, \quad da / dt = \gamma - H_{\tau} \) отличаются от случая цугов [7, 13, 21] из-за отсутствия закона сохранения \(\omega \).

Результаты расчетов в некотором диапазоне параметров движения даны на фиг. 1—4.

1. Вид траекторий \(\alpha_{\tau} = \alpha(\alpha_{\tau}, x) \) при \(dx / dt = (\partial \omega / \partial x)(\partial \omega / \partial x)^{-1}, \)
\[\sqrt{\text{Re}_{\alpha} = 300}, \quad \alpha_{\tau}(x_{\tau}, \alpha_{\tau}) = \alpha_{\tau} = 0.1; 0.12; 0.14; 0.16; 0.18; 0.20; 0.22 \]
показан на фиг. 1 (линии I — VII соответственно). Штриховыми линиями нанесено положение нейтральных критических вязкоквазинепрерывной теории
(обезразмеривание проводилось по масштабу \(U_\infty \delta^2/v \) с \(\delta \approx \sqrt{Re_x} = 600 \)). Линиями \(n = 0, 1, 2, \ldots, 10 \) отмечено положение точек в различные моменты \(t_n = n \cdot 0.125 \) при начальных условиях \(\alpha = \alpha_{10}, \sqrt{Re_x} = \sqrt{Re_x} (n = 0) \).

Соответствующий поведение \(\omega \) и \(S = \ln a \) вдоль \(\alpha_j(x_{10}, x) \) представлено на фиг. 2, 3; положение нейтральных точек нарастания практически не отличается от даваемых «непараллельной» теорией \[2\]. Деформация спектра \(\omega \) в различные моменты \(t_n \) (линии \(n \rightarrow n \)) характеризуется зависимостью \(S(t) = S(\alpha(t)) \), представленной на фиг. 4. Относится к смещению в длинноволновую область колебаний.

Случай пространственных (трехмерных возмущений) потока легко обобщается в рамках данного подхода.

Таким образом, поле возмущенного произвольным образом пограничного слоя может быть прослежено вниз по течению. С другой стороны, по известному в \(x \geq x_0 \) распределению восстанавливается начальный спектр. Последнее может быть использовано для оценки области перехода. Действительно, если известны характерные параметры движения в переходной зоне, то восстановленный вверх по потоку спектр можно сравнить с реальным (измеренным) и указать критическую траекторию \(\alpha_j(x, \alpha_{10}) \) и значение \(x_0 \) перехода. При этом подразумевается, что нелинейные эффекты существенны на мальных интервалах \(x \), а турбулизация обусловлена «внутренним» развитием неустойчивости \[2, 16, 17\]. Для каждого класса потоков критическая интенсивность каждого значения \(\alpha(x_{10}, x_0) \) может быть затабулирована.

Возможны соображения об условиях в переходной зоне могут быть сформулированы на основе представлений о двух типах процесса \[2, 22—24\]. В \[23\] получены данные о переходе, связанном с возбуждением про странственных субгармоник волны TH. Другой тип (Клеантовский), на наш взгляд, является результатом развития волн с нелинейным критическим слоем цим и их дальнейшим разрушением \[24, 25\]. Важно, что в обоих случаях эффективные нелинейные явления проявляются в окрестности верхней ветви кривой нейтральной устойчивости \(\alpha_k = \alpha(x) \) при интенсивностях колебаний \(O(10^{-2}) \). Выбирая \(a(x_{10}, \alpha_j(x_{10})) \approx 10^{-2} \), найдем
линейного движения,

химических реакций,

быть удалены, чтобы обеспечить читаемость текста.

2. Качанов Ю. С., Кузлов В. В., Левченко В. Я. Возникновение турбулентности в пограничном слое. Новосibirск: Наука, 1982.

Поступила 29/XI 1983 г.