УДК 532.529

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ НЕСТАЦИОНАРНОЙ ДВУХФАЗНОЙ ТОНКОДИСПЕРСНОЙ СТРУИ

Д. В. Садин, В. О. Гузенков, С. Д. Любарский

Военно-космическая академия им. А. Ф. Можайского, 197082 Санкт-Петербург E-mails: d_sadin@mail.ru, sadin@narod.ru

В рамках модели неравновесной по скоростям и температурам гетерогенной среды с учетом столкновений частиц и действия межгранулярного давления численно исследована структура нестационарной двухфазной струи.

Ключевые слова: двухфазная тонкодисперсная струя, гетерогенная среда, межгранулярное давление.

Введение. Исследование двухфазных струйных течений с высокой концентрацией частиц имеет большое значение для разработки новых технологий пожаротушения, перемещения массивных тел, размытия слоя грунта и скоростной проходки каналов в нем и т. д. Для поиска эффективных режимных параметров необходимо изучение закономерностей волновых процессов в двухфазных средах. Эти и близкие к данной проблеме вопросы исследованы в работах [1–9].

Наиболее исследована следующая схема истечения нестационарной двухфазной среды. Цилиндрический канал заполнен в начальный момент времени газом высокого давления и плотно упакованными частицами. Камера высокого давления отделена от окружающей среды мембраной. После удаления мембраны и распада начального разрыва возникает совместное волновое движение двухфазной среды и окружающего газа.

В рамках представлений эффективного газа большой концентрации найдено точное автомодельное решение для одномерной волны разрежения [5, 8]. Поведение нестационарной двухфазной струи с крупнодисперсными частицами с учетом эффектов столкновений частиц численно изучено в [6]. Начальная двумерная стадия распада разрыва и распространения ударной волны, контактной поверхности между газом и двухфазной средой, продольных и поперечных волн разрежения исследована в работе [8], где получены точные и приближенные частные аналитические решения нестационарных (подвижных) волновых структур в окружающем газе и истекающей двухфазной среде. Вместе с тем, как показывает детальный анализ результатов экспериментов, проведенных авторами, истечение газа с взвешенными частицами в широком диапазоне начальных давлений в канале связано с образованием квазистационарных бочкообразных структур в характерных областях течения. Причем течение с чередованием зон уплотнения и разрежения формируется при дозвуковых (по отношению к скорости звука в газе) скоростях истечения газовзвеси. В экспериментах критическая скорость на срезе канала составляла от 10 до 50 % скорости звука в несущем газе. Это явление не нашло к настоящему времени теоретического объяснения.

Настоящая работа посвящена исследованию структуры двухфазных дисперсных струй, образованных по описанной выше схеме, а также влияния на характер течения дисперсности, эффектов неравновесности по скоростям и температурам фаз и столкновений частиц. Постановка задачи. Будем рассматривать двухфазную среду при известных допущениях [10] с учетом инерционных эффектов при обтекании частиц, хаотического движения и межгранулярного давления дисперсной фазы [6, 7, 11]. Полагаем справедливым принцип равнораспределения энергии хаотического движения сталкивающихся "шероховатых" дисперсных частиц по степеням свободы. Будем также пренебрегать пульсационной турбулентной энергией несущего газа по сравнению с энергией хаотического движения частиц при $\rho_1^\circ/\rho_2^\circ \ll 1$ (обсуждение этого вопроса приведено в [11]).

Задачу в рассматриваемой постановке запишем в следующем виде:

$$\frac{\partial \rho_i}{\partial t} + \nabla \cdot \rho_i \boldsymbol{v}_i = 0,$$

$$\frac{\partial \rho_1 \boldsymbol{v}_1}{\partial t} + \nabla \cdot \rho_1 (\boldsymbol{v}_1 \boldsymbol{v}_1) + \beta_1 \nabla p + (1 - \beta_2) \nabla p_{2*} = -\beta_3 \boldsymbol{F}_{\mu} + \beta_3 \rho_1 \boldsymbol{g} + (1 - \beta_2) (\rho_1 + \rho_2) \boldsymbol{g},$$

$$\frac{\partial \rho_2 \boldsymbol{v}_2}{\partial t} + \nabla \cdot \rho_2 (\boldsymbol{v}_2 \boldsymbol{v}_2) + (1 - \beta_1) \nabla p + \beta_2 \nabla p_{2*} = \beta_3 \boldsymbol{F}_{\mu} - \beta_3 \rho_1 \boldsymbol{g} + \beta_2 (\rho_1 + \rho_2) \boldsymbol{g},$$

$$\frac{\partial \rho_2 u_2}{\partial t} + \nabla \cdot \rho_2 u_2 \boldsymbol{v}_2 = Q + H_{sh},$$

$$\frac{\partial \rho_2 k_2}{\partial t} + \nabla \cdot \rho_2 k_2 \boldsymbol{v}_2 + p_{2*} \nabla \cdot \boldsymbol{v}_2 = H_M + \tilde{H}_{\mu} - H_{\omega} - H_{sh} - H_{\mu},$$
(1)

$$\frac{\partial}{\partial t} \left(\rho_1 E_1 + \rho_2 E_2\right) + \nabla \cdot \left[\rho_1 E_1 \boldsymbol{v}_1 + \rho_2 E_2 \boldsymbol{v}_2 + p(\alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2) + p_{2*} \boldsymbol{v}_2\right] = \rho_1 \boldsymbol{g} \cdot \boldsymbol{v}_1 + \rho_2 \boldsymbol{g} \cdot \boldsymbol{v}_2,$$

$$\rho_i = \rho_i \alpha_i \quad (i = 1, 2), \qquad E_1 = u_1 + v_1/2, \qquad E_2 = u_2 + k_2 + v_2/2,$$

$$\beta_1 = \frac{\alpha_1(2 + \chi_m \rho_1^\circ / \rho_2^\circ)}{2 + \chi_m (\alpha_2 + \alpha_1 \rho_1^\circ / \rho_2^\circ)}, \quad \beta_2 = \frac{2 + \chi_m \alpha_2}{2 + \chi_m (\alpha_2 + \alpha_1 \rho_1^\circ / \rho_2^\circ)}, \quad \beta_3 = \frac{2}{2 + \chi_m (\alpha_2 + \alpha_1 \rho_1^\circ / \rho_2^\circ)}.$$

Здесь и далее индексы 1 и 2 относятся соответственно к параметрам несущей и дисперсной фаз; кружочком сверху помечены истинные значения плотности; ∇ — оператор Гамильтона. Через α_i , ρ_i , v_i , E_i , u_i , p, p_{2*} , k_2 , g обозначены объемная доля, приведенная плотность, вектор скорости, полная и внутренняя энергии единицы массы *i*-й фазы, давление газа, эффективное давление, обусловленное хаотическим движением частиц, пульсационная энергия единицы массы дисперсной фазы, вектор ускорения сил тяжести; F_{μ} , Q, H_M , \tilde{H}_{μ} , H_{ω} , H_{μ} , H_{sh} — соответственно вязкая составляющая силы межфазного взаимодействия, мощность теплообмена между газом и частицами, мощности генерации энергии хаотического движения частиц за счет сил Магнуса и вихревого обтекания частиц, диссипации из-за хаотического вращения, поступательного движения частиц и неупругого столкновения; χ_m — коэффициент, учитывающий влияние неодиночности и несферичности частиц на силу присоединенных масс ($\chi_m = 1$ для сферических частиц); t — время.

Для замыкания системы (1) используем уравнения состояния идеального калорически совершенного газа

$$p = (\gamma_1 - 1)\rho_1^{\circ}u_1, \qquad u_1 = c_v T_1,$$

несжимаемых твердых частиц

$$u_2 = c_2 T_2, \qquad \{\gamma_1, c_v, c_2, \rho_2^{\circ}\} \equiv \text{const.}$$

Здесь T_1, T_2 — температура несущей фазы и частиц; γ_1, c_v — показатель адиабаты и удельная теплоемкость газа при постоянном объеме; c_2 — удельная теплоемкость частиц.

Интенсивности межфазного трения и теплообмена F_{μ} , Q задаются на основе известных и апробированных для рассматриваемого класса задач эмпирических соотношений [10, 12, 13]. Мощность генерации энергии хаотического движения частиц за счет действия поперечных сил Магнуса на вращающиеся частицы H_M зададим на основании модели М. А. Гольдштика [11]. Для описания интенсивности генерации хаотического движения частиц \tilde{H}_{μ} из-за колебания продольной и поперечной сил вследствие вихревого обтекания частиц при числах Рейнольдса $\text{Re}_{12} > 10^2$ используем результаты работ [6, 7]. Учтем диссипативные механизмы перехода энергии хаотического вращения частиц H_{ω} , хаотического поступательного движения частиц H_{μ} во внутреннюю энергию газа, а также диссипацию кинетической энергии хаотического движения частиц при соударениях H_{sh} в виде [7, 11].

Задача истечения двухфазной дисперсной среды из цилиндрического канала в атмосферу решалась при следующих исходных данных: длина камеры высокого давления L = 2 м, диаметр канала D = 0,2 м, $p_h = 5$ МПа, $p_a = 0,1$ МПа, $T_{i,h} = T_{i,a} = 293$ К, $\alpha_{1h} = 0,4$, $\alpha_{1a} = 1, \gamma_1 = 1,4, \mu_1 = 1,8 \cdot 10^{-5}$ Па·с, $\lambda_1 = 0,025$ Вт/(м·К), $R_1 = 287$ Дж/(кг·К), $c_v = 716 \text{ м}^2/(\text{c}^2 \cdot \text{K}), \rho_2^\circ = 1500 \text{ кг/м}^3, c_2 = 710 \text{ м}^2/(\text{c}^2 \cdot \text{K}),$ где R_1 — газовая постоянная, индексы h, a соответствуют параметрам в камере высокого давления и вне ее.

Поставленная задача описывается системой жестких уравнений, содержащих "быстрый" и "медленный" компоненты решения [14, 15]. Действительно, характерные времена скоростной межфазной релаксаций фаз различаются более чем на порядок:

$$\frac{t_1^{(v)}}{t_2^{(v)}} = \frac{t_1^{(\mu)}}{t_2^{(\mu)}} = \frac{\rho_{1h}^{\circ} \alpha_{1h}}{\rho_{2h}^{\circ} \alpha_{2h}} = 0,027.$$

Поэтому для численного моделирования нестационарной тонкодисперсной струи использовалась К-устойчивая разностная схема. Расчеты выполнялись в цилиндрической с осевой симметрией системе координат на сетке размерностью 600 × 100. Краевые условия задачи задавались следующим образом: на стенках — условия непротекания, на границах расчетной области — экстраполяция параметров.

Результаты численного моделирования. После распада начального разрыва от среза канала к его дну распространяется волна разрежения, а в противоположную сторону начинается струйное истечение двухфазной среды. Введем характерное время процесса (число Струхаля), вычисляемое по длине канала и эффективной скорости звука: Sh = $a_h t/L$.

В критическом сечении в диапазоне 0 < Sh < 2 (время распространения волны разрежения до дна канала и ее возвращения к месту распада разрыва) точные аналитические безразмерные значения параметров постоянны [5, 8]

$$M_* = 0,548, \qquad p'_* = 0,249, \qquad \alpha_{1*} = 0,725, \qquad \rho'_* = 0,458, \tag{2}$$

где М = v/a_h — число Маха; $p' = p/p_h$; $\rho' = \rho/\rho_h$.

Указанное автомодельное решение является предельным при $d \to 0$ (d — диаметр частиц), к которому сходится решение в рамках модели двухскоростной двухтемпературной среды (1). При d > 5 мкм различия скоростей и температур фаз и эффекты межфазных взаимодействий становятся более существенными (см. таблицу), при этом, как было ранее установлено [5], наблюдается квазикритическое течение двухфазной среды с характерными скоростями газовой и дисперсной фаз. Таким образом, в исследованном диапазоне исходных данных при 0 < Sh < 2 параметры течения смеси в критическом сечении, которое в общем случае не совпадает со срезом канала, относительно стабильны. Следовательно, в окрестности среза канала в указанном временном диапазоне формируется квазистационарное (стационарное при больших временах и постоянных критических параметрах) истечение газа с взвешенными частицами.

d, мкм	Sh	u_1	u_2	p	α_2
	0,5	0,546	0,545	0,250	0,724
	1,0	0,548	0,547	0,250	0,725
5	1,5	0,548	0,547	0,249	0,725
	2,0	0,546	0,545	0,248	0,726
	2,5	$0,\!456$	$0,\!456$	0,193	0,772
	0,5	0,561	0,542	0,247	0,722
	1,0	$0,\!557$	0,545	0,247	0,723
25	1,5	0,555	0,546	0,248	0,724
	2,0	0,545	0,539	0,243	0,727
	2,5	$0,\!458$	$0,\!455$	0,191	0,772
50	0,5	0,573	0,540	0,245	0,721
	1,0	0,566	0,544	0,246	0,722
	1,5	0,562	0,545	0,247	0,723
	2,0	0,546	0,534	0,239	0,729
	2,5	$0,\!461$	$0,\!454$	$0,\!189$	0,772
100	0,5	0,587	0,538	0,243	0,719
	1,0	0,576	0,542	0,245	0,721
	1,5	0,571	0,544	0,245	0,722
	2,0	0,548	0,529	0,234	0,730
	2,5	0,465	0,451	0,186	0,772

Струя, образуемая при истечении двухфазной дисперсной среды из цилиндрического канала с избыточным давлением в атмосферу, является недорасширенной, т. е. давление на срезе превышает давление окружающей среды. Ниже рассмотрены три варианта расчета для значений диаметров частиц дисперсной фазы d: 5, 25, 50 мкм.

Первый вариант соответствует тонкодисперсной двухфазной среде (d = 5 мкм). Как показывает детальный анализ результатов расчетов, межфазные обменные процессы достаточно интенсивны. Скольжение фаз незначительно и среда ведет себя в целом подобно эффективному газу. На рис. 1, a, b показаны поле концентрации дисперсной фазы α_2 при Sh = 1 и 2 соответственно. Здесь и ниже темные области рисунка характеризуют бо́льшую, а светлые — меньшую концентрацию частиц. Сверху от оси симметрии приведены результаты расчетов, проведенных в рамках модели (1) с учетом эффектов хаотического движения частиц и действия межгранулярного давления псевдогаза дисперсной фазы, а снизу — в рамках модели бесстолкновительной дисперсной среды.

Характерной особенностью численного решения является существенная неравномерность плотности и давления как по длине струи, так и по радиусу. На этих рисунках видна первая "бочка", заканчиваемая диском Maxa 1, за которым скорость частиц становится дозвуковой (по отношению к эффективной скорости звука смеси). К бочке примыкают криволинейный висячий скачок 2 и отраженный скачок 3. За диском Maxa наблюдается вихревое возвратное движение газа и частиц (область 6). В головной части струи имеется вихревая область 4. При практически равномерном распределении параметров потока на срезе канала вблизи оси симметрии (на расстоянии, примерно равном 15*D*) реализуется кумулятивный эффект (область 5 на рис. 1,*a*). Важно отметить, что неравномерное (неизобарическое) поле течения отмечается только в области, занятой дисперсной фазой. Сверхзвуковая (по отношению к эффективной скорости звука) двухфазная плотная струя является дозвуковой по отношению к скорости звука в несущем газе. Например, максимальная скорость газа и частиц в струе в момент времени, соответствующий значению Sh = 1, составляет примерно 150 м/с. Очевидно, что при таких параметрах в "чистых" газовых течениях ударно-волновые структуры не возникают.

Рис. 1. Поле концентрации частиц при d = 5 мкм: $\rho_2^\circ = 1500 \ (a, \ b, \ c)$ и 3000 кг/м³(b); Sh = 1 (a) и 2 ($b, \ c$); c — установившееся течение

Для оценки влияния плотности материала гранул выполнены также расчеты истечения газодисперсной среды с частицами диаметром d = 5 мкм и вдвое большей истинной плотностью ($\rho_2^{\circ} = 3000 \text{ kr/m}^3$). Поле концентрации частиц при Sh = 2 показано на рис. 1, ϵ . Как показывает сравнение с рис. 1, ϵ , численное решение является автомодельным по варьируемому параметру истинной плотности. Этот результат согласуется с частными аналитическими решениями [8], которые не зависят от плотности материала дисперсной фазы.

На рис. 1,г приведено стационарное поле течения газа с взвешенными частицами при d = 5 мкм и $\rho_2^\circ = 1500$ кг/м³, полученное численно методом установления при задании на срезе канала постоянных во времени и по радиусу критических значений параметров (2). Сопоставление с предыдущими расчетами свидетельствует о формировании квазистационарных ударно-волновых структур в исследуемой задаче истечения двухфазной среды из ограниченного цилиндрического канала.

Результат расчета поля концентрации частиц при d = 25 мкм и Sh = 1 показан на рис. 2, a. Как и на рис. 1, сверху от оси симметрии приведено поле течения двухфазной

Рис. 2. Поле концентрации частиц при d = 25 мкм и Sh = 1: a — расчет; δ — эксперимент

среды, учитывающее взаимодействие частиц между собой, а снизу — без учета столкновений частиц. Неравномерность параметров струи сохраняется, однако структура течения оказывается размытой. Это объясняется тем, что эффекты скольжения фаз, различия термодинамических параметров и хаотического движения частиц становятся более существенными.

Применительно к условиям расчета был выполнен эксперимент. В качестве дисперсной среды использовался просеянный кварцевый песок с плотностью материала частиц $\rho_2^{\circ} = 2600 \text{ кг/m}^3$. На рис. 2,6 представлена фотография видимого контура струи. Несимметричность формы струи и распределения плотности частиц песка на представленном фотоснимке связаны с погрешностью эксперимента, в частности с неравномерностью вскрытия мембраны, отделяющей в начальный момент времени смесь газа высокого давления и песка насыпной плотности в канале от окружающей атмосферы. Характер истечения двухфазной среды, зарегистрированный в эксперименте, качественно согласуется с результатами расчета (рис. 2, a).

Дальнейшее увеличение диаметра частиц приводит к тому, что при d = 50 мкм и большем четкой структуры двухфазной дисперсной струи не выявляется, что объясняется увеличением зон релаксации.

Выводы. 1. Выявлен кумулятивный эффект в головной части двухфазной струи при равномерных параметрах потока при его истечении из цилиндрического канала.

2. Обнаружено образование квазистационарных (в пределе стационарных) двумерных волновых структур струйного течения газа с взвешенными мелкодисперсными частицами автомодельных по плотности материала гранул, причем неизобарическая двухфазная струя и ударно-волновые структуры формируются на дозвуковом (по отношению к скорости газа) режиме течения.

3. Выполнен анализ влияния плотности и диаметра частиц, различия скоростей и температур фаз, эффектов хаотического движения частиц и межгранулярного давления на характер течения газовзвеси.

4. Установлена закономерная связь между дисперсностью истекающей двухфазной дисперсной струи и проявлением ее структурных свойств.

5. Результаты численного моделирования согласуются с экспериментальными данными.

ЛИТЕРАТУРА

- 1. Ворожцов Е. В., Федоров А. В., Фомин В. М. К теории течения смеси газа и частиц угля в шахтах с учетом явления десорбции // Аэромеханика. М.: Наука, 1976. С. 316–327.
- Федоров А. В. Анализ уравнений, описывающих процесс внезапного выброса угля и газа // Числ. методы механики сплошной среды. 1980. Т. 11, № 4. С. 145–153.
- 3. Казаков Ю. В., Федоров А. В., Фомин В. М. Расчет разлета сжатого объема газовзвеси // ПМТФ. 1987. № 5. С. 139–144.
- 4. Любарский С. Д., Иванов А. С. Движение сжатой двухфазной среды насыпной плотности при внезапном расширении // Физика горения и взрыва. 1989. № 3. С. 78–81.
- 5. Иванов А. С., Козлов В. В., Садин Д. В. Нестационарное истечение двухфазной дисперсной среды из цилиндрического канала конечных размеров в атмосферу // Изв. РАН. Механика жидкости и газа. 1996. № 3. С. 60–66.
- Садин Д. В. Поведение нестационарной струи при истечении смеси газа высокого давления и дисперсной среды из цилиндрического канала в атмосферу // ПМТФ. 1999. Т. 40, № 1. С. 151–157.
- 7. Садин Д. В. Расчет метания цилиндрического тела нестационарным потоком двухфазной среды // Физика горения и взрыва. 1999. Т. 35, № 5. С. 138–144.
- 8. Садин Д. В. Исследование импульсного истечения двухфазной среды из ограниченного канала, имеющего возможность продольного перемещения // ПМТФ. 2000. Т. 41, № 1. С. 84–91.
- 9. Садин Д. В., Егоров К. Н. Взаимодействие нестационарной двухфазной струи со слоем сыпучей среды // ПМТФ. 2001. Т. 42, № 5. С. 109–114.
- 10. Нигматулин Р. И. Динамика многофазных сред. М.: Наука, 1987. Ч. 1.
- 11. Нигматулин Р. И. Основы механики гетерогенных сред. М.: Наука, 1978.
- 12. Стернин Л. Е., Маслов Б. П., Шрайбер А. А., Подвысоцкий А. М. Двухфазные моно- и полидисперсные течения газа с частицами. М.: Машиностроение, 1980.
- 13. Чудновский А. Ф. Теплообмен в дисперсных средах. М.: Гостехтеориздат, 1954.
- Садин Д. В. Проблема жесткости моделирования волновых течений гетерогенных сред с трехтемпературной схемой межфазного тепло- и массообмена // ПМТФ. 2002. Т. 43, № 2. С. 136–141.
- 15. Садин Д. В. О жесткости систем уравнений в частных производных, описывающих движения гетерогенных сред // Мат. моделирование. 2002. Т. 14, № 11. С. 43–53.

Поступила в редакцию 8/IV 2003 г., в окончательном варианте — 22/III 2004 г.