
ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 3 29

УДК 532.51
DOI: 10.15372/PMTF202315347

ИССЛЕДОВАНИЕ ВОЛН НА ГРАНИЦЕ РАЗДЕЛА

ПРИ ПРОТИВОТОЧНОМ ТЕЧЕНИИ ТОНКОЙ ПЛЕНКИ

ЖИДКОСТИ И ТУРБУЛЕНТНОГО ПОТОКА ГАЗА

В УЗКОМ ВЕРТИКАЛЬНОМ КАНАЛЕ

О. Ю. Цвелодуб

Институт теплофизики им. С. С. Кутателадзе СО РАН, Новосибирск, Россия
E-mail: tsvel@itp.nsc.ru

Рассматривается противоточное течение стекающей пленки жидкости и турбулентно-
го потока газа в узком вертикальном канале. В случае малых чисел Рейнольдса и при
выполнении некоторых условий для параметров такого течения задача сводится к изуче-
нию одного эволюционного интегродифференциального уравнения для отклонения тол-
щины пленки от невозмущенного уровня. Проведено численное исследование эволюции
периодических возмущений. Представлено несколько решений модельного уравнения.
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Введение. Во многих отраслях промышленности широко распространены контакт-
ные газожидкостные тепломассообменные аппараты, в которых тепломассообмен между
фазами происходит при их непосредственном соприкосновении. Известно, что наиболее
интенсивный процесс теплообмена между газом и жидкостью происходит при пленочном

течении последней [1–3].
Совместное течение тонкой пленки жидкости и турбулентного потока газа, как пра-

вило, изучается для режима двухфазного течения в вертикальных и наклонных каналах
[4, 5]. Наиболее существенным для приложений результатом является наблюдаемое в та-
ких течениях значительное увеличение массопереноса от поверхности пленки к оси канала

вследствие индуцированной возникающими волнами поперечной конвекции [6]. Это обу-
словливает интерес к изучению проблемы генерации и эволюции волн на поверхности

раздела фаз в рассматриваемых физических системах (см., например, [7]).
При исследовании задачи о совместном течении жидкости и газа в полной сопряженной

постановке возникают значительные вычислительные трудности. Одним из эффективных
подходов для ее изучения является разделение решения задачи на два этапа. Поскольку
обычно скорость жидкости значительно меньше характерной скорости газа, при рассмот-
рении газодинамической части задачи поверхность раздела полагается жесткой и непо-
движной. Кроме того, вследствие малости толщины пленки зависимость скорости газа от
возмущений границы раздела можно считать линейной, поэтому задача вычисления воз-
мущений напряжений газа на поверхности сводится к изучению влияния на них отдельных
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пространственных гармоник. Затем решается задача о нелинейных волновых режимах в
жидкой пленке, находящейся в известном поле возмущений трения, вносимых этой поверх-
ностью. На втором этапе исследуется динамика нелинейных волн на поверхности пленки
жидкости. Обоснование такого подхода при выполнении соответствующих ограничений
и предположений приведено, например, в работах [8, 9]. Разделение решения задачи на
этапы использовалось многими исследователями (см., например, [8–12]). При таком раз-
делении задача как для газа, так и для жидкой пленки рассматривалась в различных
приближениях: от ламинарного течения [12–14] до описываемого с помощью различных

моделей турбулентного течения газа [8–10, 13–16].
В работах [15, 17–20] данный прием применялся при изучении течений вертикальной

пленки со спутным потоком газа и горизонтальной пленки тяжелой жидкости, увлекаемой
потоком газа. В работе [21] показано, что при малых расходах жидкости и различных зна-
чениях параметра, характеризующего отношение разнонаправленных сил, действующих
на пленку (силы трения со стороны газа и силы тяжести), противоточное течение пленки
жидкости моделируется различными уравнениями. В этих случаях задача сводилась к ин-
тегродифференциальному уравнению для отклонения толщины пленки от невозмущенного

уровня.
В данной работе рассматривается второй этап исследования совместного движения

стекающей пленки жидкости и противоточного течения турбулентного потока газа в уз-
ком вертикальном канале. В отличие от указанных выше работ в настоящей работе не
используется так называемое квазиламинарное приближение, в котором турбулентная дис-
сипация учитывается только при построении профиля скорости основного течения, а воз-
мущения описываются линеаризованными уравнениями Навье — Стокса.

1. Постановка задачи. Рассматривается задача о пленке, стекающей в узком вер-
тикальном канале и взаимодействующей с противоточным турбулентным потоком газа

(рис. 1). В расчетах использовались численные данные о пульсациях трения на границе
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Рис. 1. Схема течения



О. Ю. Цвелодуб 31

раздела пленка— газ, полученные в [20] для спутного течения пленки и газа в узком кана-
ле, безразмерная полуширина которого составляла 200 толщин пограничного слоя. В этом
случае, например, при средней скорости потока воздуха 16 м/с толщина пограничного
слоя равна δ = 12,5 мкм, полуширина канала — 2,5 мм. Канал с приблизительно такими
же параметрами использовался в экспериментах, описанных в работе [22]. В верхней части
широких каналов (каналов, полуширина которых больше 1000 толщин пограничного слоя)
противоположная стенка практически не влияет на профиль скорости основного течения.
В узких каналах влияние второй стенки становится существенным (см. [20]).

При изучении газодинамической части задачи компоненты тензора рейнольдсовых на-
пряжений определялись в рамках гипотезы Буссинеска. В отличие от так называемого

квазиламинарного приближения турбулентная диссипация учитывалась как при постро-
ении профиля скорости основного течения, так и при расчете возмущений напряжений,
действующих со стороны газа на поверхность раздела фаз. При этом возмущенная гра-
ница считалась неподвижной. В результате задача для газовой фазы сводилась к моди-
фицированному уравнению типа уравнения Орра — Зоммерфельда с соответствующими

граничными условиями (подробнее об этом см. [19, 20]). В случае противоточного течения
пленки и газа эти данные можно использовать, направив ось x вверх по течению газа

(см. рис. 1). В этом случае составляющая касательных напряжений газа τ0, действующая
на поверхность невозмущенной плоской пленки, больше нуля, а функция, описывающая
профиль скорости, имеет вид [21]

u0 =
Re

Fr

(η2

2
+ (τ0 Fr− 1)η

)
. (1)

Здесь η = y/h0; τ0 = T0/(ρu2
0) — невозмущенная безразмерная составляющая касательных

напряжений газа на поверхности пленки; T0 — размерное невозмущенное трение на гра-
нице раздела; Re = ρh0u0/µ — число Рейнольдса; Fr = u2

0/(gh0) — число Фруда; h0 —
толщина пленки; u0 — среднерасходная характерная скорость пленки [21].

Из (1) получаем выражение для расхода жидкости

Q =
Re

2 Fr

(
τ0 Fr− 2

3

)
. (2)

В [21] подробно проанализировано, каким образом меняются невозмущенный профиль
скорости (1) и расход (2) при варьировании параметра τ0 Fr. Поэтому в данной работе
ограничимся несколькими замечаниями.

Представим параметр τ0 Fr в явном виде:

τ0 Fr = T0/(ρgh0).

Из этой формулы следует физический смысл данного параметра — отношение разнона-
правленных силы трения со стороны газа T0 и силы тяжести ρgh0, действующих в случае
невозмущенного течения пленки на ее элемент, имеющий единичную площадь и толщи-
ну h0.

Пленка течет вниз (Q < 0), если τ0 Fr < 2/3, причем в случае τ0 Fr < 1/2 все слои
в пленке движутся вниз, а в случае 1/2 6 τ0 Fr < 2/3 вниз стекают только слои, приле-
гающие к твердой стенке, координата η которых находится в интервале 0 < η < η∗ =
2(1 − τ0 Fr ). Соответственно, слои с координатами в интервале η∗ < η 6 1 увлекаются
газовым потоком вверх. В точке η∗ скорость жидкости обращается в нуль.

Из (2) следует, что при τ0 Fr = 2/3 расход в пленкеQ = 0. При бо́льших значениях τ0 Fr
пленка течет вверх (Q > 0) и, строго говоря, такое совместное течение не является про-
тивоточным. Поэтому далее рассматривается случай

0 < τ0 Fr < 2/3. (3)
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2.Модельное уравнение. В работе [21] показано, что при малых расходах жидкости
(Re ∼ 1) задача сводится к рассмотрению одного эволюционного уравнения для толщины
пленки, которое в выбранной системе координат имеет вид

ht −
Re

Fr
h2hx + Re τ0hhx + ε

∂

∂x

(1

3
ε Re We h3hxxx +

+
2

15

Re3

Fr2
h5hx(h− τ0 Fr ) +

1

2
Re h2τ0

∫
ĥkkτ(k) eikx dk

)
= 0. (4)

Здесь We = σ/(ρl0u
2
0) — число Вебера; ε = h0/l0 — отношение характерной толщины

пленки h0 к характерному продольному размеру возмущений l0. При обезразмеривании ис-
пользовались характерные масштабы скорости u0 (для рассматриваемых ниже значений
комплекса τ0 Fr (см. (3)) — среднерасходная скорость жидкости) и времени l0/u0. В со-
став безразмерных комплексов входят также коэффициент поверхностного натяжения σ,
плотность ρ, динамическая вязкость жидкости µ. Кроме того, в интегральном слагаемом
в уравнении (4) содержатся фурье-компоненты разложения формы поверхности пленки:

ĥ(k, t) =
1

2π

+∞∫
−∞

h(x, t) e−ikx dx

и фурье-компоненты касательных напряжений газа на границе раздела, обусловленные
криволинейностью этой границы: τ(k) = τr(k) + iτim(k). Как отмечалось выше, в насто-
ящей работе использовались результаты расчетов пульсаций трения на границе раздела

пленка — газ, полученные в [20]. Зависимость коэффициента турбулентной вязкости от
расстояния до границы выбиралась с помощью модели [23]. При выводе уравнения (4)
предполагалось, что числа Рейнольдса малы (Re ∼ 1), а число Вебера велико: We ∼ 1/ε.

При получении пространственных периодических решений интегральное слагаемое в

уравнении (4) заменяется соответствующим рядом Фурье.
Ограничиваясь рассмотрением возмущений малой, но конечной амплитуды и вводя

быстрое и медленное времена, с помощью преобразования

h = 1 + εh1, t0 = t, t1 = εt

из уравнения (4) получаем

∂h1

∂t0
− Re

Fr
(1− τ0 Fr )

∂h1

∂x
= 0; (5)

∂h1

∂t1
− Re

Fr
(2− τ0 Fr )h1

∂h1

∂x
+

We Re ε

3

∂4h1

∂x4
+

+
2

15

Re3

Fr2
∂2h1

∂x2
(1− τ0 Fr ) +

1

2
Re τ0

∫
iĥ1kk

2τ(k) eikx dk = 0. (6)

Из (5), (6) следует, что в рассматриваемом случае множители, содержащие скобки, поло-
жительны.

Согласно уравнению (5) в первом приближении (при быстрых временах) возмуще-
ния малой, но конечной амплитуды распространяются без изменения формы с постоянной
скоростью:

c0 = −Re

Fr
(1− τ0 Fr ). (7)

Из (7) с учетом (3) следует, что c0 < 0, т. е. возмущения распространяются вниз по
течению пленки.
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Уравнение (6) описывает нелинейную эволюцию возмущений при больших (медлен-
ных) временах.

Характерные масштабы h0 и u0 выберем таким образом, чтобы для невозмущенного
течения безразмерная толщина пленки была равна h̃ = 1, безразмерный модуль расхода в
пленке жидкости — |Q̃0| = 1. Тогда из (2) получаем∣∣∣ Re

2 Fr

(
τ0 Fr− 2

3

)∣∣∣ = 1.

Так как пленка в основном течет вниз, то Q0 = −1 и связь между Re и Fr имеет вид

Fr =
2 Re

3(2 + Re τ0)
.

Характерный продольный масштаб l0 выберем таким образом, чтобы коэффициенты
при второй и четвертой производных в уравнении (6) были одинаковыми. Тогда для ε
справедливо соотношение

ε ≡ h0

l0
=

2 Re2

5 We Fr2
(1− τ0 Fr).

Отсюда получаем

l0 =
µ

ρgh0

( 5σ

2ρh0

(
1− T0

ρgh0

)−1)0,5
.

Тогда, выполнив замену

t2 = bt1, h1 = AH, b =
We Re ε

3
, A =

2 Fr b

Re (2− Fr τ0)
,

уравнение (6) запишем в следующем виде (индекс у t2 опускаем):

∂H

∂t
− 2H

∂H

∂x
+

∂2H

∂x2
+

∂4H

∂x4
+ B

∞∫
−∞

ik2τ(k)Ĥ(k, t) eikx dk = 0. (8)

Здесь B = Re τ0/(2b) ≡ 3τ0/(2 We ε).
Для нахождения периодических по координате x решений уравнения (8) функция H

представляется в виде пространственного ряда Фурье

H(x, t) =
∑
n

Hn(t) eiknx . (9)

Так как H — вещественная функция, то H̄−n = Hn = Hn r + iHn im. Черта означает опера-
цию комплексного сопряжения. После подстановки (9) в уравнение (8) имеем бесконечную
систему обыкновенных дифференциальных уравнений для фурье-гармоник Hn(t). Пола-
гая, что все Hn(t) с индексами |n| > N равны нулю, получаем ее конечномерный аналог.
Алгоритм решения данной системы подробно описан в работах [17, 18].

Пренебрегая в уравнении (8) нелинейным членом и представляя его решение в виде

H ∼ eik(x−ct),

имеем следующее дисперсионное соотношение:

c = i(k − k3) + Bkτ(k).

Возмущения неустойчивы, если мнимая часть фазовой скорости c больше нуля. В слу-
чае нейтрального возмущения мнимая часть фазовой скорости ci = 0 и из (9) для волнового
числа kn находим

1− k2
n + Bτim(kn) = 0.
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Во многих эволюционных моделях в окрестности волнового числа kn нейтрального

возмущения от решения с плоской невозмущенной границей обычно ответвляется семей-
ство (первое) стационарно-бегущих периодических решений малой, но конечной амплиту-
ды (см., например, [19, 20]). В случае уравнения (8) оно имеет вид [19, 20]

H = A ei(kx−ωt) + A2AH2
e2i(kx−ωt) + к. c. (10)

Здесь A — параметр малости (модуль амплитуды первой гармоники); kn — волновое

число нейтрального возмущения; k = kn + AkA
2; ω = ω0(kn) + AωA2; к. c. — комплексно-

сопряженное выражение. Коэффициенты AH2
, Ak, Aω зависят только от первых двух

фурье-гармоник пульсаций напряжений трения газа на границе раздела τ(k) и от пара-
метра B. Явный вид гармоник приведен в [19, 20]. Из (10) следует, что амплитуда второй
гармоники и поправки к волновому числу и частоте имеют второй порядок малости.

3. Результаты расчетов. В расчетах использовались данные о пульсациях трения,
полученные в работе [20] при решении газодинамической части задачи. В [20] показано, что
для данной модели коэффициент Ak < 0, т. е. имеет место мягкий тип ветвления: первое
периодическое семейство ответвляется в область линейной неустойчивости невозмущен-
ного течения H = 0 (далее — область неустойчивости). Подобным образом ответвление
первого периодического семейства происходит во многих моделях, описывающих различ-
ные газожидкостные течения (см., например, [15, 19, 20]).

Решения с волновыми числами, находящимися вне окрестности волнового числа kn

нейтрального возмущения, строились численно. Приведенные ниже результаты получены
при значении параметра B = 0,088 и волновом числе kn = 1,2. Для ряда (9) достаточно
выбрать N в диапазоне 5÷ 24.

Представленные ниже результаты расчетов показывают, каким образом при фикси-
рованном значении параметра B по мере продвижения вглубь области неустойчивости

меняются решения уравнения (8).
В расчетах в основном использовались два вида начальных условий. Отличными от

нуля были только первая и вторая гармоники, которые задавались следующим образом:

H1r = 0,1, H1im = 0, H2r = 0,05, H2im = 0; (11)

H1r = 0,1, H1im = 0, H2r = 0, H2im = 0,05. (12)

Начальные значения остальных гармоник полагались равными нулю. Наиболее простым
случаем является эволюция возмущений в той области волновых чисел, где существу-
ет только одно семейство стационарно-бегущих решений. В этом случае при любых на-
чальных условиях все возмущения эволюционируют к соответствующему стационарно-
бегущему решению.

При продвижении вглубь области неустойчивости (в направлении меньших волновых
чисел) во всех стационарно-бегущих решениях семейства, в случае если их волновые числа
достаточно близки к нейтральному волновому числу (k > (0,9÷ 0,7)kn), первая гармоника
является преобладающей. Это обусловлено тем, что только первая гармоника находится
в области неустойчивости. Вторая гармоника расположена на достаточно большом рас-
стоянии от границы области неустойчивости. В результате модули остальных гармоник
незначительны по сравнению с модулем первой гармоники. Таким образом, периодические
решения представляют собой практически чистую синусоиду.

Пример развития возмущения с волновым числом k = 0,9 с начальными условия-
ми (11) представлен на рис. 2, 3. На рис. 2 показана зависимость модулей первых трех
фурье-гармоник от времени. Видно, что после непродолжительного переходного этапа
(t < 6) решение притягивается к стационарно-бегущему волновому решению, вторая и
третья гармоники которого значительно меньше первой гармоники.
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Рис. 2. Зависимости модулей первой H1 (1), второй H2 (2) и третьей H3 (3)
фурье-гармоник от времени при k = 0,9

Рис. 3. Профили поверхности при k = 0,9 в различные моменты времени:
1 — t = 50, 2 — t = 100, 3 — t = 150

На рис. 3 приведены профили волны в различные моменты времени. Как и на всех
остальных приведенных ниже зависимостяхH(x), интервалы на оси x соответствуют двум
длинам волны −2λ (λ = 2π/k). (Следует отметить, что ось абсцисс направлена вниз по
течению пленки.) На рис. 3 видно, что к указанным моментам времени решение эволюци-
онировало в стационарно-бегущее решение.

На рис. 4 представлены зависимости модулей первых четырех фурье-гармоник от вре-
мени. В данном случае также только первая гармоника находится в области неустойчиво-
сти, вторая гармоника имеет нейтральное волновое число, поэтому ее предельные значения
в основном определяются нелинейной накачкой энергии со стороны первой гармоники. Ре-
шение, приведенное на рис. 4, также притягивается к стационарно-бегущему решению, но
в отличие от рассмотренного выше случая вторая и третья гармоники соизмеримы с пер-
вой. Поэтому стационарно-бегущая волна несинусоидальна (рис. 5). В качестве начальных
условий использовались условия (12).

В рассмотренных двух случаях при изменении начальных условий в достаточно ши-
роком диапазоне решение притягивалось к одному и тому же предельному стационарно-
бегущему решению. Незначительно менялся только начальный переходный участок.

При волновых числах k < 0,5kn вторая гармоника также находится в области линей-
ной неустойчивости. В этом случае характер эволюции решений существенно усложня-
ется.

На рис. 6 приведена зависимость модулей первых четырех фурье-гармоник от времени
при k = 0,5 и начальных условиях (11). В отличие от первых двух рассмотренных случаев
решение вышло на режим, в котором модули всех гармоник совершают не затухающие во
времени осцилляции. Соответствующие профили для моментов времени t = 50, 100, 150
показаны на рис. 7. По форме и амплитуде первый профиль незначительно отличается от
двух остальных. Это обусловлено тем, что к моменту t = 100 амплитуды колебаний моду-
лей гармоник установились (в отличие от момента t = 50 (кривая 1)), к тому же в моменты
t = 100, 150 фазы этих гармоник практически совпали. При незначительном варьировании
начальных амплитуд первых двух гармоник решения эволюционируют к одному и тому

же осциллирующему во времени решению, к которому притягивается также решение с на-
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Рис. 4. Зависимости модулей первой H1 (1), второй H2 (2), третьей H3 (3) и
четвертой H4 (4) фурье-гармоник от времени при k = 0,6

Рис. 5. Профили поверхности при k = 0,6 в различные моменты времени:
1 — t = 50, 2 — t = 100, 3 — t = 150
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Рис. 6. Зависимости модулей первой H1 (1), второй H2 (2), третьей H3 (3)
и четвертой H4 (4) фурье-гармоник от времени при k = 0,5

Рис. 7. Профили поверхности при k = 0,5 в различные моменты времени:
1 — t = 50, 2 — t = 100, 3 — t = 150
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Рис. 8. Зависимости модулей первой H1 (1), второй H2 (2), третьей H3 (3) и
четвертой H4 (4) фурье-гармоник от времени при k = 0,5:
а — t = 0÷ 150, б — t = 150÷ 300

чальными условиями (12). Напомним, что условия (11), (12) различаются только фазами
второй гармоники.

На рис. 8 представлены результаты расчета при начальных условиях, существенно
отличающихся от условий (11), (12):

H1r = 0,1, H1im = 0, H2r = 0, H2im = 0,8.

В этом случае эволюция возмущения значительно отличается от эволюции возмущения

в случае, показанном на рис. 6, 7. На первом этапе решение быстро выходит на режим,
близкий к вырожденному стационарно-бегущему режиму с удвоенным волновым числом
knew = 2k = 1. На интервале времени 5 < t < 120 данный режим практически не меня-
ется. Профили волны в этом временном диапазоне представлены на рис. 9 (кривые 1, 2).
В данном случае пространственный интервал также равен двум длинам волны начального

возмущения 2λ. Однако, так как в моменты времени t = 50, 100 главное волновое число в
два раза больше начального, на этом интервале укладываются четыре длины волны, для
которых волновое число knew ≡ 2k = 1. С увеличением времени (t > 120) нечетные гармо-
ники начинают возрастать, четные— уменьшаться, форма волновых профилей становится
более сложной (кривая 3 на рис. 9 и кривые 1–3 на рис. 10), в результате на втором этапе
при t > 200 устанавливается тот же осциллирующий во времени режим (см. рис. 8,б), что
и в случае, представленном на рис. 6, 7. Такое достаточно сложное эволюционное поведе-
ние данного решения обусловлено двумя основными причинами: 1) так как в начальный
момент времени вторая гармоника существенно превышала первую, ее амплитуда быст-
ро росла не только в силу собственной неустойчивости, но и за счет сдерживания роста
первой гармоники, в результате чего сформировался нелинейный стационарно-бегущий
режим с удвоенным волновым числом knew ; 2) так как указанный установившийся режим
неустойчив по отношению к возмущениям с удвоенной длиной волны (λ = 2π/k ≡ 2λnew ,
λnew = 2π/knew ), нечетные гармоники медленно продолжали нарастать, в результате чего
развился осциллирующий во времени режим. В случаях, когда используются начальные
условия (11), (12) и близкие к ним, первая стадия не успевает проявиться и реализуется
только вторая — осциллирующий во времени режим.

Рис. 11–14 соответствуют случаю, когда незначительная вариация начальных данных
приводит к существенному различию эволюции решений. Представлены два решения с

волновыми числами k = 0,4.



38 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 3

x5 10 2015

0

_2

_1

1

2

0

1

2

3

H

x5 10 2015

0

_2

_1

1

2

0

1

2

3

H

Рис. 9 Рис. 10

Рис. 9. Профили поверхности при k = 0,5 в различные моменты времени:
1 — t = 50, 2 — t = 100, 3 — t = 150

Рис. 10. Профили поверхности при k = 0,5 в различные моменты времени:
1 — t = 200, 2 — t = 250, 3 — t = 300

t20 40 60 10080

0,2

0,4

0,8

0,6

0
0

1

2

3
4

Hi

x5 10 30252015

0

_2

_1

1

2

0

1

2
3

H

Рис. 11 Рис. 12

Рис. 11. Зависимости модулей первой H1 (1), второй H2 (2), третьей H3 (3) и
четвертой H4 (4) фурье-гармоник от времени при k = 0,4 и начальных услови-
ях (11)

Рис. 12. Профили поверхности при k = 0,4 и начальных условиях (11) в раз-
личные моменты времени:
1 — t = 50, 2 — t = 150, 3 — t = 250
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Рис. 13. Зависимости модулей первой H1 (1), второй H2 (2), третьей H3 (3) и чет-
вертой H4 (4) фурье-гармоник от времени при k = 0,4 и начальных условиях (12)

Рис. 14. Профили поверхности при k = 0,4 и начальных условиях (12) в различные
моменты времени:
1 — t = 50, 2 — t = 150, 3 — t = 250

Для решения, показанного на рис. 11, 12, задавались начальные условия (11), решения
представленные на рис. 13, 14, строились с использованием условий (12). Из рис. 11, 13 сле-
дует, что модули гармоник обоих решений, как и в рассмотренном выше случае, выходят
на осциллирующие во времени режимы. Однако у первого решения (см. рис. 11) домини-
рует вторая гармоника и даже четвертая гармоника больше первой. Поэтому, несмотря
на то что на рис. 12 для профилей волны представлены два пространственных периода,
на каждом из них имеется по одному локальному максимуму и локальному минимуму,
которые практически совпадают с соответствующими абсолютными экстремумами.

В случае, когда решения строились с использованием условий (12) (см. рис. 13), пер-
вая и вторая гармоники одного порядка, при этом у первой гармоники больше модули
максимумов, а у второй — модули минимумов. В этом случае на длине волны также вы-
деляются по два локальных максимума и минимума (см. рис. 14), но различия значений
экстремумов существенно больше, чем в случае использования начальных условий (11)
(ср. рис. 12, 14). Очевидно, что при незначительном изменении начальных условий реше-
ния выходят на два различных осциллирующих во времени режима.

На рис. 15, 16 показаны зависимости модулей первых четырех фурье-гармоник от
времени для двух решений с волновыми числами k = 0,3 при начальных условиях (11),
(12) соответственно. Так как в данном случае первые три гармоники находятся в области
неустойчивости, переходные процессы продолжаются существенно дольше, чем во всех
рассмотренных выше случаях. Однако в результате оба решения притягиваются к од-
ному и тому же стационарно-бегущему решению. Профили, соответствующие решению,
представленному на рис. 15, приведены на рис. 17.

Заключение. В работе рассмотрены нелинейные волны на поверхности раздела для
противоточного течения стекающей пленки жидкости и турбулентного потока газа в узком

вертикальном канале. В случае малых чисел Рейнольдса для жидкости задача сводится
к интегродифференциальному уравнению с квадратичной нелинейностью для отклонения

толщины пленки от невозмущенного уровня. Это уравнение позволяет корректно описать
слабонелинейные длинноволновые возмущения.
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Рис. 15. Зависимости модулей первой H1 (1), второй H2 (2), третьей H3 (3) и чет-
вертой H4 (4) фурье-гармоник от времени при k = 0,3 и начальных условиях (11)

Рис. 16. Зависимости модулей первой H1 (1), второй H2 (2), третьей H3 (3) и чет-
вертой H4 (4) фурье-гармоник от времени при k = 0,3 и начальных условиях (12)
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Рис. 17. Профили поверхности при k = 0,3 и начальных условиях (11) в раз-
личные моменты времени:
1 — t = 50, 2 — t = 150, 3 — t = 250

Численно исследована эволюция периодических возмущений, волновые числа кото-
рых находятся на достаточно большом расстоянии от границы области неустойчивости

невозмущенного течения. Представлено несколько сценариев развития таких возмущений.
Показано, что если волновые числа этих возмущений находятся в первой половине области
линейной неустойчивости, то эволюция возмущений не зависит от их начальной формы.
Как правило, такие возмущения порождают стационарно-бегущие волны с волновыми

числами, соответствующими начальным возмущениям. Поведение возмущений с длинами
волн, волновые числа которых находятся во второй половине области линейной неустой-
чивости, является более сложным. В зависимости от начальных условий эти возмущения
могут выйти как на режим стационарно-бегущих волн, так и на режим, в котором модули
гармоник совершают периодические колебания во времени.
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Непосредственное сравнение результатов теоретических расчетов и эксперименталь-
ных данных невозможно, поскольку в экспериментах значения расхода и амплитуды воз-
мущений в жидкой пленке существенно больше значений, при которых справедливо рас-
сматриваемое уравнение. Тем не менее изучение решений данного модельного уравнения
позволяет более подробно исследовать волновые процессы в совместных течениях жидкой

пленки и газа.

ЛИТЕРАТУРА

1. Городилов А. А., Беренгартен М. Г., Пушнов А. С. Особенности пленочного тече-
ния жидкости по гофрированной поверхности регулярных насадок с перфорацией // Теорет.
основы хим. технологии. 2016. Т. 50, № 3. С. 334–343.

2. Алексеенко С. В. Волновое течение пленок жидкостей / С. В. Алексеенко, В. Е. Накоряков,
Б. Г. Покусаев. Новосибирск: Наука. Сиб. издат. фирма, 1992.

3. Накоряков В. Е. Неизотермическая абсорбция в термотрансформаторах / В. Е. Накоряков,
Н. И. Григорьева. Новосибирск: Наука. Сиб. издат. фирма, 2010.

4. Алексеенко С. В., Маркович Д. М., Харламов С. М., Черданцев А. В. Экспе-
риментальное исследование линейной устойчивости стекающей пленки жидкости в присут-
ствии турбулентного газового потока // Изв. РАН. Механика жидкости и газа. 2004. № 4.
С. 119–129.

5. Wolf A., Jayanti S., Hewitt G. F. Flow development in vertical annular flow // Chem. Engng
Sci. 2001. V. 56. P. 3221–3235.

6. Park C. D., Nosoko T., Gima S., Ro S. T. Wave-augmented mass transfer in a liquid film
falling inside a vertical tube // Intern. J. Heat Mass Transfer. 2004. V. 47. P. 2587–2598.

7. Aktershev S. P., Alekseenko S. V. Interfacial instabilities in an annular two-phase flow //
Russ. J. Engng Thermophys. 1996. V. 6, N 4. P. 307–320.

8. Демехин Е. А. Нелинейные волны в пленке жидкости, увлекаемой турбулентным газовым
потоком // Изв. АН СССР. Механика жидкости и газа. 1981. № 2. С. 37–42.

9. Демехин Е. А., Токарев Г. Ю., Шкадов В. Я. Неустойчивость и нелинейные волны в
вертикальной пленке жидкости, текущей в противотоке с турбулентным газовым потоком //
Теорет. основы хим. технологии. 1989. Т. 23, № 1. С. 64–70.

10. Tseluiko D., Kalliadasis S. Nonlinear waves in counter-current gas — liquid film flow // J. Fluid
Mech. 2011. V. 673. P. 19–59.

11. Vellingiri R., Tseluiko D., Savva N., Kalliadasis S. Dynamics of a liquid film sheared by a
co-flowing turbulent gas // Intern. J. Multiphase Flow. 2013. V. 56. P. 93–104.

12. Dietze G. F., Ruyer-Quil Chr. Wavy liquid films in interaction with a confined laminar gas
flow // J. Fluid Mech. 2013. V. 722. P. 348–393.

13. Frank A. M. Numerical simulation of gas driven waves in a liquid film // Phys. Fluids. 2008.
V. 20. 122102.

14. Sisoev G. M., Matar O. K., Lawrence C. J. Wave regimes in two-layer microchannel flow //
Chem. Engng Sci. 2009. V. 64. P. 3094–3102.

15. Цвелодуб О. Ю., Архипов Д. Г. Моделирование нелинейных волн на поверхности тонкой
пленки жидкости, движущейся под действием турбулентного потока газа // ПМТФ. 2017.
Т. 58, № 4. С. 56–67.

16. Trifonov Y. Y. Counter-current gas — liquid wavy film flow between the vertical plates analyzed
using the Navier — Stokes equations // AIChE J. 2010. V. 56. P. 1975–1987.

17. Tsvelodub O. Yu., Bocharov A. A. Modeling nonlinear wave regimes in afalling liquid film
entrained by a gas flow // Chaos, Solitons Fractals. 2017. V. 104. P. 580–587.



42 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2024. Т. 65, N-◦ 3

18. Tsvelodub O. Yu., Bocharov A. A. Studying the topological structure of steady-state
travelling solutions for the model of film flow of a viscous fluid entrained by a gas flow // Europ.
J. Mech. B. Fluids. 2020. V. 81. P. 15–22.

19. Цвелодуб О. Ю., Архипов Д. Г., Вожаков И. С. Исследование волн на поверхности
тонкой пленки жидкости, увлекаемой турбулентным газовым потоком: моделирование вне
рамок “квазиламинарного” приближения // Теплофизика и аэромеханика. 2021. Т. 28, № 2.
С. 239–253.

20. Tsvelodub O. Yu., Vozhakov I. S. Waves on the surface of a thin liquid film entrained by a
turbulent gas flow in a narrow channel // Europ. J. Mech. B. Fluids. 2022. V. 96. P. 78–89.

21. Tsvelodub O. Yu. Long-wave models for a countercurrent flow of liquid film and turbulent gas
flow // Intern. Phenomena Heat Transfer. 2023. V. 11, iss. 1. P. 39–53.

22. Isaenkov S. V., Vozhakov I. S., Cherdantsev M. V., et al. Effect of liquid viscosity and
flow orientation on initial waves in annular gas — liquid flow // Appl. Sci. 2020. V. 10, iss. 12.
4366.

23. Geshev P. I. A linear model of close-to-wall turbulent transfer // Russ. J. Engng Thermophys.
1993. V. 3, N 1. P. 49–89.

24. Трифонов Ю. Я., Цвелодуб О. Ю. Нелинейные волны на поверхности пленки жидкости,
стекающей по вертикальной стенке // ПМТФ. 1985. № 5. С. 15–19.

25. Трифонов Ю. Я., Цвелодуб О. Ю. О ветвлении стационарных бегущих волновых режи-
мов вязкой пленки жидкости // ПМТФ. 1988. № 4. С. 55–60.

26. Черданцев А. В., Маркович Д. М. Эволюция представлений о волновой структуре плен-
ки жидкости в дисперсно-кольцевом газожидкостном течении // ПМТФ. 2020. Т. 61, № 3.
С. 19–33.

27. Трифонов Ю. Я. Волновое течение пленки жидкости при наличии спутного турбулентного
потока газа // ПМТФ. 2013. Т. 54, № 5. С. 88–100.

28. Trifonov Yu. Ya. Flooding in two-phase counter-current flow: numerical investigation of the
gas — liquid wavy interface using the Navier — Stokes equation // Intern. J. Multiphase Flow.
2010. V. 36. P. 549–557.

Поступила в редакцию 31/VII 2023 г.,
после доработки — 3/XI 2023 г.
Принята к публикации 27/XI 2023 г.


