УДК 532.54

Эмпирические формулы для расчета характеристик центробежных дисковых насосов^{*}

Ю.М. Приходько, В.П. Фомичев, В.П. Чехов, А.Е. Медведев

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: prih@itam.nsc.ru

Проведены экспериментальные исследования работы центробежного дискового насоса. Для обобщения экспериментальных данных представлены безразмерные параметры. Предложен метод расчета расходнонапорных и дроссельных характеристик, обеспечивающий точность, достаточную для инженерных расчетов.

Ключевые слова: дисковый насос, машины трения, безразмерные параметры.

Введение

Дисковый насос относится к машинам трения. Его главное отличие от традиционных центробежных насосов в том, что жидкость перекачивается благодаря силе вязкого трения. Одной из важных особенностей этого типа насосов является низкий уровень сдвиговых напряжений, создаваемых в перекачиваемой жидкости. Это может быть полезно при перекачивании жидкостей, требующих бережного отношения. В частности, такой насос можно использовать для перекачивания крови. Исследования [1–4] показали, что дисковый насос трения отличается малой травмируемостью форменных элементов крови и вследствие этого малым тромбообразованием (по сравнению с насосами импеллерного типа). Это делает актуальным изучение характеристик и получение расчетных формул для данного типа насосов.

Цель работы — обобщение результатов экспериментальных исследований и получение на их основе расходных, напорных и дроссельных характеристик дискового насоса при различных геометрических и гидравлических параметрах. Используемый в статье подход хорошо зарекомендовал себя при обработке экспериментальных данных для дискового вентилятора [5]. В рамках предложенного подхода также были обработаны экспериментальные данные для дискового насоса, рассмотренного в работе [4]. Это позволило расширить диапазон параметров насоса для получения эмпирической формулы.

^{*} Работа выполнена в рамках государственного задания (госрегистрация № 121030900260-6).

[©] Приходько Ю.М., Фомичев В.П., Чехов В.П., Медведев А.Е., 2023

Рис. 1. Схема центробежного дискового насоса.

Экспериментальная установка

Схема центробежного дискового насоса представлена на рис. 1. Ротор состоит из набора гладких дисков с отверстиями в центре, расположенных на равном расстоянии друг от друга. Спиральный профиль корпуса строился в соответствии с рекомендациями для корпусов центробежных насосов. В таблице приведены диапазоны изменения параметров

Таблица

насоса в ходе экспериментов, включая данные работы [4].

Для исследования характеристик дискового насоса был создан экспериментальный стенд, схема которого представлена на рис. 2. Стенд состоял из дискового насоса 1, ем-кости 2, ротаметра 3, датчиков давления 4 и 5 на входе и выходе насоса соответственно, дросселирующего устройства 6. В качестве ёмкости 2 использовался мягкий герметичный мешок, имитирующий эластичность сосудов в организме человека. Объемный расход рабочей жидкости измерялся поплавковым ротаметром Krohne VA-40 с погрешностью измерений не более 1 %. Значения давления в гидродинамическом контуре измерялись при помощи специализированного медицинского прибора производства фирмы «Биософт-М». Дросселирующее устройство 6 позволяло менять гидравлическое сопротивление системы, имитируя общее периферическое сопротивление сердечно-сосудистой системы человека. Все устройства соединялись силиконовыми трубками с внутренним диаметром 12,7 мм. В качестве рабочей жидкости использовался 40 %-ный водный раствор глицерина, имеющий вязкость, максимально приближенную к вязкости крови.

Эксперименты проводились с целью определения расходно-напорных и дроссельных характеристик насоса. Типичный график расходно-напорных характеристик приведен на рис. 3*a*. На рис. 3*b* представлены аналогичные графики из работы [4].

Влияние отдельных параметров на характеристики насоса

В ходе экспериментов выполнялась оценка влияния некоторых параметров на производительность насоса. Так, для определения влияния величины внутреннего диаметра

Параметры	Данные экспериментов	Данные работы [4]
Внутренний радиус <i>R</i> ₁	6÷7,5 мм	3,81
Внешний радиус <i>R</i> ₂	20 мм	10,605
Зазор между дисками b	0,25 ÷ 1 мм	0,635
Количество дисков п	7÷27 шт.	11 шт.
Частота вращения ротора N	1000 ÷ 3500 об/мин	6000 ÷ 9000 об/мин
Расход жидкости Q	0÷9л/мин	2,4÷12 л/мин
Напор Н	20÷210 мм рт. ст.	68 ÷ 110 мм рт. ст.
Плотность ρ	1100 кг/м ³	1100 кг/м ³
Кинематическая вязкость v	3,36·10 ⁻⁶ см ² /с	3,36·10 ⁻⁶ см ² /с

Диапазон параметров насосов

Рис. 2. Общий вид (слева) и схема (справа) экспериментального стенда. 1 — дисковый насос, 2 — емкость, 3 — ротаметр, 4 и 5 — датчики давления на входе и выходе насоса соответственно, 6 — дросселирующее устройство.

были проведены эксперименты с двумя диаметрами отверстий — 12 и 15 мм. Сравнение расходно-напорных характеристик роторов с разными входными диаметрами показало (рис. 4), что увеличение входного диаметра приводит к увеличению производительности насоса. Это объясняется тем, что маленький диаметр входного отверстия ограничивает количество поступающей жидкости. Впрочем, слишком большое отверстие уменьшает рабочую площадь дисков, что также ведет к ухудшению характеристик насоса. Согласно [5], оптимальный диаметр входного отверстия можно определить из соотношения $0,4 < (R_1/R_2) < 0,6$. В рассматриваемом случае для внутреннего диаметра 12 мм отношение $R_1/R_2 = 0,3$, а для диаметра 15 мм — $R_1/R_2 = 0,375$. Приближение отношения R_1/R_2 к оптимальному диапазону ($0,4 \div 0,6$) увеличивает эффективность насоса. Так, на рис. 4 видно, что кривая 2 ($R_1/R_2 = 0,375$) лежит выше кривой 1 ($R_1/R_2 = 0,3$).

Рис. 3. Расходно-напорные характеристики дискового насоса, полученные для различных скоростей вращения ротора при *b* = 0,5 мм, *n* = 12 шт. Скорости вращения ротора: *a*: 1000 (*1*), 1500 (*2*), 2000 (*3*), 2500 (*4*), 3000 (*5*), 3500 (*6*) об/мин; *b*: 6000 (*1*), 7000 (*2*), 8000 (*3*), 9000 (*4*) об/мин [4].

Рис. 4. Расходно-напорные характеристики дискового насоса, полученные для дисков с различными внутренними радиусами при b = 0,5 мм, n = 12 шт., 2500 об/мин. $R_1 = 12$ (1) и 15 (2) мм.

Отдельная серия экспериментов была проведена для оценки влияния междискового зазора на производительность насоса. Согласно работе [6], оптимальная величина междискового зазора определяется из соотношения $\lambda = b/2\delta =$

= 1,57, где $\delta = \sqrt{\nu/\omega}$. В рассматриваемой авторами конфигурации это соответствует междисковому зазору b = 0,36 мм. В экспериментах было получено близкое к указанной величине значение оптимального междискового зазора — b = 0,4 мм (см. рис. 5).

На рис. 6 приведены расходно-напорные характеристики дискового насоса, полученные для жидкостей различной вязкости. Видно, что при увеличении вязкости возрастает эффективность работы насоса. Это объясняется тем, что влияние трения жидкости на поверхности повышается и соответственно уменьшается проскальзывание жидкости относительно вращающихся дисков. Однако для каждой конфигурации насоса имеется оптимальное значение вязкости жидкости, зависящее от величины междискового зазора и от числа оборотов ротора через параметр λ , описанный в предыдущем абзаце.

Выбор безразмерных параметров

Для обработки результатов экспериментов и получения обобщающих формул авторами были введены определяющие безразмерные параметры. Работу центробежных дисковых насосов характеризуют такие геометрические параметры, как внутренний R_1 и наружный R_2 радиусы дисков, количество дисков *n*, зазор между дисками *b*; а также гидравлические параметры: объемный расход *Q*, напор *H*, угловая скорость вращения ротора с дисками ω и кинематическая вязкость жидкости *v*.

В настоящем исследовании предлагается с помощью подхода, изложенного в рабо-

те [5], сравнивать объемный расход дискового насоса с объемом среды, заключенной в пограничных слоях на дисках. Толщина пограничного слоя на одиночном вращающемся диске при ламинарном режиме течения определяется угловой скоростью вращения диска

Рис. 6. Расходно-напорные характеристики дискового насоса, полученные для жидкостей различной вязкости при b = 0,4 мм, n = 11 шт. I — вода, 2 — 40 %-ный водный раствор глицерина.

и кинематической вязкостью жидкости: $\delta \sim \sqrt{\nu/\omega}$ [7]. Площадь всех дисков составляет $S_{\rm d} = 2n\pi (R_2^2 - R_1^2)$. Следовательно, объем жидкости, увлекаемой пограничными слоями всех дисков в единицу времени, можно оценить величиной:

$$Q_{\rm b} = 2 \cdot n \cdot \frac{\omega}{2\pi} \cdot \pi \cdot (R_2^2 - R_1^2) \cdot \sqrt{\frac{\nu}{\omega}} = n \cdot \sqrt{\nu \cdot \omega} \cdot (R_2^2 - R_1^2)$$

Разделив объемный расход жидкости насоса на эту величину, получим безразмерный расход:

$$\overline{q} = Q_{\rm real}/Q_{\rm b}$$

Для получения обобщенных характеристик работы насоса можно использовать число Рейнольдса $\operatorname{Re}_{b} = \omega R_{2}b/\nu$. Однако в данном случае необходимо учитывать особенности дискового насоса, в частности, удлинение канала между дисками $\overline{b} = b/(R_{2} - R_{1})$ и относительный радиус дисков $\overline{r} = R_{1}/(R_{2} - R_{1})$. Поэтому уточненный безразмерный параметр, описывающий геометрические и кинематические свойства насоса, будет находиться в виде безразмерного комплекса $\overline{R} = \overline{r}^{\alpha} \cdot \overline{b}^{\beta} \cdot \operatorname{Re}_{b}^{\gamma}$. В результате обработки экспериментальных данных методом наименьших квадратов получен безразмерный комплекса $\overline{R} = \overline{r}^{0.32} \cdot \overline{b}^{0.22} \cdot \sqrt{\operatorname{Re}_{b}}$.

На рис. 7 представлен график зависимости относительного расхода дискового насоса \bar{q} от параметра \bar{R} . Расчетная формула $\bar{q} = -0,005\bar{R}^2 + 0,001\bar{R} + 0,005$ достаточно хорошо обобщает полученные экспериментальные данные при $3,8 < \bar{R} < 21$.

Напор, создаваемый дисковым насосом, можно оценить, используя центробежное ускорение массы жидкости, удерживаемой дисками в пограничных слоях. Для полного напора, создаваемого дисковым насосом при нулевом расходе, справедлива формула $H_0 = 0.5 \rho \lambda (\omega R_2)^2$, где $\lambda = b/2\delta$ — безразмерный параметр, который показывает, какую долю занимают пограничные слои по отношению к величине междискового зазора. Разделив фактический напор на эту величину, получим безразмерный напор: $\bar{h} = H_{real}/H_0$. Обозначив через $H_{0\%}$ экспериментальные значения напора насоса при нулевом расходе, получим безразмерный параметр $h_0 = H_{0\%}/H_0$. Тогда экспериментальные данные (см. рис. 8*a*) хорошо обобщаются формулой $h_0 = 0,0044\bar{R}^2 - 0,1588\bar{R} + 1,6323$. К сожалению, аналогичных данных в работе [4] приведено не было.

На рис. 8*b* показана зависимость от параметра \overline{R} напора дискового насоса $H_{100\%}$ при максимальном объемном расходе жидкости для данной конфигурации контура. Соответствующие экспериментальные дан- \overline{q} ные хорошо обобщаются формулой 3,0-

$$h_{100} = H_{100\%} / H_0 = 0,0019 \overline{R}^2 - 0,0871 \overline{R} + 1,03.$$

Рис. 7. Зависимость относительного расхода дискового насоса от параметра \overline{R} .

^{1 —} данные экспериментов, 2 — данные работы [4].

Рис. 8. Зависимость полного напора дискового насоса от параметра \overline{R} при нулевом расходе (*a*) и при максимальном объемном расходе жидкости (*b*). I — данные экспериментов, 2 — данные работы [4].

Исследование дроссельных характеристик

Гидравлическое сопротивление при работе насоса в сети приводит к уменьшению объемного расхода и увеличению напора. Эти изменения параметров обычно описываются дроссельными характеристиками конкретного насоса. В ходе проведения экспериментов было использовано дросселирующее устройство, регулирующее площадь проходного сечения трубопровода. При этом расход Q изменялся от максимальной величины $Q_{100\%}$ до минимальной $Q_{0\%} = 0$. Экспериментальные данные об изменении напора H при изменении расхода Q исследуемого насоса представлены на рис. 9 и обобщены зависимостью $h = H/H_{0\%} = 0,0356q^2 - 0,2407q + 0,51$, где $q = Q/Q_{100\%}$. Эта характеристика работы насоса может быть использована при анализе конкретных моделей насосов для различных условий их работы и, в частности, в системе кровообращения человека.

Заключение

Выполнено исследование расходно-напорных характеристик центробежного дискового насоса. Обработка экспериментальных данных позволила записать эмпирические формулы для расчета расходных, напорных и дроссельных характеристик центробежного дискового насоса. Привлечение дополнительных данных работы [4] позволило расширить исследуемый диапазон параметров насоса и подтвердить адекватность используемого подхода к обобщению экспериментальных данных. В исследованном диапазоне изменения задающих параметров предложенные обобщающие формулы позволяют описать работу дискового насоса с достаточно низкой для практического приложения погрешностью — не более 16 %.

Список литературы

- 1. Чернявский А.М., Рузматов Т.М., Фомичёв А.В., Медведев А.Е., Приходько Ю.М., Фомин В.М., Фомичёв В.П., Ломанович К.А., Караськов А.М. Экспериментальная оценка устройства механической поддержки сердца на основе дискового насоса вязкого трения // Вестн. Трансплантологии и искусственных органов. 2017. Т. 19, № 1. С. 28–34.
- Medvedev A.E., Fomin V.M., Chernyavskiy A.M., Prikhodko Yu.M., Zhukov M.O., Golovin A.M. Implanted system of mechanical support of the disk-based heart pump viscous friction // XIX Intern. Conf. on the Methods of Aerophysical Research (ICMAR2018) (Novosibirsk, Russia, 13–19 Aug., 2018): AIP Conf. Proceedings. S. 1.: 2018. Vol. 2027, No. 1. P. 030149-1–030149-5.
- Miller G.E., Fink R. Analysis of optimal design configurations for a multiple disk centrifugal blood pump // Artifical Organs. 1999. Vol. 23, No. 6. P. 559–565.
- 4. Izraelev V., Weiss B., Fritz B., Newswanger P.R., Paterson E.G. A passively-suspended Tesla pump left ventricular assist device // ASAIO J. 2009. Vol. 55, No. 6. P. 556–561.
- 5. Наумов И.Е., Приходько Ю.М., Чехов В.П., Фомичёв В.П. О безразмерных параметрах обобщения расходно-напорных характеристик центробежных дисковых вентиляторов // Теплофизика и аэромеханика. 2012. Т. 19, № 1. С. 83–88.
- 6. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1969. 744 с.
- **7.** Хазингер С., Керт Л. Исследование насоса трения // Энергетические машины и установки. 1963. Т. 85, № 3. С. 47–55.

Статья поступила в редакцию 15 апреля 2022 г., после переработки — 10 октября 2022 г., принята к публикации 8 декабря 2022 г.