Автор выражает глубокую благодарность В. И. Яковлеву за постановку задачи и обсуждения, В. И. Хоничеву за обсуждения и Б. Г. Кузнецову за критические замечания.

ЛИТЕРАТУРА

5. Яковлев В. И. Вихревые течения в несимметричной проводящей жидкости, возникающие под действием переменного электромагнитного поля.— ПМФ, 1976, № 5.

УДК 621.37.373

ВЫСОКОИНДУКТИВНЫЕ ВЗРЫВОМАГНИТНЫЕ ГЕНЕРАТОРЫ
С БОЛЬШИМ КОЭФФИЦИЕНТОМ УСИЛЕНИЯ ЭНЕРГИИ

В. А. Демидов, Е. И. Жаринов, С. А. Казаков, В. К. Чернышев
(Москва)

Спиральные взрывомагнитные генераторы (ВМГ) являются источниками мощных импульсов электромагнитной энергии [1—3]. Одной из важнейших характеристик, определяющих практическую реализацию спиралей, является величина коэффициента усиления энергии (Кпр). От усилительных способностей ВМГ непосредственно зависит размеры источника первичной энергии. Поскольку удельная энергия, обеспечиваемая взрывными генераторами тока, примерно на три порядка выше удельной энергии конденсаторных устройств, применяемых обычно для защиты ВМГ, то объем источника начальной энергии приближается к объему ВМГ только в случае, если коэффициент усиления энергии генератора достигает величины ~10².

Существуют две возможности повышения Кпр взрывомагнитных устройств. Одна из них заключается в создании каскадных систем, представляющих собой несколько ВМГ, соединенных с помощью узлов связи (воздушных трансформаторов) и работающих последовательно друг на друга [1, 4]. В этом случае коэффициент усиления энергии всей системы равен произведению Кпр каждого ВМГ и может достигать сколько угодно больших значений. Однако каскадные генераторы являются сложными и дорогими устройствами. Кроме того, наличие узлов связи значительно увеличивает габариты и вес системы (например, размеры воздушного трансформатора сравнимы с размерами самого ВМГ). Другая возможность получения высоких значений Кпр состоит в увеличении отношения λ = Lp/Lc (в данном Lp — начальная индуктивность ВМГ, Lc — индуктивность нагрузки) за счет повышения Lc. Конструкция генератора при этом практически не усложняется. Именно спиралью с большой начальной индуктивностью посвящена данная работа.

1. Электрические поля при работе высокониндуктивных спиралей. Как известно, вследствие высокой скорости нарастания магнитного поля при быстром сжатии магнитного потока в объеме генераторов развиваются электрические поля, способные привести к возникновению пробоев и
снижению энергии в нагреве. В предельном случае максимальное напряжение в спиральных генераторах стремится к величине \(LdI/dt \approx 1dL/dt = -(\Phi/L)dL/dt\), где \(L\) — индуктивность, \(I\) — ток, \(\Phi\) — магнитный поток. Особенно большие напряжения развиваются в высокоиндуктивных спиралях, так как они запитываются большим магнитным потоком (при заданном потоке в нагреве величина начального потока \(\Phi_0\) должна быть тем выше, чем больше отношение \(L_0/L_1\)). Напряжения в ВМГ в зависимости от начальной энергии, закона изменения индуктивности и размеров системы могут достигать десятков и даже сотен киловольт. Этим и объясняется тот факт, что высокоиндуктивные спиралы с неизолированными витками работают крайне нестабильно (см., например, [2]).

Очевидно, что при заданных параметрах спирального генератора рабочее напряжение в его объеме будет иметь минимальное значение в том случае, если в течение всего времени деформации величина \(LdI/dt\) остается постоянной. Это означает, что закон изменения индуктивности спирали должен выбираться с учетом потерь потока.

Ток \(I\), протекающий в цепи ВМГ, определяется дифференциальным уравнением

\[
d(\Phi L)/dt + R_{\text{эфф}} I = 0,
\]

где \(R_{\text{эфф}}\) — эффективное сопротивление, определяющее все потери в контуре. Решение этого уравнения относительно потока \(\Phi = IL\) имеет вид

\[
\Phi(t) = \Phi_0 \exp\left(-\int_0^t \frac{R_{\text{эфф}}}{L} \, dt\right).
\]

Отсюда коэффициент сохранения потока

\[
\eta(t) = \exp\left(-\int_0^t \frac{R_{\text{эфф}}}{L} \, dt\right).
\]

Из экспериментов следует, что в высокоиндуцирующих спиралях, работающих без значительных потерь потока (без пробоя), отношение \(\alpha = \frac{R_{\text{эфф}}}{L}\) в течение всего времени вывода витков остается практически постоянным. Приняв \(\alpha = \text{const}\), можно записать

(1.1)

\[
I(t) = \Phi_0 e^{-\alpha t}/L(t).
\]

Продифференцировав (1.1) по \(t\), получим

\[
\frac{dL}{dt} = \frac{\Phi_0 e^{-\alpha t} \left[\frac{dL}{dt} + \alpha L(t) \right]}{L^2(t)}.
\]

Умножив это выражение на \(L\) и приняв \(LdI/dt = \varepsilon = \text{const}\), имеем

(1.2)

\[
\frac{dL}{dt} + \left(\frac{\varepsilon}{\Phi_0} e^{\alpha t} + \alpha\right) L = 0.
\]

Решение уравнения (1.2) имеет вид

(1.3)

\[
L(t) = L_0 \exp \{ (\varepsilon/\Phi_0 \alpha)(1 - e^{\alpha t}) - \alpha t\}.
\]

Выражение (1.3) является законом вывода индуктивности спирального генератора, в котором максимальное напряжение между конусом центральной трубы и витками спирали в течение всего времени работы постоянно.

2. Моделирование спиральных ВМГ. При исследовании и разработке взрывных генераторов тока вопросы моделирования занимают важное
мempo. Вычисление физических процессов, протекающих в генераторах, наиболее целесообразно проводить не на больших конструкциях, а на моделях, так как это резко сокращает время самого исследования и снижает материальные затраты.

Обозначим индуктивность, сопротивление и время работы модели и натурь соответственно через \(L_1, R_1, t_1 \) и \(L_2, R_2, t_2 \). Считаем, что все линейные размеры модели по сравнению с натурой уменьшены в \(n \) раз. Тогда для любого момента времени \(t_2 = nt_1 \) выполняется равенство \(L_2 = nL_1 \) и коэффициенты сохранения потока записываются

\[
\eta_1 = \exp \left(- \int_0^t \frac{R_1}{L_1} dt \right), \quad \eta_2 = \exp \left(- \int_0^t \frac{R_2}{L_2} dt \right);
\]

Если в любой момент времени \(t_2 = nt_1 \) выполняется равенство \(R_2 = R_1 \), то

\[
\int_0^t \frac{R_1}{L_1} dt = \int_0^{nt_1} \frac{R_2}{nL_2} dt, \quad \eta_1 = \eta_2.
\]

Однако подобное увеличение размеров генератора в \(n \) раз вызывает уменьшение эквивалентной частоты \(\omega = (2f) \omega \) так же в \(n \) раз, что приводит к увеличению глубины ским-слоя в \(Vn \) раз и уменьшению активного сопротивления цепи в \(Vn \) раз. Если причиной потерь потока в ВМГ является только конечная проводимость контура, то

\[(2.1)\]

\[R_2 = R_1 / Vn, \quad \eta_2 = \eta_1 / Vn^2.\]

Это соотношение хорошо выполняется для аксиально-симметричных систем. В спиральных ВМГ заметную роль могут играть геометрические

<table>
<thead>
<tr>
<th>Давление спирали, см</th>
<th>Номер опыта</th>
<th>(L_0), мГ</th>
<th>(E_1), кДж</th>
<th>(I_1), мГ</th>
<th>(I_1), мА</th>
<th>(E_1), кДж</th>
<th>(\eta)</th>
<th>(\kappa_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>340</td>
<td>0,014</td>
<td>0,14</td>
<td>160</td>
<td>1,8</td>
<td>0,22</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>340</td>
<td>0,025</td>
<td>0,14</td>
<td>210</td>
<td>3,0</td>
<td>0,24</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>340</td>
<td>0,015</td>
<td>0,14</td>
<td>150</td>
<td>1,6</td>
<td>0,21</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>340</td>
<td>0,014</td>
<td>0,14</td>
<td>150</td>
<td>1,6</td>
<td>0,22</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>650</td>
<td>0,035</td>
<td>0,27</td>
<td>200</td>
<td>9,0</td>
<td>0,33</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>650</td>
<td>0,17</td>
<td>0,27</td>
<td>550</td>
<td>4,1</td>
<td>0,32</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>650</td>
<td>0,21</td>
<td>0,27</td>
<td>620</td>
<td>5,2</td>
<td>0,32</td>
<td>250</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>1300</td>
<td>0,25</td>
<td>0,55</td>
<td>660</td>
<td>120</td>
<td>0,46</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1300</td>
<td>1,2</td>
<td>0,55</td>
<td>1450</td>
<td>570</td>
<td>0,46</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1300</td>
<td>1,8</td>
<td>0,55</td>
<td>1800</td>
<td>900</td>
<td>0,47</td>
<td>500</td>
</tr>
</tbody>
</table>
отсекания потока. Ввиду сложности расчетов количественная зависимость сопротивления, обусловленного отсеканиями от размеров спирали, неизвестна и может быть получена из экспериментов.

Моделирование спиральных ВМГ исследовалось на генераторах с внутренним диаметром спирали 4; 8 и 16 см. Линейные размеры этих ВМГ строго подобны. Спираль диаметром 8 см выбрана за основу, а две другие модели конструировались путем уменьшения или увеличения всех размеров в 2 раза. ВМГ диаметром 8 см состоит из 15 секций длиной по 4 см. Распределение индуктивности $L(t)$ удовлетворяет соотношению (1.3). Витки намотаны медным круглым проводом с высокой электрической прочностью. Спирали они заливаются эпоксидным компаундом. Параметры спирали приведены в табл. 1. Центральная алюминиевая труба имеет наружный диаметр 4 см, внутренний — 3 см, масса взрывчатого вещества в трубе 0,7 кг.

С каждой моделью проведено по 3—4 опыта. Запись спиралей начальной энергии проводилась от конденсаторных источников. Результаты опытов сведены в табл. 2, где E_0, E_f — начальная и конечная энергия ВМГ, I_f — ток в нагрузке.

Типичная осциллограмма производной тока, зарегистрированная в опыте 10, приведена на фит. 1 (метки времени через 4 мс, луч I : 1 см по вертикали $= 1,7 \cdot 10^{10}$ А/с, луч $2 : 1$ см $= 3,5 \cdot 10^{10}$ А/с), а на фиг. 2 представлена зависимость тока от времени для опыта 10.

Из табл. 2 следует, что коэффициенты, характеризующие эффективность срабатывания спиралей (η, K_E), в силной степени зависят от размеров системы: чем больше габариты генератора, тем эффективнее он работает. Особенно наглядно это видно из представленных на фит. 3 кривых $\eta(t)$, которые получены путем усреднения в каждый момент времени значений η по всем опытам для данной модели (кривые $1-3$ — диаметр спирали 4; 8 и 16 см соответственно). Сравнение значений η_1 и η_2 для двух любых моделей в момент времени $t_2 = n_1 t_1$ показывает, что они достаточно хорошо удовлетворяют соотношению (2.1). Этот факт означает: либо в спиралах потери на отсеканиях пренебрежимо малы по сравнению с омическими, либо сопротивление, обусловленное ими, при увеличении всех линейных размеров системы в n раз уменьшается в $\sim \sqrt{n}$ раз. Из соотношения (2.1) и выражения $K_E = \lambda \eta^2$ можно найти $K_E = K_{1E} \lambda^{1-1/2n}$. Эта закономерность изменения коэффициента усиления энергии спирали при вариации их размеров хорошо подтверждается экспериментами.

<table>
<thead>
<tr>
<th>Список литературы</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Таблица 3

<table>
<thead>
<tr>
<th>Номер секции</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина секции, мм</td>
<td>120</td>
<td>60</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Шаг пантонов, мм</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>24</td>
<td>32</td>
<td>38</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Число витков</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Диаметр провода, мм</td>
<td>4,5</td>
<td>5</td>
<td>5</td>
<td>3,3</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Таблица 4

<table>
<thead>
<tr>
<th>Номер опыта</th>
<th>L_0, МГ</th>
<th>E_0, МВ</th>
<th>L_f, МГ</th>
<th>$R_f 10^{-4}$, См</th>
<th>F_f, МА</th>
<th>E_f^m, МДж</th>
<th>E_f, МДж</th>
<th>E_f', МДж</th>
<th>K_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>305</td>
<td>14</td>
<td>0,34</td>
<td>10</td>
<td>4,1</td>
<td>2,9</td>
<td>0,2</td>
<td>3,4</td>
<td>290</td>
</tr>
<tr>
<td>2</td>
<td>305</td>
<td>16</td>
<td>0,34</td>
<td>3,2—24</td>
<td>4,5</td>
<td>3,4</td>
<td>0,6</td>
<td>4,0</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>305</td>
<td>24</td>
<td>0,34</td>
<td>3,0—10</td>
<td>4,9</td>
<td>4,9</td>
<td>0,5</td>
<td>5,4</td>
<td>225</td>
</tr>
<tr>
<td>4</td>
<td>285</td>
<td>28</td>
<td>0,34</td>
<td>3,2—26</td>
<td>3,9</td>
<td>3,9</td>
<td>0,7</td>
<td>4,6</td>
<td>185</td>
</tr>
<tr>
<td>5</td>
<td>285</td>
<td>16</td>
<td>0,34</td>
<td>19—19</td>
<td>3,7</td>
<td>2,3</td>
<td>0,4</td>
<td>2,7</td>
<td>170</td>
</tr>
</tbody>
</table>
На фиг. 4—6 для опытов 2,7 и 10 приведены графики $\mathcal{F}(t)$. Опыты проведены при одинаковых начальных условиях — значения E_0 для спиралей отличаются друг от друга примерно в n^2 раз. При выводе витков первых секций значения \mathcal{F} для спиралей диаметрами 4, 8 и 16 см относятся как 1 : 2 : 4, но в дальнейшем эти соотношения нарушаются. Для ВМГ диаметром 8 см \mathcal{F} в течение почти всего времени работы остается постоянной (спад \mathcal{F} на последних двух секциях связан с выходом вершины конуса трубы из объема спирали), что свидетельствует о хорошем совпадении реальной кривой $L(t)$ с расчетной. Для спиралей диаметрами 4 и 16 см зависимость $\mathcal{F}(t) \neq \text{const}$, поэтому эти генераторы, созданные путем изменения линейных размеров ВМГ диаметром 8 см в 2 раза, не являются оптимальными с точки зрения снижения рабочих напряжений. Для этих спиралей необходимо провести расчет $L(t)$ с учетом выражения (2.1). Так, если в опыте 10 значение \mathcal{F} достигает 80 кВ, то в случае оптимального распределения $L(t)$ оно не будет превышать 70 кВ, т. е. при тех же начальных условиях рабочее напряжение будет снижено на $\sim 15\%$.

3. Испытание генератора диаметром 24 см. Конструктивные параметры спиральной катушки диаметром 24 см приведены в табл. 3. Секция намотана круглым медным проводом. Распределение $L(t)$ рассчитывалось по формуле (1.3). В генераторе использовались медные центральные трубы с наружным диаметром 110 мм и толщиной стенки 10 мм, а также алюминиевые трубы с наружным диаметром 130 мм и толщиной стенки 20 мм. Масса вращающегося вещества в ВМГ 13 кг. Нагрузка генератора во всех опытах имела постоянную индуктивность 0,34 мкГ.
начальное сопротивление варьировалось от $3 \cdot 10^{-4}$ до 10^{-3} Ом, а в процессе нарastания тока возраставало до $(1-2,6) \cdot 10^{-3}$ Ом.

Результаты испытаний генераторов при различных начальных условиях приведены в табл. 4, где R_f — сопротивление нагрузки; $E_m = \frac{I_f^2 L_f}{2}$ — магнитная энергия в нагрузке; $E_\tau = \int_{0}^{t} I^2(t) R_f (t) dt$ — тепловая энергия в нагрузке; $E_f = E_m + E_\tau$; $K_E = E_f/E_0$.

Из табл. 4 видно, что спираль диаметром 24 см может обеспечивать конечную энергию до $\sim 5,5$ МДж, имея при этом стабильную величину коэффициента усиления энергии (220).

На ф. 7 приведена зависимость $I(t)$ для опыта 3. Максимальное напряжение на входе нагрузки в этом опыте 45 кВ, напряжение в контуре спирали достигает 60 кВ. Из результатов опытов следует также, что уменьшение проводимости центральной трубы приводит к некоторому снижению K_E генератора.

4. Спиральный ВМГ с $K_E \sim 10^3$. Проведена серия из 5 опытов с ВМГ диаметром 8 см и длинной спирале 72 см. Спиральная катушка с начальной индуктивностью 490 мкГ имеет шаг первых витков 1,25 мм, конечных — 48 мм. При защите начальной энергией 100—130 Дж в нагрузке индуктивностью 0,03 мкГ генератор стабильно обеспечивал ток 2,8—3,2 МА. Коэффициент усиления энергии в опытах составил 1000—1300.

Как показали эксперименты, высоконеодквативные спиральные ВМГ при оптимальном распределении витков вдоль оси и изолированным контуре могут усиливать начальную энергию в 1000 и более раз. Величина удельной энергии (отношение конечной энергии в нагрузке к начальному объему ВМГ) равна 30—60 Дк/см³, а коэффициент преобразования энергии взрывчатого вещества в энергию нагрузки составляет 4—8%. Магнитное поле под витками спиралей достигает величины 1 МГс.

Учтывая сказанное, а также простоту и дешевизну конструкции, можно заключить, что высоконеодквативные спиральные генераторы являются удобными и надежными источниками импульсов электромагнитной энергии.

ЛИТЕРАТУРА