УДК 539.3

НЕЛИНЕЙНЫЙ ФЛАТТЕР ВЯЗКОУПРУГИХ ПРЯМОУГОЛЬНЫХ ПЛАСТИН И ЦИЛИНДРИЧЕСКИХ ПАНЕЛЕЙ ИЗ КОМПОЗИЦИОННОГО МАТЕРИАЛА С СОСРЕДОТОЧЕННЫМИ МАССАМИ

Б. Х. Эшматов, Х. Эшматов, Д. А. Ходжаев*

Университет Буффало, 14260-4400 Нью-Йорк, США

* Ташкентский институт ирригации и мелиорации, 100000 Ташкент, Узбекистан

E-mails: ebkh@mail.ru, heshmatov@mail.ru, dhodjaev@mail.ru

Рассмотрена задача о флаттере вязкоупругих прямоугольных пластин и цилиндрических панелей с сосредоточенными массами в геометрически нелинейной постановке. В уравнении движения пластины и панели влияние сосредоточенных масс учитывается с использованием δ -функции Дирака. С помощью метода Бубнова — Галеркина задача сводится к решению системы обыкновенных нелинейных интегродифференциальных уравнений. Для решения полученной системы со слабосингулярным ядром Колтунова — Ржаницына применен численный метод, основанный на использовании квадратурных формул. Для реальных композиционных материалов в широких диапазонах значений физико-механических и геометрических параметров изучено поведение вязкоупругих прямоугольных пластин и цилиндрических панелей, определены критические значения скорости потока.

Ключевые слова: гипотеза Кирхгофа — Лява, композиционные материалы, вязкоупругая прямоугольная пластина, вязкоупругая цилиндрическая панель, сосредоточенная масса, метод Бубнова — Галеркина, нелинейный флаттер.

В последнее время значительно возрос интерес к исследованию проблем деформирования, прочности, колебаний, динамической устойчивости пластин, панелей и оболочек из композиционных материалов, представляющих собой основные несущие элементы конструкций, применяемых в авиационной и ракетной технике, машиностроении, судостроении и т. д. Как известно, композиционные материалы являются неоднородными по структуре и обладают вязкоупругими свойствами [1, 2]. Использование новых композиционных материалов в инженерной практике, проектирование и создание прочных, легких и надежных конструкций требуют совершенствования механических моделей деформируемых тел и разработки математических методов расчета, в которых учитываются реальные свойства указанных материалов.

К числу задач о колебаниях и динамической устойчивости относятся задачи о флаттере тонкостенных конструкций типа пластин, панелей и оболочек, обтекаемых потоком газа. Исследованию этих задач в рамках теории упругости посвящены работы [3–6]. Обзор решений задач о флаттере в различных постановках приведен в работе [7].

В [8–10] изучены задачи о флаттере вязкоупругих тонкостенных конструкций в линейной постановке. Эти задачи рассматривались с использованием либо дифференциальной модели Фойгта, либо интегральной модели Больцмана — Вольтерры, в которой при расчетах в качестве ядер релаксации применялись экспоненциальные ядра, не описывающие реальные процессы развития флаттера в оболочках и пластинах в начальные моменты времени [1].

Исследованию нелинейных задач о флаттере вязкоупругих пластин и панелей посвящено небольшое количество работ [11–13], в которых использовалась гипотеза Кирхгофа — Лява. Для решения таких задач применялся метод Бубнова — Галеркина, основанный на двухчленной аппроксимации прогибов. Как показывают расчеты задач о флаттере, выполненные в [3, 10], двухчленная аппроксимация даже в линейной постановке не позволяет получить удовлетворительные результаты.

Как известно, одной из основных задач о флаттере является нахождение критических значений скоростей в сверхзвуковом потоке газа [3]. В данной работе значение критической скорости вычисляется с использованием критерия, приведенного в работе [9].

В машиностроении, строительной и авиационной промышленности пластины, панели и оболочки часто выполняют роль несущих поверхностей, к которым крепятся различные элементы конструкции (продольные и поперечные ребра, накладки, крепления и узлы приборов и машин). При теоретическом изучении задач о флаттере эти присоединенные элементы целесообразно интерпретировать как дополнительные массы, жестко соединенные с конструкциями и сосредоточенные в точках.

Существует ряд работ, в которых рассмотрены колебания упругих систем с сосредоточенными массами [14, 15]. В этих работах либо решались задачи в линейной постановке, либо учитывались лишь некоторые свойства материалов конструкций. Проблемы устойчивости упругих панелей с сосредоточенными массами в сверхзвуковом потоке газа изучены в работе [16]. Значительно меньше внимания уделено исследованию особенностей поведения неоднородных вязкоупругих систем [17–20].

С использованием вычислительного метода [21, 22] и программного средства Delphi были определены критические значения скоростей в зависимости от физико-механических и геометрических характеристик вязкоупругих тонкостенных конструкций типа прямоугольных пластин и цилиндрических панелей, изготовленных из композиционных материалов [23–26].

Целью данной работы является исследование нелинейных задач о флаттере вязкоупругих прямоугольных пластин и цилиндрических панелей с сосредоточенными массами в сверхзвуковом потоке газа.

1. Математическая модель. Рассмотрим вязкоупругую оболочку с сосредоточенными массами M_i в точках $(x_i, y_i), i = 1, 2, ..., I$. Оболочка изготовлена из изотропного материала и обтекается в одном направлении сверхзвуковым потоком газа с невозмущенной скоростью V.

С использованием принципа Больцмана — Вольтерры зависимость между напряжениями $\sigma_x, \sigma_y, \tau_{xy}$ и деформациями $\varepsilon_x, \varepsilon_y, \gamma_{xy}$ запишем в виде [1]

$$\sigma_x = \frac{E}{1-\mu^2} (1-\Gamma^*)(\varepsilon_x + \mu\varepsilon_y), \qquad \sigma_y = \frac{E}{1-\mu^2} (1-\Gamma^*)(\varepsilon_y + \mu\varepsilon_x),$$

$$\tau_{xy} = \frac{E}{2(1+\mu)} (1-\Gamma^*)\gamma_{xy},$$
(1)

где μ — коэффициент Пуассона; E — модуль упругости; Γ^* — интегральный оператор с ядром релаксации $\Gamma(t)$:

$$\Gamma^* \varphi = \int_0^t \Gamma(t-\tau) \varphi(\tau) \, d\tau.$$

Связь между деформациями ε_x , ε_y , γ_{xy} срединной поверхности и перемещениями u, v, w в направлениях x, y, z представим в виде [27]

$$\varepsilon_x = \frac{\partial u}{\partial x} - k_x w + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2, \qquad \varepsilon_y = \frac{\partial v}{\partial y} - k_y w + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2,$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y},$$
(2)

где $k_x = \text{const}, k_y = \text{const} -$ кривизны срединной поверхности оболочки.

Выражения для изгибающих и крутящего моментов, действующих на элемент вязкоупругой оболочки, имеют вид [22, 27]

$$M_x = -D(1 - \Gamma^*) \left(\frac{\partial^2 w}{\partial x^2} + \mu \frac{\partial^2 w}{\partial y^2} \right), \qquad M_y = -D(1 - \Gamma^*) \left(\frac{\partial^2 w}{\partial y^2} + \mu \frac{\partial^2 w}{\partial x^2} \right),$$

$$H = -D(1 - \mu)(1 - \Gamma^*) \frac{\partial^2 w}{\partial x \partial y},$$
(3)

где *D* — цилиндрическая жесткость оболочки.

При выводе уравнения движения элемента вязкоупругой изотропной оболочки с сосредоточенными массами, обтекаемой сверхзвуковым потоком газа, используем систему уравнений [3, 27]

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} - \rho \frac{\partial^2 u}{\partial t^2} = 0, \qquad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} - \rho \frac{\partial^2 v}{\partial t^2} = 0,$$

$$\frac{1}{h} \left(\frac{\partial^2 M_x}{\partial x^2} + 2 \frac{\partial^2 H}{\partial x \partial y} + \frac{\partial^2 M_y}{\partial y^2} \right) + k_x \sigma_x + k_y \sigma_y + \frac{\partial}{\partial x} \left(\sigma_x \frac{\partial w}{\partial x} + \tau_{xy} \frac{\partial w}{\partial y} \right) +$$

$$+ \frac{\partial}{\partial y} \left(\sigma_y \frac{\partial w}{\partial y} + \tau_{xy} \frac{\partial w}{\partial x} \right) - \frac{\Delta p}{h} - \frac{m}{h} \frac{\partial^2 w}{\partial t^2} = 0,$$
(4)

где Δp — избыточное давление.

Рассмотрим установившееся движение тонкостенной конструкции со сверхзвуковой скоростью V. Поле скоростей в каждой точке зависит от нормальной составляющей скорости ϑ во всех точках поверхности тела. При больших сверхзвуковых скоростях каждая частица газа движется преимущественно в направлении, параллельном направлению скорости V.

В случае линеаризованного течения газа вдоль оболочки, по которой распространяются упругие волны, нормальная составляющая скорости ϑ определяется по формуле [3]

$$\vartheta = \frac{\partial w}{\partial t} + V \frac{\partial w}{\partial x},$$

следовательно, выражение для избыточного давления Δp принимает вид

$$\Delta p = p - p_{\infty} = \frac{\varkappa p_{\infty}}{V_{\infty}} \left(\frac{\partial w}{\partial t} + V \frac{\partial w}{\partial x}\right).$$
(5)

Здесь \varkappa — показатель политропы газа; p — давление на поверхности тела; p_{∞} , V_{∞} — давление и скорость в невозмущенном газе.

Влияние сосредоточенных масс на вязкоупругую оболочку имеет инерционный характер и учитывается в уравнении движения (4) с помощью δ -функции Дирака [14]:

$$m(x,y) = \rho h + \sum_{i=1}^{I} M_i \delta(x - x_i) \delta(y - y_i)$$
(6)

(*р* — плотность материала оболочки).

Подставляя (1) и (3) (с учетом (5), (6)) в (4), получаем

$$(1 - \Gamma^{*}) \left(\frac{\partial \varepsilon_{x}}{\partial x} + \mu \frac{\partial \varepsilon_{y}}{\partial x} + \frac{1 - \mu}{2} \frac{\partial \gamma_{xy}}{\partial y} \right) - \frac{\rho(1 - \mu^{2})}{E} \frac{\partial^{2} u}{\partial t^{2}} = 0,$$

$$(1 - \Gamma^{*}) \left(\frac{\partial \varepsilon_{y}}{\partial y} + \mu \frac{\partial \varepsilon_{x}}{\partial y} + \frac{1 - \mu}{2} \frac{\partial \gamma_{xy}}{\partial x} \right) - \frac{\rho(1 - \mu^{2})}{E} \frac{\partial^{2} v}{\partial t^{2}} = 0,$$

$$(1 - \Gamma^{*}) \left(\frac{h^{2}}{12} \nabla^{4} w - k_{x} (\varepsilon_{x} + \mu \varepsilon_{y}) - k_{y} (\varepsilon_{y} + \mu \varepsilon_{x}) \right) -$$

$$- \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x} (1 - \Gamma^{*}) (\varepsilon_{x} + \mu \varepsilon_{y}) + \frac{1 - \mu}{2} \frac{\partial w}{\partial y} (1 - \Gamma^{*}) \gamma_{xy} \right) -$$

$$- \frac{\partial}{\partial y} \left(\frac{\partial w}{\partial y} (1 - \Gamma^{*}) (\varepsilon_{y} + \mu \varepsilon_{x}) + \frac{1 - \mu}{2} \frac{\partial w}{\partial x} (1 - \Gamma^{*}) \gamma_{xy} \right) +$$

$$+ \frac{\varkappa p_{\infty} (1 - \mu^{2})}{EhV_{\infty}} \left(\frac{\partial w}{\partial t} + V \frac{\partial w}{\partial x} \right) + \frac{1 - \mu^{2}}{E} \left(\rho + \frac{1}{h} \sum_{i=1}^{I} M_{i} \delta(x - x_{i}) \delta(y - y_{i}) \right) \frac{\partial^{2} w}{\partial t^{2}} = 0,$$

где ε_x , ε_y , γ_{xy} определяются из соотношений (2).

Если динамический процесс рассматривается без учета распространения упругих волн [27], то в первых двух уравнениях системы (7) можно отбросить инерционные члены, содержащие u, v. Тогда уравнения для прогиба w = w(x, y, t) и функции напряжений $\Phi = \Phi(x, y, t)$ принимают вид [19, 27]

$$\frac{D}{h}(1-\Gamma^*)\nabla^4 w = L(w,\Phi) + \nabla_k^2 \Phi - \\
-\frac{\varkappa p_\infty}{hV_\infty} \left(\frac{\partial w}{\partial t} + V\frac{\partial w}{\partial x}\right) - \left(\rho + \frac{1}{h}\sum_{i=1}^I M_i \delta(x-x_i)\delta(y-y_i)\right) \frac{\partial^2 w}{\partial t^2}, \quad (8) \\
\frac{1}{E}\nabla^4 \Phi = -(1-\Gamma^*) \left(\frac{1}{2}L(w,w) + \nabla_k^2 w\right).$$

Система нелинейных интегродифференциальных уравнений движения (8) является достаточно общей, из которой в частном случае можно получить уравнения движения вязкоупругих прямоугольных пластин и цилиндрических панелей с сосредоточенными массами, обтекаемых сверхзвуковым потоком газа.

Рассмотрим вязкоупругую прямоугольную пластину с сосредоточенными массами M_i в точках (x_i, y_i) , i = 1, 2, ..., I. Пластина, имеющая толщину h и стороны длиной a и b, изготовлена из однородного изотропного материала и обтекается сверхзвуковым потоком газа со скоростью V (рис. 1). В этом случае при $k_x = k_y = 0$ из системы уравнений (8) для определения прогиба и функции напряжений получаем следующую систему уравнений типа уравнений Кармана:

$$\frac{D}{h} (1 - \Gamma^*) \nabla^4 w = L(w, \Phi) - \frac{\varkappa p_\infty}{hV_\infty} \left(\frac{\partial w}{\partial t} + V \frac{\partial w}{\partial x}\right) - \left(\rho + \frac{1}{h} \sum_{i=1}^I M_i \delta(x - x_i) \delta(y - y_i)\right) \frac{\partial^2 w}{\partial t^2}, \quad (9)$$

$$\frac{1}{E} \nabla^4 \Phi = -\frac{1}{2} (1 - \Gamma^*) L(w, w).$$

Рис. 1. Вязкоупругая прямоугольная пластина с сосредоточенными массами, обтекаемая сверхзвуковым потоком газа

Рис. 2. Вязкоупругая цилиндрическая панель с сосредоточенными массами, обтекаемая сверхзвуковым потоком газа

Рассмотрим также вязкоупругую цилиндрическую панель с сосредоточенными массами M_i в точках (x_i, y_i) , i = 1, 2, ..., I. Панель, имеющая толщину h, стороны длиной aи b и радиус кривизны срединной поверхности R, изготовлена из однородного изотропного материала и обтекается сверхзвуковым потоком газа со скоростью V (рис. 2). В этом случае при $k_x = 0$, $k_y = 1/R$ из системы уравнений (8) для определения прогиба и функции напряжений получаем следующую систему:

$$\frac{D}{h}(1-\Gamma^*)\nabla^4 w = L(w,\Phi) + \frac{1}{R}\frac{\partial^2 \Phi}{\partial x^2} - \frac{\varkappa p_{\infty}}{hV_{\infty}} \left(\frac{\partial w}{\partial t} + V\frac{\partial w}{\partial x}\right) - \left(\rho + \frac{1}{h}\sum_{i=1}^I M_i\delta(x-x_i)\delta(y-y_i)\right)\frac{\partial^2 w}{\partial t^2}, \quad (10)$$

$$\frac{1}{E}\nabla^4 \Phi = -(1-\Gamma^*)\left(\frac{1}{2}L(w,w) + \frac{1}{R}\frac{\partial^2 w}{\partial x^2}\right).$$

2. Расчет нелинейного флаттера вязкоупругой прямоугольной пластины с сосредоточенными массами. Пусть все края вязкоупругой пластины шарнирно оперты. С использованием метода Бубнова — Галеркина решение системы (9), удовлетворяющее граничным условиям задачи, будем искать в виде

$$w(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} w_{nm}(t) \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b},$$
(11)

где $w_{nm} = w_{nm}(t)$ — неизвестные функции времени.

Аналогично [19, 22], подставляя (11) в систему (9) и выполняя процедуру метода Бубнова — Галеркина для определения неизвестных $w_{kl} = w_{kl}(t)$, получаем систему нелинейных интегродифференциальных уравнений. Вводя в эту систему безразмерные величины

$x_i/a, y_i/b, M_i/M_0, w_{kl}/h, aR(t)/V_\infty$ и сохраняя прежние обозначения, имеем

$$\begin{split} \sum_{n=1}^{N} \sum_{m=1}^{M} B_{klnm} \ddot{w}_{nm} + M_p \varkappa \lambda \Delta \dot{w}_{kl} + \frac{M_E \pi^4 \lambda^2}{12(1-\mu^2)\Delta^2} \Big[\Big(\frac{k}{\lambda}\Big)^2 + l^2 \Big]^2 (1-\Gamma^*) w_{kl} + \\ &+ 2 \operatorname{M}^* M_p \varkappa \lambda \Delta \sum_{n=1}^{N} n(\gamma_{n+k} - \gamma_{n-k}) w_{nl} + \\ &+ \frac{M_E \pi^2 \lambda^2}{\Delta^2} \sum_{n,i,j=1}^{N} \sum_{m,r,s=1}^{M} a_{klnmirjs} w_{nm} (1-\Gamma^*) w_{ir} w_{js} = 0, \quad (12) \\ &w_{kl}(0) = w_{0kl}, \qquad \dot{w}_{kl}(0) = \dot{w}_{0kl}, \qquad k = 1, 2, \dots, N, \quad l = 1, 2, \dots, M, \end{split}$$
где $B_{klnm} = 1 + 4 \sum_{i=1}^{I} M_i \sin(k\pi x_i) \sin(n\pi x_i) \sin(l\pi y_i) \sin(m\pi y_i)$ при $n = k$ и $m = l,$ в

иных случаях $B_{klnm} = 4 \sum_{i=1}^{l} M_i \sin(k\pi x_i) \sin(n\pi x_i) \sin(l\pi y_i) \sin(m\pi y_i); M_0 = ab\rho h$ — масса пластины; $\lambda = a/b; \Delta = b/h; \gamma_k = \alpha_k/k; \alpha_k = 1$, если k нечетное, $\alpha_k = 0, \gamma_k = 0$, если kчетное или равно нулю; коэффициент $a_{klnmirjs}$ определяется из [19, 22]; $M_p = p_{\infty}/(\rho V_{\infty}^2),$ $M_E = E/(\rho V_{\infty}^2)$ — безразмерные параметры давления и жесткости; $M^* = V/V_{\infty}$ — число

Maxa.

Интегрирование системы (12) проводилось с помощью численного метода, основанного на использовании квадратурных формул [21, 22], при этом в качестве ядра релаксации использовались слабосингулярные ядра Колтунова — Ржаницына [1]

$$\Gamma(t) = A e^{-\beta t} t^{\alpha - 1}, \qquad 0 < \alpha < 1.$$
(13)

В работе [2] исследованы релаксационные свойства реальных вязкоупругих композиционных материалов (стеклопластиков КАСТ-В, ЭДФ, СВАМ и текстолита с волокнами, имеющими различное направление), соответствующие ядру релаксации Колтунова — Ржаницына (13). Реологические параметры A, β, α и модуль упругости E найдены методом логарифмических сдвигов [1] (табл. 1).

Ниже приведены результаты расчетов при различных значениях физических и геометрических параметров вязкоупругой прямоугольной пластины, обтекаемой сверхзвуковым потоком газа (рис. 3–5). Скорость потока газа принималась равной 800 м/с. За исключением случаев, оговоренных особо, в качестве исходных принимались следующие значения параметров: $\lambda = 3$, $\Delta = 133$, $\varkappa = 1.4$, $M_E = 4.71$, $M_p = 0.003$. Для реологических параметров соответствующих материалов использовались значения, приведенные в табл. 1.

На рис. 3 представлена зависимость прогиба в центре упругой (кривая 1) и вязкоупругих (кривые 2, 3) пластин от времени для различных материалов. Видно, что учет вязкоупругих свойств материала пластины приводит к затуханию колебательного процесса. В начальный период решения упругой и вязкоупругой задач различаются незначительно, однако с течением времени вязкоупругие свойства начинают оказывать существенное влияние.

На рис. 4 показана зависимость прогиба пластины от времени при различных значениях α . Анализ полученных результатов показывает, что уменьшение значения реологического параметра α приводит к уменьшению амплитуды и соответственно частоты колебаний.

Таблица 1

Материал	ω , град	$\alpha_{\rm T} = \alpha_{\rm P}$	β_{T}	A _T	$eta_{artheta}$	$A_{\mathfrak{P}}$	E, кг/см ²
Текстолит	0	0,075	$0,\!05$	0,0233	0,00416	0,0203	$1,47\cdot 10^5$
	90	0,075	$0,\!05$	0,0233	0,00083	0,0266	$0,92\cdot 10^5$
KACT-B	0	0,1	$0,\!05$	0,0146	0,001 00	0,0099	$2,\!60\cdot 10^{5}$
	90	0,1	$0,\!05$	0,0146	0,00166	0,0104	$1,52\cdot 10^5$
	45	0,1	$0,\!05$	0,0292	0,00166	0,0208	$1,29\cdot 10^5$
CBAM	0	0,1	$0,\!05$	0,0097	0,001 66	0,0069	$3,75 \cdot 10^{5}$
	45	0,1	$0,\!05$	0,0243	$0,\!00125$	0,0168	$1,35\cdot 10^5$
ЭДФ	0	0,2	0,05	0,0070	0,0000132	0,0016	$2,50 \cdot 10^{5}$
	90	0,2	$0,\!05$	0,0070	0,000 50	0,0028	$1,\!84 \cdot 10^{5}$
	45	0,2	$0,\!05$	0,0150	0,00083	0,0067	$1,\!67\cdot 10^{5}$

Реологические параметры и модуль упругости для различных композиционных материалов

Примечание. $\alpha_{\rm T}$, $\alpha_{\mathfrak{I}}$, $\beta_{\mathfrak{I}}$, $\beta_{\mathfrak{I}}$, $A_{\mathfrak{I}}$, $A_{\mathfrak{I}}$ — значения реологических параметров α , β , A для различных материалов, найденные теоретически и экспериментально; ω — угол армирования.

Рис. 3. Зависимость прогиба пластины от времени для различных материалов: 1 — упругий, 2 — СВАМ ($\omega = 0$), 3 — текстолит ($\omega = 0$)

Рис. 4. Зависимость прогиба пластины от времени при различных значениях реологического параметра *α*:

 $1-\alpha=0,2$ (ЭДФ, $\omega=0),$
 $2-\alpha=0,1$ (КАСТ-В, $\omega=45^\circ),$
 $3-\alpha=0,075$ (текстолит, $\omega=0)$

Рис. 5. Зависимость прогиба пластины, изготовленной из материала КАСТ-В ($\omega = 45^{\circ}$), от времени:

 $1 - M_1 = 0; \ 2 - M_1 = 0, 1; \ 3 - M_1 = 0, 2$

Т	a	б	л	и	ц	a	2
---	---	---	---	---	---	---	---

Критические значения скорости потока газа при возникновении флаттера прямоугольной пластины

			λ				Vкр, м/с							
Материал	$\omega,$ град			M_E	M_E	M_p	M_i			Нелинейный флаттер				
							N = 2	N = 3	N = 7	N = 11	N = 13	N = 2	N = 11	
Упругий		133	3	4,71	0,003	0,1	1256	973	1537	1565	1570	1480	1933	
ЭДФ	0	133	3	4,71	0,003	0,1	1432	982	1589	1623	1627	1455	1949	
CBAM	0	133	3	4,71	0,003	0,1	1216	953	1670	1703	1705	1325	2023	
KACT-B	0	133	3	4,71	0,003	0,1	1163	934	1665	1725	1728	1270	2041	
Текстолит	0	133	3	4,71	0,003	0,1	1004	788	1564	1597	1600	1008	1892	
		133	3	4,71	0,003	0,1	1093	853 1163	1628	1718	1721	1096	2017	
KACT-B	45	120 150 133	$\begin{vmatrix} 3\\ 3\\ 4\\ 2\end{vmatrix}$	4,71 4,71 4,71	0,003 0,003	$0,1 \\ 0,1 $	763 950	592 537	1128 1134	1153 1159	1155 1161	766 956	1366 1389	
		133 133 133	$\begin{vmatrix} 3\\ 3\\ 3\end{vmatrix}$	$\begin{vmatrix} 6,00\\4,71\\4,71 \end{vmatrix}$	$\begin{array}{c} 0,003 \\ 0,004 \\ 0,003 \end{array}$	$\begin{bmatrix} 0,1\\0,1\\0 \end{bmatrix}$	$ \begin{array}{r} 1776 \\ 774 \\ 699 \end{array} $	1392 599 906	$2729 \\ 1101 \\ 1251$	$ \begin{array}{c c} 2914 \\ 1149 \\ 1249 \end{array} $	$ \begin{array}{c} 2921 \\ 1151 \\ 1249 \end{array} $	$ \begin{array}{c} 1781 \\ 778 \\ 695 \end{array} $	$3385 \\ 1373 \\ 1478$	

Влияние сосредоточенной массы в центре пластины на колебательный процесс показано на рис. 5. Видно, что увеличение сосредоточенной массы приводит к уменьшению амплитуды колебаний.

В табл. 2 приведены критические значения скорости потока газа в случае возникновения флаттера прямоугольной пластины при различных физико-механических и геометрических параметрах. В расчетах использовался критерий определения критической скорости флаттера по верхнему пределу множества скоростей $\{V\}$, при котором обеспечивается сходимость разложения Бубнова — Галеркина (11) при $t \ge 0$. Этот критерий совпадает с критерием, принятым в работе [9].

Приведенные результаты показывают, что при вычислении критических значений скорости в разложении Бубнова — Галеркина (11) необходимо удерживать не менее 11 первых гармоник (N = 11, M = 1). Из табл. 2 следует, что результаты, полученные при

двухчленной аппроксимации (11), часто используемой для расчета флаттера, не являются достоверными. Отметим, что различия критических значений скоростей, полученных при двухчленной (N = 2) и многочленной (N = 11) аппроксимациях прогибов как в линейном, так и в нелинейном случае, при некоторых значениях физико-механических и геометрических параметров прямоугольной пластины оказываются существенными и составляют от 25 до 80 %.

Из табл. 2 также следует, что учет вязкоупругих свойств материала пластины оказывает существенное влияние на критическое значение скорости. Заметим, что результаты решения упругой и вязкоупругой задач различаются более чем на 10–15 %. Кроме того, учет геометрической нелинейности приводит к увеличению критических значений скорости, при этом их отличие от значений $V_{\rm kp}$, полученных в линейной постановке, составляет 15–25 %.

Изменение безразмерных параметров жесткости M_E , давления M_p и сосредоточенной массы также оказывает существенное влияние на поведение вязкоупругой пластины. В частности, увеличение параметра M_E и сосредоточенной массы приводит к увеличению критического значения скорости, а увеличение параметра M_p — к его резкому уменьшению.

3. Расчет нелинейного флаттера вязкоупругой цилиндрической панели с сосредоточенными массами. Пусть все края вязкоупругой цилиндрической панели шарнирно оперты. Решение системы (10), удовлетворяющее граничным условиям задачи, будем искать в виде (11) с использованием метода Бубнова — Галеркина.

Подставляя (11) в систему (10) и выполняя процедуру метода Бубнова — Галеркина для определения неизвестных $w_{kl} = w_{kl}(t)$, получим систему нелинейных интегродифференциальных уравнений. Так же, как и в задаче о флаттере пластины, вводя в эту систему безразмерные величины и сохраняя прежние обозначения, имеем

$$\sum_{n=1}^{N} \sum_{m=1}^{M} B_{klnm} \ddot{w}_{nm} + M_p \varkappa \lambda \Delta \dot{w}_{kl} + \frac{M_E \pi^4 \lambda^2}{12(1-\mu^2)\Delta^2} \left[\left(\frac{k}{\lambda}\right)^2 + l^2 \right]^2 (1-\Gamma^*) w_{kl} + \frac{M_E \pi^2 \theta^2 k^2}{\Delta^2} E_{kl} (1-\Gamma^*) w_{kl} + 2 \, \mathrm{M}^* \, M_p \varkappa \lambda \Delta \sum_{n=1}^{N} n(\gamma_{n+k} - \gamma_{n-k}) w_{nl} - (14) \\ - \frac{M_E \theta \pi^2}{\Delta^2} \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} F_{klnmir} w_{nm} (1-\Gamma^*) w_{ir} - \frac{4M_E \theta}{\Delta^2} \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} K_{klnmir} (1-\Gamma^*) w_{nm} w_{ir} + \frac{M_E \pi^2 \lambda^2}{\Delta^2} \sum_{n,i,j=1}^{N} \sum_{m,r,s=1}^{M} a_{klnmirjs} w_{nm} (1-\Gamma^*) (w_{ir} w_{js} - w_{0ir} w_{0js}) = 0, \\ w_{kl} (0) = w_{0kl}, \qquad \dot{w}_{kl} (0) = \dot{w}_{0kl}, \qquad k = 1, 2, \dots, N, \quad l = 1, 2, \dots, M,$$

где $\theta = b^2/(Rh)$; коэффициенты E_{kl} , F_{klnmir} , K_{klnmir} определены в [19, 22].

Интегрирование системы (14) проводилось с помощью численного метода, основанного на использовании квадратурных формул [21, 22]. При расчетах в качестве ядер релаксации использовались слабосингулярные ядра Колтунова — Ржаницына (13).

В табл. 3 приведены критические значения скорости потока газа в случае возникновения флаттера вязкоупругой цилиндрической панели при различных физико-механических и геометрических параметрах. Анализ полученных результатов показывает, что влияние вязкоупругих свойств материала, безразмерных геометрических параметров Δ , λ , параметров жесткости M_E , давления M_p и сосредоточенной массы на значение $V_{\rm kp}$ аналогично влиянию этих свойств и параметров в случае вязкоупругих прямоугольных пластин.

	$\omega,$ град							Vкр, м/с						
Материал		$\left \begin{array}{c c}\Delta & \lambda & \theta \end{array}\right $			M_E N	$M_p \mid M_i$			Нелинейный флаттер					
								N = 2	N = 3	N = 7	N = 11	N = 13	N = 2	N = 11
Упругий		133	3	6	4,71	0,003	0,1	1523	1121	2553	2594	2601	2397	3221
ЭДФ	0	133	3	6	4,71	0,003	0,1	1463	1105	2505	2535	2539	2199	3043
CBAM	0	133	3	6	4,71	0,003	0,1	1285	1025	2003	2040	2043	1581	2437
KACT-B	0	133	3	6	4,71	0,003	0,1	1241	991	1923	1948	1951	1437	2315
Текстолит	0	133	3	6	4,71	0,003	0,1	1003	815	1488	1496	1498	938	1767
		133	3	6	4,71	0,003	0,1	1090	882	1623	1633	1634	1055	1932
		120	3	6	4,71	0,003	0,1	1489	1203	2200	2208	2211	1379	2634
	45	150	3	6	4,71	0,003	0,1	757	613	1112	1128	1131	763	1352
		133	4	6	4,71	0,003	0,1	939	532	1176	1201	1203	964	1409
KAU1-B		133	3	12	4,71	0,003	0,1	1180	967	1737	1744	1746	1153	2078
		133	3	6	6,00	0,003	0,1	1781	1442	2646	2651	2652	1704	3235
		133	3	6	4,71	0,004	0,1	766	620	1136	1142	1144	768	1353
		133	3	6	4,71	0,003	0	706	950	1259	1238	1239	692	1472

Критические значения скорости потока газа при возникновении флаттера цилиндрической панели

Рис. 6. Зависимость прогиба цилиндрической панели, изготовленной из материала КАСТ-В ($\omega = 45^{\circ}$), от времени: 1 — $\theta = 6$; 2 — $\theta = 12$; 3 — $\theta = 18$

На рис. 6 представлена зависимость прогиба от времени при различных значениях безразмерного геометрического параметра θ . Анализ полученных результатов показывает, что с уменьшением значения θ частота колебаний уменьшается.

Заключение. Анализ результатов исследований нелинейного флаттера вязкоупругих прямоугольных пластин и цилиндрических панелей из композиционного материала с сосредоточенными массами позволяет сделать следующие выводы. Учет вязкоупругих свойств материала приводит к существенному изменению критических значений скорости. Учет сосредоточенных масс как для упругого, так и для вязкоупругого материала приводит к увеличению критической скорости. Учет нелинейных свойств материала также приводит к увеличению критической скорости. При использовании в расчетах метода Бубнова — Галеркина для обеспечения сходимости разложения необходимо выбирать мно-

Таблица 3

гочленную аппроксимацию прогиба. При проведении расчетов в зависимости от геометрических и физических параметров прямоугольной пластины и цилиндрической панели необходимо использовать линейную или нелинейную теорию Кирхгофа — Лява.

ЛИТЕРАТУРА

- 1. Колтунов М. А. Ползучесть и релаксация. М.: Высш. шк., 1976.
- 2. **Тюнеева И. М.** Релаксационные характеристики стеклопластиков // Механика полимеров. 1970. № 3. С. 560–562.
- 3. Болотин В. В. Неконсервативные задачи теории упругой устойчивости. М.: Физматгиз, 1961.
- 4. Мовчан А. А. О колебаниях пластинки, движущейся в газе // Прикл. математика и механика. 1957. Т. 20, вып. 2. С. 221–222.
- Bolotin V. V., Grishko A. A., Kounadis A. N., Gantes C. J. Non-linear panel flutter in remote post-critical domains // Intern. J. Non-Linear Mech. 1998. V. 33, N 5. P. 753–764.
- Ильюшин А. А., Кийко И. А. Новая постановка задачи о флаттере пологой оболочки // Прикл. математика и механика. 1994. Т. 58, вып. 3. С. 167–171.
- 7. Алгазин С. Д. Флаттер пластин и оболочек / С. Д. Алгазин, И. А. Кийко. М.: Наука, 2006.
- 8. Ariaratnam S. T., Abdelrahman N. M. Almost-sure stochastic stability of viscoelastic plates in supersonic flow // AIAA J. 2001. V. 39, N 3. P. 465–472.
- Beldica C. E., Hilton H. H., Kubair D. Viscoelastic panel flutter stability, probabilities of failure and survival times // Proc. of the 42nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conf., Seattle, 2001. Seattle: Amer. Inst. Aeronaut. Astronaut., 2001. P. 3423–3433.
- Potapov V. D. Stability of elastic and viscoelastic plates in a gas flow taking into account shear strains // Acta Mech. 2004. V. 276. P. 615–626.
- 11. **Ларионов Г. С.** Нелинейный флаттер упруговязкой пластинки // Изв. АН СССР. Механика твердого тела. 1974. № 4. С. 95–100.
- Bismarck-Nasr M. N., Bones C. A. Damping effects in nonlinear panel flutter // AIAA J. 2000. V. 38, N 4. P. 711–713.
- Pourtakdoust S. H., Fazelzadeh S. A. Chaotic analysis of nonlinear viscoelastic panel flutter in supersonic flow // Nonlinear Dynamics. 2003. V. 32. P. 387–404.
- Amba-Rao C. L. On the vibration of a rectangular plate carrying a concentrated mass // J. Appl. Mech. 1964. V. 31. P. 550–551.
- Cha P. D. Free vibration of a rectangular plate carrying a concentrated mass // J. Sound Vibration. 1997. V. 207. P. 593–596.
- Зорий Л. М., Сорокатый Н. И. О стабилизирующем влиянии геометрических и жесткостных параметров на флаттер панелей с сосредоточенными массами в сверхзвуковом потоке // Изв. РАН. Механика твердого тела. 1992. № 1. С. 144–152.
- Eshmatov B. Kh., Khodjaev D. A. Dynamic stability of a viscoelastic plate with concentrated masses // Intern. Appl. Mech. 2008. V. 44, N 2. P. 208–216.
- Eshmatov B. Kh., Khodjaev D. A. Dynamic stability of a viscoelastic cylindrical panel with concentrated masses // Strength Materials. 2008. V. 40, N 4. P. 491–502.
- Eshmatov B. Kh., Khodjaev D. A. Non-linear vibration and dynamic stability of a viscoelastic cylindrical panel with concentrated mass // Acta Mech. 2007. V. 190, N 1–4. P. 165–183.
- 20. Ходжаев Д. А., Эшматов Б. Х. Нелинейные колебания вязкоупругой пластины с сосредоточенными массами // ПМТФ. 2007. Т. 48, № 6. С. 158–169.

- 21. Бадалов Ф. Б., Эшматов Х., Юсупов М. О некоторых методах решения систем интегродифференциальных уравнений, встречающихся в задачах вязкоупругости // Прикл. математика и механика. 1987. Т. 51, вып. 5. С. 867–871.
- 22. Эниматов Х. Интегральный метод математического моделирования задач динамики вязкоупругих систем: Автореф. дис. . . . д-ра техн. наук. Киев: Ин-т проблем моделирования АН Украины, 1991.
- 23. Эшматов Б. Х. Динамическая устойчивость вязкоупругих пластин при возрастающих сжимающих нагрузках // ПМТФ. 2006. Т. 47, № 2. С. 165–175.
- Eshmatov B. Kh., Mukherjee S. Nonlinear vibrations of viscoelastic composite cylindrical panels // J. Vibration Acoust. 2007. V. 129, N 3. P. 285–296.
- Eshmatov B. Kh. Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates // J. Sound Vibration. 2007. V. 300. P. 709–726.
- 26. Эшматов Б. Х. Нелинейные колебания и динамическая устойчивость вязкоупругой круговой цилиндрической оболочки с учетом деформации сдвига и инерции вращения // Изв. РАН. Механика твердого тела. 2009. № 3. С. 102–117.
- 27. Вольмир А. С. Нелинейная динамика пластинок и оболочек. М.: Наука, 1972.

Поступила в редакцию 21/IV 2009 г., в окончательном варианте — 26/XI 2012 г.