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Единая интегральная запись постулатов механики сплошной среды в виде законов из-
менения (сохранения) тех или иных величин представляется в форме таблицы постула-
тов. Предполагается, что в сплошной среде реализуются как чисто механические, так
и различные немеханические взаимодействия, описываемые скалярными, векторными
и тензорными (второго ранга) энергетически сопряженными парами величин, одна из
которых характеризует процесс, а другая — отклик среды на этот процесс. На основе
первых трех строк таблицы постулатов построены четвертая и пятая строки, соответ-
ствующие законам изменения внутренней энергии и величины, которая в случае тер-
модинамической пары температура — энтропия совпадает с энтропией. Показано, что
в результате задания источников, потоков через границу и производств в четвертой и
пятой строках таблицы постулатов эти строки фактически становятся определениями.
Обобщаются известные в неизотермической механике принципы построения определя-
ющих соотношений, связывающих зависимые и независимые параметры состояния для
каждого типа взаимодействий.
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локальное уравнение, источник, поток, производство, внутренняя энергия, энергетиче-
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Введение. Проблемы аксиоматизации механики сплошной среды (МСС), в классиче-
ской феноменологической трактовке которой присутствует континуум и, вообще говоря,
отсутствуют понятия атомов и молекул, рассматривались во многих работах [1–10]. Дан-
ные проблемы связаны с проблемой строгой и внутренне корректной аксиоматизации физи-
ки, известной как шестая проблема Гильберта. По мнению А. Ю. Ишлинского, “механика
Галилея — Ньютона до сих пор в должной мере не аксиоматизирована в отличие от гео-
метрии, аксиоматизация которой была завершена великим математиком Д. Гильбертом. . .
Тем не менее можно и нужно. . . построить классическую механику, как и геометрию, ис-
ходя из некоторого числа независимых постулатов и аксиом, установленных в результате
обобщения практики” [11. C. 473].

При построении системы постулатов МСС большое значение имеет логика разделе-
ния утверждений на определения, собственно постулаты (законы) и следствия из них.
В первую очередь, это касается описания систем, в которых реализуются не только чисто
механические взаимодействия, но и связанные процессы.
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1. Таблица постулатов МСС. Как известно, классическая МСС аксиоматически
основана на наборе феноменологических постулатов, имеющих единую интегральную фор-
му в виде законов изменения (сохранения) тех или иных физических величин AV (t):

dAV

dt
= BV + CΣ + DV ; (1.1)

AV (t) =

∫
V

ρa(x, t) dV, BV (t) =

∫
V

ρb(x, t) dV,

CΣ(t) =

∫
Σ

c(y, t) · n(y, t) dΣ, DV (t) =

∫
V

d(x, t) dV.

(1.2)

Здесь ρ(x, t) — объемная плотность в точке x эйлерова пространства в момент времени t;
a(x, t) — массовая плотность величины AV в объеме V ; b(x, t) — массовая плотность ве-
личины BV , являющейся источником AV в V ; c(y, t) · n(y, t) — поверхностная плотность

величины CΣ — потока AV через границу Σ = ∂V , в каждой точке которой определе-
на единичная внешняя нормаль n(y, t); y ∈ Σ; d(x, t) — объемная плотность величины

DV — производства AV в V ; V — произвольный конечный объем среды, в любой момент
состоящий из одних и тех же лагранжевых частиц (движущийся объем неизменной мас-
сы [3. С. 52], индивидуальный объем [9. С. 124], жидкий объем [12. С. 69], подвижный
объем [13. С. 90], подвижный лагранжев объем [14. С. 142]).

Поле a(x, t) может быть тензорным полем различного ранга, от которого зависят
ранги величин, входящих в (1.1), (1.2):

rank a = rank b = rank c− 1 = rank d.

Так как объем V внутри среды произволен, из интегрального равенства (1.1) следует
дифференциальное равенство

ρ
da

dt
= ρb + Div c + d, x ∈ V. (1.3)

Число локальных законов (1.3) совпадает с числом интегральных равенств (1.2).
Интерпретацию величин a, b, c, d в (1.1), (1.2) удобно представить в виде таблицы,

которую будем называть таблицей постулатов МСС [15–17]. Три ее строки (табл. 1) соот-
ветствуют закону сохранения массы (I), а также законам изменения количества движения,
или импульса (II), и момента количества движения, или момента импульса (III). В табл. 1

v — скорость частиц, F — массовые силы, P (n) = σ ·n — поверхностные нагрузки на Σ,
σ — симметричный тензор напряжений Коши. Дифференциальными следствиями (1.3)
постулатов I–III являются уравнение неразрывности, уравнения движения и симметрия
тензора напряжений σ. Заметим, что при выводе каждого дифференциального следствия
используются утверждения предыдущих постулатов. Например, симметрия тензора на-
пряжений не является следствим только строки III в табл. 1, а следует из всех строк I–III.

Таб ли ц а 1
Таблица постулатов МСС

Закон a b c · n d

I 1 0 0 0

II v F P (n) 0

III x× v x× F y × P (n) 0
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Та бли ц а 2
Интегральное следствие таблицы постулатов МСС

Закон a b c · n d

K |v|2/2 F · v P (n) · v −σ : Def v

Из трех строк табл. 1 можно получить интегральное следствие (табл. 2), называемое
теоремой о кинетической энергии. Обычно она записывается в конечных приращениях

dKV = δAe
V + δAi

V ; (1.4)

KV =
1

2

∫
V

ρ|v|2 dV, δAi
V = −

∫
V

σ : dε dV,

δAe
V =

∫
V

ρF · du dV +

∫
Σ

P (n) · du dΣ,

где KV — кинетическая энергия объема V ; δAe
V — сумма изменений работ массовых и по-

верхностных сил на действительных перемещениях du; δAi
V — изменение работы внутрен-

них сил на действительных деформациях dε. Если внешние нагрузки F и P (n) обладают

скалярными потенциалами по u, а также существует скалярный потенциал напряжений σ
по деформациям ε, то дифференциальное соотношение (1.4) допускает первый интеграл—
интеграл энергии.

Теорема о кинетической энергии (1.4) не входит в таблицу постулатов, поскольку
не представляет собой независимое утверждение. Формально ее дифференциальным след-
ствием являются уравнения движения. Однако эта теорема (строка K табл. 2) играет
важную роль при переходе к формулировкам энергетических постулатов, соответствую-
щих механическим и немеханическим взаимодействиям и процессам.

2. Строка IV. Закон изменения внутренней энергии. Предположим, что в
сплошной среде наряду с механическими процессами, характеризуемыми энергетически
сопряженной парой (ε, σ), реализуются различные немеханические процессы, которые мо-
гут быть феноменологически описаны энергетически сопряженными скалярной (y, z), век-

торной (y, z) и тензорной второго ранга (Y {2}, Z{2}) парами. Под энергетической сопря-
женностью пар понимается то, что интегральные совместные инварианты

E1 =

∫
V

ε : σ dV, E2 =

∫
V

ρyz dV,

E3 =

∫
V

ρy · z dV, E4 =

∫
V

ρY {2} : Z{2} dV

(2.1)

с точностью до числового коэффициента являются энергиями, “закачанными” в покоящий-
ся объем V в несвязанном физическом процессе. Размерности величин в каждой немехани-
ческой паре (y, z), (y, z), (Y {2}, Z{2}), вообще говоря, не выражаются в базисе {M, L, T},
но их свертки (2.1), как и E1, имеют размерность энергии MLT−2, что позволяет склады-
вать эти свертки. Наряду с тензорной парой (ε, σ), явно содержащейся в (2.1), примером
энергетически сопряженной скалярной пары является термодинамическая пара (s, T ), где
s — массовая плотность энтропии; T — абсолютная температура.

Сформулируем строку IV таблицы постулатов, используя строкуK в табл. 2. Добавим
к слагаемому |v|2/2, присутствующему в строке K, некоторую функцию u(x, t), имеющую
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Таб ли ц а 3
Строка IV таблицы постулатов МСС

Закон a b c · n d

IV.1 |v|2/2 + u F · v + q(1) + q(2) + q(3) P (n) · v − (q(1) + q(2) + q(3)) · n 0
IV.2 u q(1) + q(2) + q(3) −(q(1) + q(2) + q(3)) · n σ : Def v

смысл массовой плотности внутренней энергии UV в объеме V , при этом сумма |v|2/2 + u
имеет смысл массовой плотности полной энергии KV + UV :

UV (t) =

∫
V

ρu(x, t) dV, (KV + UV )(t) =

∫
V

ρ
( |v|2

2
+ u

)
(x, t) dV.

Выберем функцию u(x, t) таким образом, чтобы производство полной энергии было
нулевым, а следовательно, производство внутренней энергии имело объемную плотность
σ : Def v. Изменение со временем величины UV в объеме V помимо ее производства вызва-
но наличием источников UV в V и потока UV через границу Σ, имеющих немеханическую
природу. Обозначим массовые плотности источников UV в V , соответствующих трем вве-
денным ранее немеханическим взаимодействиям, через q(1), q(2) и q(3). Обозначим также
поверхностные плотности потоков UV через границу Σ, соответствующих этим трем неме-
ханическим взаимодействиям, через −q(1) ·n, −q(2) ·n и −q(3) ·n. Скаляры q(1), q(2), q(3) и

векторы q(1), q(2), q(3), являющиеся функциями x и t, имеют размерности, выражающиеся

в базисе {M, L, T}: [q(1)] = [q(2)] = [q(3)] = L2T−3; [q(1)] = [q(2)] = [q(3)] = MT−3.

Таким образом, строку IV таблицы постулатов можно записать одним из двух спо-
собов (табл. 3). Строка IV.1 содержит закон изменения полной энергии в объеме V , а
IV.2 — закон изменения внутренней энергии в объеме V . Локальное равенство (1.3) для
функции u

ρ
du

dt
= ρ(q(1) + q(2) + q(3))− div (q(1) + q(2) + q(3)) + σ : Def v (2.2)

называется локальным уравнением энергии.

С точки зрения аксиоматического построения строку IV.2 (или эквивалентную ей IV.1)
естественно считать определением новой функции — массовой плотности u(x, t) внутрен-
ней энергии, которая присутствует в этой строке, в отличие от строки K. Если постули-
ровать физический смысл величин q(1), q(2), q(3), q(1), q(2) и q(3), т. е. считать, что они
первичны по отношению к u и их можно определять в независимых экспериментах, то за-
кон изменения внутренней энергии превращается в феноменологическое определение самой

внутренней энергии.

3. Связи потоков с величинами z, z, Z{2}. Задающие потоки векторы q(1), q(2)
и q(3) определены не только на границе Σ, но и во всем объеме V . Положим, что для каждой
выбранной среды эти векторы определяются заданием в V скалярного z(x, t), векторно-

го z(x, t) и тензорного второго ранга Z{2}(x, t) полей, причем q(1), q(2) и q(3) функциональ-

но связаны с grad z, rot z и Div Z{2}. При этом в отличие от q(1), q(2) и q(3) величины z,

z, Z{2} не допускают чисто механическое, или кинематически силовое, толкование, т. е. их
размерности не выражаются степенными одночленами MαLβTγ , как это следует из леммы
о степенном выражении размерности, и необходимо пополнение базиса {M, L, T}: [z] = K1,

[z] = K2, [Z{2}] = K3.
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Простейшими связями величин в каждой из пар (q(1), grad z), (q(2), rot z),

(q(3), DivZ{2}) служат соотношения

q(1) = −Λ
{2}
(1)

· grad z, q(2) = −Λ
{2}
(2)

· rot z, q(3) = −Λ
{2}
(3)

·Div Z{2}, (3.1)

где Λ
{2}
(1)

, Λ
{2}
(2)

, Λ
{2}
(3)

— материальные тензоры второго ранга, соответствующие тому или

иному типу анизотропии. Для однородной изотропной среды эти тензоры являются изо-
тропными.

В общем случае произвольной физической линейности можно записать

q(1)(x, t) = −
t∫

0

Γ
{2}
(1)

(t− ξ) · grad z(x, ξ) dξ,

q(2)(x, t) = −
t∫

0

Γ
{2}
(2)

(t− ξ) · rot z(x, ξ) dξ, (3.2)

q(3)(x, t) = −
t∫

0

Γ
{2}
(3)

(t− ξ) ·Div Z{2}(x, ξ) dξ,

где Γ
{2}
(1)

, Γ
{2}
(2)

, Γ
{2}
(3)

— разностные материальные ядра. Соотношениям (3.1) соответствуют

обобщенные функции

Γ
{2}
(1)

(t) = Λ
{2}
(1)

δ(t), Γ
{2}
(2)

(t) = Λ
{2}
(2)

δ(t), Γ
{2}
(3)

(t) = Λ
{2}
(3)

δ(t).

Нетрудно найти физические размерности введенных материальных функций: [Λ
{2}
(α)

] =

MLT−3K−1
α , [Γ

{2}
(α)

] = MLT−4K−1
α , α = 1, 2, 3.

С одной стороны, связи (3.1), (3.2) можно трактовать как определяющие соотношения
сред, в которых реализуются немеханические процессы и взаимодействия определенного
типа. С другой стороны, в определяющих соотношениях, как и в формулировках законов,
должны содержаться физические величины, определенные ранее. Однако в размерности
полей z, z и Z{2} входят K1, K2 и K3, поэтому они не могут быть введены с использованием
переменных, размерность которых выражается в базисе {M, L, T}.

4. Строка V. Закон изменения величин y, y, Y {2}. Появление в соотношени-
ях (3.1) величин z, z и Z{2} приводит к необходимости введения энергетически сопряжен-
ных с ними величин y, y и Y {2} в виде (2.1) и образования наряду с тензорной парой (ε, σ)
других пар, описанных в п. 2. В каждой паре один из параметров состояния описывает
процесс, происходящий в объеме V , а другой — отклик среды на этот процесс.

Запишем локальное уравнение в дифференциалах

ρ(z dy + z · dy + Z{2} : dY {2}) =

= ρ(q(1) + q(2) + q(3)) dt− div (q(1) + q(2) + q(3)) dt + w∗dt, (4.1)

где w∗ — объемная плотность рассеивания в V . В левой части (4.1) содержится сумма

“энергетических” дифференциалов z dy, z · dy и Z{2} : dY {2}, размерность которых выра-
жается в базисе {M, L, T}, а в правой части — их разбиение на источниковое, потоковое
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Таб ли ц а 4
Строка V таблицы постулатов МСС

Закон a b c · n d

V y q(1)/z −q(1) · n/z w∗/z − q(1) · grad z /z2

слагаемые и производство. Таким образом, локальное уравнение (4.1) является определе-

нием величин y, y и Y {2}, которые могут не измеряться в эксперименте, вследствие чего
имеют вспомогательный характер.

Поскольку с учетом размерности локальное уравнение (4.1) записывается для произ-

ведений z dy, z · dy и Z{2} : dY {2}, а не для dy, dy и dY {2} по отдельности, в нем имеются
интегрирующие множители. Если в среде реализуются немеханические взаимодействия,
описываемые только одной скалярной энергетически сопряженной парой (y, z), то можно
разделить левую и правую части (4.1) на z dt, проинтегрировать по V и получить строку V
таблицы постулатов — интегральный закон изменения величины y (табл. 4).

Интегрирующий множитель 1/z при интегрировании по частям приводит к возник-
новению в выражении для производства величины y слагаемого −(q(1) ·grad z)/z2, которое
при выборе, например, связи (3.1) представляет собой квадратичную форму

Υ(Λ
{2}
(1)

; grad z) =
1

z2
grad z · Λ{2}

(1)
· grad z (4.2)

относительно материального тензора Λ
{2}
(1)
и градиента поля z. Даже если среда обратима,

т. е. w∗ ≡ 0, производство величины y может быть ненулевым.
5. Принципы построения определяющих соотношений. Сравним скалярные

соотношения (2.2) и (4.1) и запишем

ρ du = σ : dε + ρ(z dy + z · dy + Z{2} : dY {2})− w∗dt. (5.1)

Рассматривая массовую плотность внутренней энергии u как функцию независимых па-
раметров состояния ε, y, y и Y {2}, явно зависящую от времени вследствие наличия рассеи-
вания, из (5.1) получаем определяющие соотношения

σ = ρ
∂u

∂ε
, z =

∂u

∂y
, z =

∂u

∂y
, Z{2} =

∂u

∂Y {2} , ρ
∂u

∂t
= −w∗, (5.2)

связывающие зависимые параметры состояния σ, z, z и Z{2} с независимыми [18]. Задать
среду, в которой реализуются связанные процессы, описываемые энергетически сопря-
женными парами (ε, σ), (y, z), (y, z) и (Y {2}, Z{2}), означает задать выполняющую роль

потенциала функцию

u = u(ε, y, y, Y {2}, t).

С помощью преобразований Лежандра

f = u− yz − y · z − Y {2} : Z{2}, ρg = ρu− ε : σ,

ρh = ρu− ε : σ − ρyz − ρy · z − ρY {2} : Z{2}

можно использовать также другие потенциалы

f = f(ε, z, z, Z{2}, t), g = g(σ, y, y, Y {2}, t), h = h(σ, z, z, Z{2}, t),

являющиеся массовыми плотностями свободной энергии Гельмгольца FV , энергии Гиб-
бса GV и энтальпии HV в объеме V :

FV (t) =

∫
V

ρf(x, t) dV, GV (t) =

∫
V

ρg(x, t) dV, HV (t) =

∫
V

ρh(x, t) dV.
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В обозначениях этих потенциалов определяющие соотношения (5.2) имеют следующий
вид:

σ = ρ
∂f

∂ε
, y = −∂f

∂z
, y = −∂f

∂z
, Y {2} = − ∂f

∂Z{2} , ρ
∂f

∂t
= −w∗,

ε = −ρ
∂g

∂σ
, z =

∂g

∂y
, z =

∂g

∂y
, Z{2} =

∂g

∂Y {2} , ρ
∂g

∂t
= −w∗,

ε = −ρ
∂h

∂σ
, y = −∂h

∂z
, y = −∂h

∂z
, Y {2} = − ∂h

∂Z{2} , ρ
∂h

∂t
= −w∗.

6. Пример неизотермического процесса. Примером скалярной пары (y, z) в неизо-
термической МСС является пара (s, T ), где s(x, t) — массовая плотность энтропии SV ;
T (x, t) — абсолютная температура. Если при этом другие немеханические взаимодействия
в среде отсутствуют, то строка V таблицы постулатов (см. табл. 4) представляет собой
закон изменения энтропии.

Принцип неубывания энтропии в изолированной системе, предложенный в конце

XIX в. Р. Клаузиусом и Л. Больцманом и лежащий в основе второго закона термодина-
мики, применительно к рассматриваемому объему V формулируется следующим образом:
если q(1)|V = 0 и (q(1) · n)Σ = 0, то∫

V

(w∗

T
−

q(1) · grad T

T 2

)
dV > 0. (6.1)

В силу произвольности V неравенство (6.1) эквивалентно неотрицательности подын-
тегрального выражения в каждой точке x ∈ V . Подставляя в (6.1), например, закон Фурье,
которым в данном случае является первое определяющее соотношение (3.1), для квадра-
тичной формы Υ (4.2) получаем неравенство

grad T · Λ · grad T > −Tw∗, x ∈ V.

В случае w∗ ≡ 0 неубывание энтропии в изолированной термодинамической системе рав-
носильно положительной определенности тензора теплопроводности Λ (положительности
теплопроводности в изотропной сплошной среде).

Заключение. Таким образом, для того чтобы ввести в математическую модель но-
вое, немеханическое взаимодействие, необходимо выполнить следующие требования:

— добавить в строку IV таблицы постулатов МСС (см. графы “a”, “b” в табл. 4)
слагаемые, связанные с изменением внутренней энергии вследствие нового вида взаимо-
действия (при этом производство полной энергии равно нулю), т. е. определить физиче-
ский смысл новых массовой плотности источников в V и поверхностной плотности потока

через Σ;
— ввести энергетически сопряженную пару новых характеризующих данное взаимо-

действие величин, которые нельзя выразить через имеющиеся, и расширить мультипли-
кативный базис размерностей;

— сформулировать аналог постулата V, определяющего источник, поток и производ-
ство одной из входящих в новую пару величин;

— придать смысл внутренней энергии функции u или какому-либо потенциалу новой
независимой переменной и получить определяющие соотношения, связывающие зависимые
параметры в каждой из имеющихся в модели пар с независимыми;

— выполнить (по крайней мере, виртуально) эксперименты для нахождения матери-
альных функций, входящих в указанные выше определяющие соотношения, в том числе
материальных функций, характеризующих связанные эффекты.
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Сформулированным требованиям помимо чисто механических и термических взаимо-
действий удовлетворяют электромагнитные взаимодействия, характеризуемые энергети-
чески сопряженной парой (E, H), где E и H — векторы напряженности электрического

и магнитного полей.
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