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Предложена математическая модель трещины, учитывающая процессы разрыва структурных 
связей на микроуровне (в масштабе десятков микрон), мезоуровне (в масштабе миллиметров 
и сантиметров), а также взаимодействие структурных фрагментов на макроуровне (для тре-
щин более десятков сантиметров). В модели использованы два геометрических критерия раз-
вития трещины, связанные со структурой породы и определяющие переход с одного мас-
штабного уровня на другой. Решена задача о напряженно-деформированном состоянии упру-
гой среды вблизи трещины при изменении ее длины и масштаба влияния. Оценивается пре-
дельно равновесное состояние трещины. Показано, что для трещины мезоуровня такое со-
стояние является неустойчивым, поэтому мезотрещина может развиваться в динамическом 
режиме и в этом режиме должна прорасти на макроуровень. Достаточно протяженные мак-
ротрещины могут расти в режиме квазистатики, поскольку их развитие должно происходить 
за счет автономного продвижения концов. 

Горные породы, микроструктура, напряженно-деформированное состояние, математическая 
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Проблемы разрушения горных пород в выработках имеют принципиальное значение 
для безопасности разработки месторождений на больших глубинах, где породы предельно 
напряжены и их разрушение носит динамический характер. Бόльшей частью разрушение имеет 
признаки отрыва и проявляется в виде отделения от стенок выработки пластин или слегка ис-
кривленных кусков породы, в результате чего изменяется форма сечения выработки. Разру-
шение отрывом сильно сжатых пород, как и наведенная структура техногенных закрытых 
трещин, развивающихся вдоль поверхности обнажения пород, труднообъяснимы, и этим  
вопросам уделяется особое внимание [1 – 7]. 

Трудности объяснения отрыва при сжатии породы связаны с пониманием причин появле-
ния в ней растягивающих напряжений под действием сжимающей нагрузки. Одно из направле-
ний исследований — изучение роли существующих изолированных природных нарушений 
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в породе и их взаимодействие [8 – 13]. Теоретические разработки этого вопроса сводятся к мо-
делированию взаимодействия отдельных трещин, что недостаточно для моделирования макро-
разрушения пород и наведенной структуры макротрещиноватости монолитных пород вблизи 
стенок горных выработок. 

Другое направление исследований основано на положении, что локальные растягивающие 
напряжения в сжатых породах и бетоне возникают вследствие зернистости структуры. В усло-
виях, близких к одноосному сжатию, множественные структурные неоднородности материала 
могут порождать у своих границ микротрещины отрыва, развивающиеся вдоль направления 
действия главной сжимающей нагрузки. В этих исследованиях используются численные мето-
ды, с помощью которых рассматриваются процессы деформации и взаимодействия множества 
зерен и разрушения среды в целом [5, 7, 12 – 14]. Однако в рамках второго направления необ-
ходима разработка модели отрывного макроразрушения, которая отражала бы объединение 
множества микротрещин в протяженную трещину [5]. 

Некоторые аспекты такой модели обсуждались в [4, 15], где изучались условия образова-
ния отрывных макротрещин вследствие совокупного взаимодействия множества микротрещин 
проскальзывания. В модели развития макротрещины применялся силовой критерий Г. Ирвина, 
оперирующий бесконечными напряжениями в кончике трещины, что плохо соответствует  
реальной природе процессов, происходящих вблизи конца трещины. 

В настоящее время новые идеи в понимании механизма образования трещин в материалах 
с зернистой структурой связываются с представлениями о зоне процесса разрушения (FPZ) 
вблизи кончика трещины [16 – 23]. Активно развиваемые экспериментальные и модельные ис-
следования, использующие концепцию FPZ, дают надежду на разработку адекватного матема-
тического аппарата прогноза развития макротрещин отрыва в горных породах. Некоторые 
из новых идей в изучении трещинообразования использованы в построении математической 
модели трещины. 

ПОДХОД К АНАЛИЗУ РАЗВИТИЯ ТРЕЩИН ОТРЫВА В ЗЕРНИСТЫХ МАТЕРИАЛАХ  
НА ОСНОВЕ КОНЦЕПЦИИ ЗОНЫ ПРОЦЕССА РАЗРУШЕНИЯ 

Зона процесса разрушения понимается как область в окрестности кончика растущей тре-
щины, в которой происходит локальное растрескивание и частичная дезинтеграция материала. 
Эта зона выявляется в акустических исследованиях в виде области источников сигналов и рас-
положена вблизи конца трещины. Ее размер увеличивается с повышением нагрузки на матери-
ал и роста трещины. Согласно [20], по данным акустической эмиссии и цифровой корреляции 
изображений в образце бетона при его растяжении, протяженность зоны FPZ может превышать 
несколько миллиметров. В такой зоне на границах зерен образуются микротрещины размером 
от нескольких до сотен микрон. Энергия, затрачиваемая на разрушение материала, расходуется 
преимущественно в этой зоне. 

Концепция зоны FPZ у кончика трещины при ее развитии в условиях действия внешних 
напряжений растяжения tσ  можно пояснить следующей упрощенной схемой [24, 25]. Впере-
ди по направлению развития трещины формируется область разрыва структурных связей 
на контакте отдельных зерен (рис. 1, область I). В ней еще нет сплошной поверхности разры-
ва связей, но ее условно можно отнести к трещине, поскольку она влияет на ее развитие. 
В области II образовавшиеся микротрещины сдвиго-отрыва, соединяясь, образуют в сово-
купности сплошной разрыв по границам зерен — зарождающуюся трещину в направлении, 
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перпендикулярном направлению действия внешней растягивающей нагрузки. Вследствие 
особенностей зернистой структуры породы берега неровного разрыва не выходят полностью 
из зацепления по всей длине, т. е. этот разрыв — часть трещины с взаимодействующими бе-
регами. Наконец, когда расхождение берегов у разрыва-трещины превысит некоторое крити-
ческое значение, определяемое размером крупных зерен, берега трещины полностью выходят 
из зацепления и становятся свободными от внутренних усилий. В этой части трещина стано-
вится открытой (область III). 

 
Рис. 1. Схема микроразрушения геоматериала вблизи конца горизонтальной трещины 
при внешней растягивающей нагрузке 

Зона разрушения FPZ включает области I и II. В ней определяющую роль играет взаимо-
действие границ как отдельных структурных фрагментов, так и их некоторой совокупности. 
Основные затраты энергии на развитие трещины происходят именно в этой зоне. Учет сил вза-
имодействия позволяет исключить необходимость рассмотрения гипотетических бесконечных 
напряжений, какие имеются в модели трещины Гриффитса – Ирвина. Условие предельно рав-
новесного состояния трещины определяется условием критического расхождения берегов раз-
рыва в области II. 

Критическое расхождение берегов трещины — объект анализа в моделях трещин 
Д. Дагдейла и В. Панасюка [26, 27] для однородных материалов, где зона сцепления (зона 
предразрушения, пластичности) представлена линией конечной длины (в плоском случае) впе-
реди кончика видимой трещины. В отношении математического описания развития трещины 
при прямом растяжении материала принципиального различия концепций FPZ и Дагдейла –
 Панасюка нет, однако в отношении понимания механики разрушения различие есть. Согласно 
концепции FPZ, микротрещинообразование и дезинтеграция происходят в области, имеющей 
поперечный размер, определяемый микроструктурой материала. Характерный поперечный 
размер зоны FPZ у трещины при прямом растяжении может составлять несколько диаметров 
зерен материала. 

Поскольку при распространении трещины в области ее конца непрерывно происходит 
объемное микроразрушение материала, вся трещина в результате своего развития окружается 
тонким слоем нарушенного материала (рис. 1). Фактически этот слой — область фазового пе-
рехода материла из ненарушенного состояния в нарушенное с другими механическими свой-
ствами, что дало основание для привлечения концепции фазового перехода в исследованиях 
развития трещин [28 – 30]. Это важно для понимания механизма разрушения газоносного угля, 
когда на берегах трещины наблюдается быстрый переход метана из растворенного состояния 
в угольном веществе в свободное состояние в трещине. 
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Концепция зоны разрушения при растяжении породы может использоваться при построе-
нии модели развития трещин отрыва в условиях сжатия породы. Новую трактовку концепции 
FPZ поясним схемой на рис. 2. Факторами различия схем, показанных на рис. 1 и 2, являются 
направление действия и величина внешней нагрузки. На рис. 2 напряжения нагрузки сжимаю-
щие и действуют вдоль трещины. Напряжения сжатия в породе фактически предельные, соот-
ветствующие ее прочности. Это выражается в образовании множества локальных разрывов 
структурных связей во всем объеме породы. 

 
Рис. 2. Микроразрушение породы у кончика трещины отрыва при одноосном сжатии 

При нагружении породы в какой-то области активного локального микроразрушения, ко-
торая изначально может иметь вероятностную природу, образуются множественные сдвиго-
отрывные микротрещины на границах зерен. При дальнейшем нагружении породы часть мик-
ротрещин в области I объединяется в более протяженные микротрещины разной ориентации, 
размер которых варьирует от микрон до сотен микрон. Образование микротрещин в более 
крупной области способствует локальному перераспределению напряжений и соединению 
микротрещин, в результате чего формируется область дезинтегрированного материала (об-
ласть II). Эта область в условиях бокового стеснения представляет собой “мягкое” дилатирую-
щее включение, перераспределяющее вблизи себя напряженное состояние. В результате 
на условной границе включения появляется внутренняя распирающая нагрузка, действующая 
нормально направлению действия главной внешней сжимающей нагрузки. 

Как и во многих предыдущих моделях трещин отрыва при сжатии [2, 3], появление напря-
жений, действующих нормально направлению внешней нагрузки, можно отразить введением 
псевдоусилий, действующих нормально направлению развития трещины. В линейно-упругом 
приближении напряжение распирания можно линейно связать с внешней нагрузкой, действу-
ющей вдоль трещины сσ . 

В анализе процесса развития трещины в области II рассмотрим разрыв, на части которого 
зададим псевдоусилия, описывающие эффект распирания в области микроразрушения. Об-
ласть, где действует распирающая нагрузка и имеется неполное расхождение берегов, опреде-
лим как мезообласть разрыва. С ростом внешней нагрузки протяженность области увеличива-
ется, следовательно увеличивается и расхождение берегов. При критическом расхождении бе-
регов они перестают активно взаимодействовать, распирающая нагрузка исчезает и эта часть 
мезообласти становится частью видимой макротрещины. 

При исчезновении распирающей нагрузки берега разрыва не расходятся произвольно, 
а пассивно взаимодействуют в виде точечного касания. Вблизи обнажений пород в глубоких 
выработках наведенные видимые трещины отрыва выглядят закрытыми, без зияния. Макро-
трещину отрыва при сжатии можно представить разрывом с заданным критическим расхожде-
нием берегов в центральной части, которое определяется размером соответствующих крупных 
зерен. 
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Математическая модель трещины отрыва при сжатии с учетом трех масштабных уровней  
(I — микро, II — мезо, III — макро) должна отражать различный механизм деформации и раз-
рушения материала на этих уровнях, что предполагает использование разных граничных усло-
вий по напряжениям и смещениям. В качестве критериев перехода с одного уровня на другой 
целесообразно использовать геометрические критерии соответствующего критического рас-
хождения берегов, поскольку они связаны со структурой геоматериала. 

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРЕДЕЛЬНО РАВНОВЕСНОЙ ТРЕЩИНЫ 

Математическая постановка задачи о развитии трещины отрыва при одноосном сжатии, со-
гласно сформулированным положениям, может быть следующей (рис. 3). В условиях плоской 
деформации в координатах (х, 0, у) рассмотрим однородную упругую среду с тонким разрезом 
длиной 2l  в плоскости у = 0 (на рис. 3 показана половина разреза). Модуль упругости среды 
обозначим E, коэффициент Пуассона — ν . В горизонтальном направлении действует сжима-
ющая нагрузка сσ  (напряжения на бесконечности), напряжения сжатия считаем отрицатель-
ными. На участках разреза ( , )cl l− − , ( , )cl l , т. е. на микромасштабном уровне (I), действуют 
однородные сжимающие усилия – Q, соответствующие природной прочности микроструктур-
ных связей материала на разрыв. На самом деле в этой области сплошного разрыва нет, но как 
и в модели В. Панасюка, включаем ее рассматриваемый разрез с заданием сил сцепления. 
Эти усилия считаем однородными. 

 
Рис. 3. Схема к постановке задачи 

В мезообласти разреза с координатами ( , )bl l− , ( , )bl l  задаем распирающую однородную 
нагрузку S , при этом 0S γ σ= − , где постоянная γ  —  параметр модели ( 0)γ > . В централь-
ной области разреза с координатами ( , )b bl l−  задается однородное расхождение берегов, кото-
рое обозначим h . Касательные напряжения всюду в плоскости равны нулю ( 0)y = . Напряже-
ния в точках с координатами x l= ±  должны быть ограниченными, что обеспечивает плавное 
смыкание берегов трещины. 

Для определения напряжений и смещений можно воспользоваться методом Н. И. Мусхе-
лишвили для плоской задачи теории упругости [31]. Положив fQ Q S= + , приближенное  
решение задачи, в котором для краткости опущены члены, дающие заведомо малый вклад 
в решение, можно представить формулами: 

— распределения напряжений в плоскости 0y =  при x l≥  
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2
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На рис. 4 в безразмерном виде показано распределение напряжений и смещений в задаче 
о разрезе. Расчеты проведены при следующих параметрах: прочность на одноосное сжа-
тие 0 100σ =  МПа, / 0.5bl l = , / 0.9сl l = , 0/ 0.4S σ = , 0/ 1.4Q σ = . Задаваемая нагрузка 
на участке II сжимающая, поэтому в прилегающей области напряжение yσ  имеет знак “–”. 
Напряжение в центральной части также имеет знак “–”. Это означает, что берега испытывают 
давление со стороны друг друга, что является следствием условия заданного постоянного рас-
хождения берегов. 

 
Рис. 4. Распределение вертикальных напряжений (жирные линии) и профиль берега разреза v;  
I, II — область FPZ; III — область видимой макротрещины 
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В задаче о трещине, в отличие от задачи для разреза в упругой среде, параметры bl , cl , l  
не задаются, а определяются из дополнительных условий, в совокупности составляющих  
систему уравнений: 

• условие конечности напряжений в кончике трещины имеет вид 

 
2

1 2( ) arccosb cl lS Q S
l l

π    − = +   
   

; 

• критерий предельного расхождения берегов ( ,0) / 2cv l δ=  на границе зоны сцепления, 
(здесь и далее смещение v представляется выражением (3); 

• критерий предельного расхождения берегов на границе bx l≤  зоны действия распираю-
щей нагрузки ( ,0) / 2bv l h= . 

Анализ системы полученных уравнений достаточно сложен. Использовав процедуру раз-
ложения в ряд и сохраняя только члены первого порядка малости, проведем вычисления и оце-
ним поведение трещины. В исследованиях использовались следующие значения параметров: 
модуль упругости породы 7000E =  МПа, коэффициент Пуассона 0.2ν = , теоретическая 
прочность на разрыв 0.01Q E= , оцениваемая как и в [27]. В расчетах варьировались критиче-
ское расхождение берегов в зоне сцепления 6(0.5 10.0) 10δ −= ÷ ⋅  м и критическое расхождение 
берегов в зоне распирания 3(0.1 5.0) 10h −= ÷ ⋅  м. 

Рассмотрим сначала зависимости для мезотрещины, на берегах которой действует распи-
рающая нагрузка. В этом случае в формулах следует принять 0bl = . Используя приближенное 
условие предельного расхождения берегов в зоне сцепления, имеем 

 
28(1 )2 arccos
E

lQQS e
πδ

ν

π

−
−

    ≈       
. (4) 

Для определенности полагаем, что начальная полудлина начинающей развитие мезотрещи-
ны составляет 4

0 5 10l −= ⋅  м. По формуле (4) можно оценить напряжение распирания, необхо-
димое для начала развития мезотрещины при разных критических расхождениях берегов в зоне 
сцепления. 

На рис. 5а показаны зависимости параметра / cl l  от приведенной длины 0/l l , на рис. 5б — 
зависимости псевдоусилий распирания /S Q  от приведенной длины мезотрещины 0/l l  
при критических расхождениях берегов δ . Нетрудно сделать вывод об изменении длины зоны 
сцепления cl l−  в мезотрещине с увеличением ее длины. По мере увеличения длины мезотре-
щины относительная величина ( ) /cl l l−  стремится к нулю. Кроме того, чем меньше δ , тем 
меньше длина зоны сцепления cl l− . Из рис. 5б определим относительные псевдоусилия рас-
пирания /S Q , при которых мезотрещина должна начать развиваться. Они равны 0.18, 0.25, 
0.70 при 60.5 10δ −= ⋅ , 610− , 510−  м соответственно. Предельно равновесное состояние ме-
зотрещины при достижении ею предельного значения 0l  неустойчиво, т. е. более протяженной 
мезотрещине в состоянии предельного равновесия отвечает меньшая нагрузка, вызывающая 
развитие трещины. Таким образом, начав развитие, мезотрещина должна развиваться в дина-
мическом режиме и перерасти в макротрещину, когда расхождение берегов мезотрещины  
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в самом ее центре достигнет предельного значения h . Из полученных соотношений следует, 
что на начальном этапе развития, т. е. до достижения критической длины 0l , мезотрещина 
должна развиваться устойчиво. 

 
Рис. 5. Зависимость / cl l  (а) и нагрузки /S Q  (б) от приведенной длины мезотрещины 0/l l  
при разных критических расхождениях берегов: 1 — 60.5 10δ −= ⋅  м; 2 — 610δ −=  м; 3 — 

510δ −=  м 

Предельная длина мезотрещины ml , определяемая по условию начала расхождения ее 
берегов на величину h , рассчитывается как 

 24(1 )m
hEl

Sν
≈

−
. (5) 

Используя соотношения (1) – (3) при 0bl > , получим необходимые зависимости для макро-
трещины. На рис. 6 приведена зависимость полудлины области постоянного расхождения бе-
регов в макротрещине bl  к полудлине трещины l  от приведенной длины трещины / ml l . 
В пределе при бесконечном росте l  величина bl l−  равна 0.01 ml≈ . Это малое значение получе-
но теоретически. Вероятно, следует ввести ограничения из физики разрушения на правомер-
ность бесконечного роста l . Оценить влияние параметров задачи на зависимость, представлен-
ную на рис. 6, можно с помощью соотношения (5) для ml , входящего в выражение приведенной 
длины трещины. 

 
Рис. 6. Зависимость в безразмерном виде длины bl  области постоянного смещения берегов 
с увеличением длины макротрещины l  
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Условие развития макротрещины (и мезотрещины) — критическое расхождение берегов δ  
на границе зоны сцепления 2 ( ,0)clν δ= . Используя данное соотношение и формулу (3), по-
строим зависимость приведенной нагрузки и длины трещины (рис. 7). Она используется 
в оценках устойчивости предельно равновесного состояния макротрещины. Видно, что пре-
дельно равновесное состояние макротрещины является неустойчивым, о чем свидетельствует 
необходимость снижения нагрузки с увеличением длины макротрещины для сохранения рав-
новесного состояния. Однако есть важное отличие, состоящее в том, что с ростом длины тре-
щины характер предельно равновесного состояния постепенно изменяется. 

 
Рис. 7. Зависимость в безразмерном виде нагрузки /S Q , необходимой для сохранения 
предельно равновесного состояния макротрещины, и длины макротрещины / ml l  

Для очень протяженных макротрещин ( / )ml l → ∞  зависимость длины трещины и нагруз-
ки определяется как 

 212(1 )( )b

ES
l l

δ
ν

≈
− −

. 

Левая часть этого выражения зависит от разности bl l− , т. е. от протяженности зоны распи-
рания в макротрещине. Поскольку эта разность перестает зависеть от l и стремится к постоян-
ной величине, можно заключить, что достаточно длинные макротрещины отвечают состоянию 
безразличного равновесия. 

С ростом длины макротрещины принципиально изменяется тенденция влияния трещины. 
Для сравнительно короткой макротрещины область влияния растет с увеличением длины тре-
щины, но постепенно, по мере увеличения размера области постоянного смещения берегов, эта 
тенденция исчезает. Для достаточно длинной макротрещины влияние трещины уменьшается 
с ростом ее длины. Из решения задачи следует, что вблизи трещины напряжения xσ  и yσ  
на оси ординат приближенно представляются формулами при ( / ) 1bl l → : 

 
2 2 2 2 2

02 2 1/2 2 2 3/22 2

( )(0, ) 1
( ) ( )

b
x

y l y l by S
y b y ly l

σ σ
 + − ≅ − − −

+ + + 
, 

 
2 2 2 2 2

2 2 1/2 2 2 3/22 2
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( ) ( )

b
y

y l y l by S
y b y ly l

σ
 + − ≅ − +

+ + + 
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Таким образом, при росте макротрещины вблизи ее берегов возмущения по напряжениям 
становятся достаточно малыми. 
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ОБСУЖДЕНИЕ МОДЕЛИ 

В модели интегрально учитываются особенности нарушения структурных связей между 
зернами, и эти особенности отражаются в граничных условиях задачи теории упругости 
для разреза, моделирующего трещину. Такой подход дает возможность привлечь хорошо раз-
витый аналитический аппарат теории упругости и механики трещин в анализ проблем отрыв-
ного разрушения пород при сжатии. 

Важный смысловой элемент модели — положение об изменении направления действия 
усилий в области континуального разрушения породы и определяющее влияние этих усилий 
на формирование локализованного разрушения породы в виде трещины. Новизна в рассмотре-
нии трещины связана с использованием в анализе условий развития трещины двух геометриче-
ских параметров смещения ее берегов. Таким образом модель трещины является в большей 
степени деформационной, чем силовой. Деформационные критерии трещинообразования 
для зернистой среды открывают новые направления лабораторных исследований разрушения 
горных пород в отношении приложений к теории трещин. 

Оценки, основанные на анализе снимков породы, полученных с помощью электронного 
микроскопа, показывают, что протяженность области микроразрушений (зоны сцепления 
в терминологии Г. Баренблатта и В. Панасюка) в разных горных породах может варьировать 
в диапазоне (0.5 ÷ 5)⋅10–5 м. Следовательно, протяженность мезотрещины (зоны псевдоусилий рас-
пирания) может изменяться в диапазоне (0.5 ÷ 500)⋅10–3 м, протяженность макротрещины быть  
неограниченной в диапазоне от 5⋅10–3 м и более. Соотношение характерных размеров микро-,  
мезо- и макрообластей в трещине примерно соответствует двум порядкам, что согласуется с ранее 
проведенными оценками связи характерных размеров различных масштабных уровней [32]. 

Силу распирания для конкретной породы оценим из обратного анализа условий начала ди-
намического развития трещины при разрушении образцов в процессе их однородного одноос-
ного сжатия. Из оценок следует, что для многих пород усредненное псевдоусилие распирания 
составляет ~ 0.2 – 0.4 от напряжений действующих напряжений одноосного сжатия. 

Анализ решения задачи на устойчивость предельно равновесного состояния трещины пока-
зывает, что режим развития трещины изменяется по мере ее роста. На начальном этапе разви-
тия мезотрещины реализуется режим ее устойчивого роста. При достижении критической дли-
ны мезотрешины ее равновесное состояние становится неустойчивым, что предопределяет ди-
намическое развитие мезотрещины. В режиме динамики трещина может выйти на макроуро-
вень и с увеличением своей длины перейти в режим квазистатического развития, который от-
вечает состоянию безразличного равновесия и проявляется в автономном движении конца 
трещины при неизменном значении внешней нагрузки. Эта особенность модели отражает ре-
альное развитие трещин на практике — динамическое разрушение образцов пород при их од-
ноосном сжатии на мягких прессах, динамическое образование небольших заколов пород 
в выработках и квазистатическое формирование структуры протяженных макротрещин вблизи 
обнажений пород в выработках. 

При сравнении результатов применения деформационной модели трещины отрыва и сило-
вой модели [15] можно отметить следующее: несмотря на то, что математическое описание 
моделей различно, качественные выводы их применения в целом совпадают. При этом области 
применения моделей могут быть различными. Например, рассмотренная выше модель отража-
ет нарушение структурных связей в микроструктуре, и ее можно использовать в анализе таких 
явлений, как фрактоэмиссия, особенно в отношении эмиссии микрочастиц при одноосном сжа-
тии и разрушении хрупкой породы [33, 34]. 
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Отметим, что с несущественными добавлениями эту модель математически можно обоб-
щить на случай дополнительного действия малой сжимающей нагрузки, действующей нор-
мально направлению развития трещины, подобно тому, как это сделано в [15]. 

ВЫВОДЫ 

Вопросы развития процессов разрушения горной породы и перехода их на более высокий 
масштабный уровень актуальны в геомеханике и во многом еще не ясны. Сделана еще одна 
попытка проанализировать такой переход на примере развития трещины от микромасштаба 
до масштаба горных выработок. Установлено, что такие переходы могут проходить в режиме 
динамики и квазистатики. Для описания процесса разрушения при переходе с одного уровня 
на другой требуется разная постановка задач в отношении граничных условий. При этом 
процесс, происходящий на одном уровне, влияет на постановку задач другого уровня. 
В частности, распирающее действие мезообласти разрушения предопределяет характер раз-
вития макротрещины. 

На примере развития трещины показано, что параметры разрушения на микроуровне вхо-
дят в соотношения, определяющие процесс разрушения на более высоких уровнях. Таким об-
разом, имеем неразрывную связь процессов, одновременно происходящих на разных мас-
штабных уровнях. Для моделирования и прогнозирования образования протяженных макро-
трещин в породах вблизи стенок выработок необходимо изучать микропроцессы разрушения 
и определять их параметры в лабораторных экспериментах. Использование на практике инте-
гральных, феноменологических критериев прочности пород для объяснения особенностей 
разрушения и прогноза динамики разрушения массива пород в выработках может быть мало-
эффективно. 

Предпринятый в работе подход к описанию разрушения и полученные результаты отража-
ют лишь некие представления о процессах, связанных с развитием трещин. Для понимания ре-
альной многофакторной картины отрывного разрушения при сжатии необходимо использовать 
разные подходы и переходить к численному анализу в трехмерном измерении. 
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