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Описывается получение композиционных материалов с алюминиевой матрицей, содержащих
частицы металлического стекла состава Fe66Cr10Nb5B19, путем последовательного применения
механической активации исходных порошков в планетарной мельнице и электроискрового спека-
ния. В ходе спекания при 540 ◦C происходит полное или частичное превращение частиц металли-
ческого стекла в интерметаллидное соединение Fe4Al13. Композиционные материалы, спеченные
из смеси Al + 20 (об.) % Fe66Cr10Nb5B19, характеризуются анизотропией механических свойств:
предел текучести при сжатии, микротвердость и деформация при разрушении в направлении
прессования при спекании составляют 550 МПа, 200 HV и 14.2 % соответственно, в то время
как в направлении, перпендикулярном направлению прессования, данные характеристики со-
ставляют 740 МПа, 250 HV и 2.2 %.
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ВВЕДЕНИЕ

Композиционные материалы с алюминие-
вой матрицей (КМАМ) характеризуются высо-
кими значениями удельной прочности, жестко-
сти, износостойкости, обладают низкой плот-
ностью и в связи с этим находят применение

в автомобильной, авиационной и аэрокосмиче-
ской промышленности [1–4]. Наиболее распро-
страненным подходом к изготовлению КМАМ

является введение в алюминиевую матрицу ке-
рамических упрочняющих объектов, например
Al2O3 [5], SiC [6], Si3N4, AlN, BN [7]. Одна-
ко в последнее время все большую популяр-
ность в качестве упрочняющей фазы в КМАМ

приобретают такие материалы, как квазикри-
сталлы [8], высокоэнтропийные сплавы [9] и
металлические стекла [10]. Использование по-
следних в целях упрочнения обусловлено высо-
ким уровнем механических характеристик ме-
таллических стекол, особенно высокими значе-
ниями прочности и твердости [11]. Кроме того,
аморфное состояние металлических стекол, на-
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ходящихся в составе композиционных порошко-
вых смесей, в процессе спекания способствует
уплотнению композита, если температура спе-
кания несколько выше температуры стеклова-
ния металлического стекла [12].

Известно, что образование алюминидов

железа сопровождается выделением существен-
ного количества тепла, на чем и основано по-
лучение некоторых интерметаллидных соеди-
нений в системе Al Fe методом самораспро-
страняющегося высокотемпературного синтеза

[13–15]. Тепло от такого рода экзотермических
взаимодействий может быть использовано при

реакционном спекании порошковых смесей на

основе алюминия и железа. За счет него при
достаточно равномерном распределении желе-
зосодержащего компонента температура, необ-
ходимая для достижения высокой относитель-
ной плотности спеченного композита, может
быть снижена. При этом сформированные ин-
терметаллиды выступают в роли дополнитель-
ной упрочняющей фазы, если исходный желе-
зосодержащий компонент претерпел неполное

превращение. Добиться высокой степени рав-
номерности распределения упрочняющей фазы
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в порошковых смесях можно при помощи их ме-
ханической активации в высокоэнергетических

мельницах [16]. Более того, механоактивация
приводит к снижению размера упрочняющих

частиц, что повышает эффективность упроч-
нения.

Существует ряд работ, в которых описано
получение композиционных материалов на ос-
нове алюминия, содержащих частицы металли-
ческого стекла и полученных методом электро-
искрового спекания [17, 18] или горячего прес-
сования [19, 20]. Условия спекания в данных
работах подобраны таким образом, чтобы вы-
звать частичное взаимодействие компонентов

композиционной системы, в результате которо-
го образуются упрочняющие объекты со струк-
турой ядро — оболочка. Ядро в таких объ-
ектах представляет собой исходный материал

упрочняющей фазы с аморфной структурой, в
то время как реакционная оболочка в основном

состоит из интерметаллидных соединений или

их смеси. Показано, что образование реакцион-
ного слоя на межфазных границах приводит к

повышению механических характеристик фор-
мируемых композитов [18, 19].

Целью настоящей работы является полу-
чение высокоплотных композиционных мате-
риалов с алюминиевой матрицей, упрочнен-
ных частицами металлического стекла на ос-
нове железа состава Fe66Cr10Nb5B19. Матери-
алы получены путем предварительной механи-
ческой активации исходных порошков с после-
дующим реакционным электроискровым спе-
канием полученных смесей. При этом внима-
ние авторов работы сконцентрировано на уве-
личении эффективности упрочнения получае-
мых композитов посредством 1) измельчения
частиц исходной упрочняющей фазы и дости-
жения их равномерного распределения, 2) об-
разования интерметаллидных соединений, слу-
жащих дополнительной упрочняющей фазой и

обеспечивающих более плотный контакт мат-
рицы и металлического стекла при формиро-
вании структуры ядро — оболочка.

1. МАТЕРИАЛЫ И МЕТОДЫ

В качестве исходных материалов ис-
пользовались сферические порошки алюми-
ния (марка ПАД-4, размер частиц 10 ÷
45 мкм, чистота 98 %) и металлического стекла
Fe66Cr10Nb5B19 (размер частиц 20 ÷ 40 мкм),
полученные методом газовой атомизации. Для

получения сплава Fe66Cr10Nb5B19 подготавли-
вался расплав коммерческих порошков (сплава
Fe—B с содержанием B 16.54 (мас.) %, спла-
ва Fe—Nb с содержанием Nb 66.4 (мас.) %,
порошка Cr чистотой >99.3 (мас.) % и по-
рошка Fe чистотой >99.5 (мас.) %), кото-
рый впоследствии распылялся в среду арго-
на на аппарате HERMIGA 75/5VI («Phoenix
Scientific Industries Ltd», Хэйлшем, Восточный
Суссекс, Англия). Температуры стеклования

и кристаллизации порошка аморфного сплава

Fe66Cr10Nb5B19 составляют 521 и 573 ◦C со-
ответственно [21]. Путем смешивания в ступке
подготавливались порошковые смеси двух со-
ставов — Al + 20 (об.) % Fe66Cr10Nb5B19 и

Al + 50 (об.) % Fe66Cr10Nb5B19. Затем дан-
ные смеси подвергались высокоэнергетической

обработке в планетарной мельнице с водяным

охлаждением АГО-2 в среде аргона при уско-
рении 400 м/с2. Объем стальных стаканов,
в которых проводилась обработка, составля-
ет 160 см3. Диаметр используемых стальных
шаров 8 мм, масса шаров при загрузке бара-
бана 200 г, масса обрабатываемой порошковой
смеси не превышала 10 г. Обработка выпол-
нялась в течение 1 и 5 мин без перерывов и
без добавки дезагрегирующего агента, а так-
же в течение 10 мин с короткими перерыва-
ми через каждые 2 мин в присутствии 0.1 г
этанола. Этанол в данных экспериментах вы-
полнял роль поверхностно-активного вещества
для предотвращения налипания алюминия на

стенки и мелющие тела.
После обработки выбранные смеси направ-

лялись на электроискровое спекание в аппара-
те Labox 1575 (SINTER LAND Inc., Нагаока,
Япония) при температуре 540 ◦C и давлении

40 МПа в динамическом вакууме. Скорость на-
грева составляла около 50 ◦C/мин, охлаждение
осуществлялось естественным образом — от-
ключением нагрева при достижении темпера-
туры спекания, изотермическая выдержка от-
сутствовала. Спекание проходило в графито-
вой оснастке, поэтому с целью ее защиты спе-
каемый материал отделялся графитовой бу-
магой, покрывавшей внутренние поверхности
пресс-формы и торцы пуансонов.

Фазовый анализ спеченных композитов и

обработанных порошковых смесей проводил-
ся на дифрактометре D8 ADVANCE («Bruker
AXS», Карлсруэ, Германия) с использовани-
ем излучения медной трубки. Микрострук-
турные исследования выполнялись на растро-



В. И. Квашнин, А. Н. Новоселов, М. А. Леган и др. 143

вом электронном микроскопе TM-1000 Tabletop
microscope («Hitachi», Токио, Япония) в режи-
ме обратнорассеянных электронов. Микроскоп
LEO 420 («Zeiss», Йена, Германия) использо-
вался для съемки исходных порошковых мате-
риалов в режиме вторичных электронов. Уро-
вень пористости спеченных материалов опре-
делялся в программном обеспечении ImageJ
при обработке не менее 10 изображений мик-
роструктуры для каждого образца.

Микротвердость композитов измерялась

на приборе DuraScan 50 (EMCO-TEST, Кухль,
Австрия) при нагрузке 1 кг. Индентированию
подвергались как продольное сечение образ-
ца, т. е. плоскость, параллельная направлению
прессования при спекании, так и его попереч-
ное сечение. Среднее значение микротвердости
определялось по девяти измерениям.

Механические испытания композитов по

схеме сжатия проводили на испытательной

установке Zwick/Roell Z100 (Ульм, Германия)
при скорости деформации 0.1 мм/мин. Образ-
цы размером 3 × 3 × 6 мм вырезали из спе-
ченных материалов и подвергали сжатию как

в перпендикулярном, так и в параллельном

направлении относительно направления прес-
сования при спекании. Полученные образцы
устанавливали между наковальнями испыта-
тельной машины длинной стороной вдоль оси

нагружения и сжимали до разрушения. Ввиду
того, что пористость получившегося материа-
ла менее 1 %, т. е. объем можно считать услов-
но неизменным, площадь поперечного сечения
образца на каждом шаге пересчитывали путем

деления объема на остаточную длину образ-
ца с корректировкой среднего значения напря-
жений по длине образца. Реальное распределе-
ние напряжений в образце не является постоян-
ным, так как срединное сечение призмы увели-
чивалось сильнее торцевых вследствие трения

между торцами образца и наковальнями. Сто-
ит также отметить и подход к определению де-
формации. Так как длина образца составляет
всего 6 мм, установить на него тензометр на
данный момент невозможно. Нами заранее бы-
ли получены графики сжатия наковален уста-
новки без образца, и эти значения деформации
вычитались из общей деформации сжатия с об-
разцом. Данный метод не учитывает контакт-
ные деформации наковален, поэтому получен-
ные предельные значения деформации несколь-
ко завышены.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

2.1. Высокоэнергетическая обработка
порошковых смесей

Вид исходных порошков алюминия и ме-
таллического стекла представлен на рис. 1. Ча-
стицы обоих порошков имеют преимуществен-
но сферическую форму. Обработка порошко-
вых смесей заданных составов в планетарной

мельнице в течение 1 и 5 мин приводит к об-
разованию относительно крупных композици-
онных частиц с неравномерным распределени-
ем упрочняющей фазы (рис. 2). Данные части-
цы возникают в результате пластической де-
формации и процессов холодной сварки алю-
миния. Ввиду интенсивного налипания порош-

Рис. 1. Изображения исходных порошков, по-
лученные в режиме вторичных электронов:

а — алюминий, б — аморфный сплав

Fe66Cr10Nb5B19
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Рис. 2. Структура порошковых смесей после
обработки в планетарной мельнице в течение

различного времени:

а — Al + 20 (об.) % Fe66Cr10Nb5B19, 1 мин; б —
Al + 50 (об.) % Fe66Cr10Nb5B19, 1 мин; в — Al +
50 (об.) % Fe66Cr10Nb5B19, 5 мин

ка алюминия на стенки и поверхности мелю-
щих тел во время обработки, образец, име-
ющий изначальный состав Al + 20 (об.) %
Fe66Cr10Nb5B19, после 5 мин помола характе-
ризовался большими потерями алюминия. Дан-
ные потери, в свою очередь, оказали заметное
влияние на соотношение фаз в порошковой сме-
си. По этой причине результаты исследования
указанного образца не приводятся в настоящей

работе.
Одной минуты обработки оказалось слиш-

ком мало, чтобы добиться уменьшения размера
частиц металлического стекла. После 5 мин об-
работки наблюдалось измельчение некоторой

части частиц упрочняющей фазы, однако ее
распределение все еще оставалось неравномер-
ным. Было принято решение увеличить время
обработки до 10 мин и добавить этанол для

предотвращения налипания пластичного алю-

миния на оснастку.
На рис. 3 представлены изображения по-

рошковых смесей, обработанных в течение

10 мин в присутствии небольших количеств

этанола. Полученные порошки характеризуют-
ся высокой степенью равномерности распреде-
ления частиц аморфного сплава. Кроме этого,
в структуре порошков можно заметить присут-
ствие мелких частиц аморфного сплава, воз-
никших в результате разрушения исходных ча-
стиц. Некоторые изначально сферические ча-
стицы сплава Fe66Cr10Nb5B19 приобрели фор-
му сплющенных дисков, что указывает на спо-
собность металлических стекол пластически

деформироваться в данных условиях. Образцы
металлического стекла на основе железа при

достижении значения упругой деформации 2 %
разрушаются, практически не испытывая пла-
стической деформации [21, 22]. При испытани-
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Рис. 3. Структура порошковых смесей после
обработки в планетарной мельнице в течение

10 мин с этанолом:

а — Al + 20 (об.) % Fe66Cr10Nb5B19, б — Al +
50 (об.) % Fe66Cr10Nb5B19

ях на сжатие металлические стекла демонстри-
руют некоторую пластичность, связанную с об-
разованием и движением полос сдвига [23, 24].
Вероятно, ударные нагрузки и сдвиговые на-
пряжения, возникающие при высокоэнергети-
ческой обработке в планетарной мельнице, бла-
гоприятствуют процессам, связанным с пла-
стической деформацией используемых в дан-
ной работе металлических стекол.

Существенные изменения размера и фор-
мы частиц аморфного сплава в результате вы-
сокоэнергетического воздействия могут способ-
ствовать его кристаллизации. Однако по ре-
зультатам рентгенофазового анализа порош-

Рис. 4. Рентгенограммы порошковых смесей,
обработанных в течение 10 мин с добавкой

этанола (Al PDF card 00-004-0787, Fe PDF card
00-006-0696)

ковых смесей после их обработки в тече-
ние 10 мин не обнаружено заметных сле-
дов кристаллизации металлического стекла

или химического взаимодействия между фаза-
ми (рис. 4). В диапазоне углов 2θ = 42 ÷
48◦ можно заметить гало, характерное для
рентгенограмм аморфных материалов. Одной
из фаз, формирующихся при кристаллиза-
ции сплава Fe66Cr10Nb5B19, является объемно-
центрированная кубическая (ОЦК) фаза желе-
за (чистое железо или твердый раствор на его
основе). Так как однозначное определение этой
фазы затруднено в связи с перекрытием ее ре-
флексов пиками алюминия, на рис. 4 возмож-
ное присутствие ОЦК твердого раствора же-
леза обозначено квадратом.

2.2. Спеченные композиционные материалы

2.2.1. Структурные исследования

Для электроискрового спекания были вы-
браны порошковые смеси, полученные в ре-
зультате высокоэнергетической обработки ис-
ходных порошков в течение 10 мин. Рентге-
нограммы спеченных материалов отображены

на рис. 5. Согласно данным рентгенофазово-
го анализа композит с меньшим содержанием

упрочняющей фазы характеризуется наличи-
ем трех фаз — исходные алюминий и сплав

Fe66Cr10Nb5B19, а также интерметаллидное

соединение состава Fe4Al13, являющееся про-
дуктом реакции исходных фаз, протекающей
при электроискровом спекании.
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Рис. 5. Рентгенограммы композитов, спечен-
ных из порошковых смесей, обработанных

в высокоэнергетической мельнице в течение

10 мин (Al PDF card 00-004-0787, Fe PDF card
00-006-0696, Fe4Al13 PDF card 00-045-1203)

Рентгенограмма композита с большим со-
держанием упрочняющей фазы включает в се-
бя очень слабые рефлексы алюминия, что сви-
детельствует о практически полном его пре-
вращении в интерметаллид, рефлексы кото-
рого также имеют крайне низкую интенсив-
ность. Низкие значения интенсивности рефлек-
сов алюминия и интерметаллида на данной

рентгенограмме могут быть объяснены боль-
шими различиями в поглощении рентгеновско-
го излучения фазами анализируемого материа-
ла [12]. Обе рентгенограммы спеченных мате-
риалов содержат широкое гало в диапазоне уг-
лов 43 ÷ 47◦, свидетельствующее об аморфном
состоянии сплава Fe66Cr10Nb5B19.

Микроструктура спеченных композитов

представлена на рис. 6. Для получения дан-
ных снимков материалы разрезались в направ-
лении, параллельном направлению прессова-
ния. Стрелка в верхнем левом углу указы-
вает направление прессования при электроис-
кровом спекании. Темно-серые области данных
снимков представляют алюминиевую матри-
цу, белые частицы — сплав Fe66Cr10Nb5B19,
светло-серые частицы — интерметаллидное

соединение, черные области являются порами.
Необходимо отметить, что пористость мате-
риала, спеченного из смеси Al + 20 (об.) %
Fe66Cr10Nb5B19, составляет менее 1 %, в то
время как материал, спеченный из смеси Al +
50 (об.) % Fe66Cr10Nb5B19, обладает большей
пористостью, около 9 %. Известно, что в си-
стеме Al Fe наблюдается эффект Киркендал-

Рис. 6. Микроструктура спеченных компози-
ционных смесей, обработанных в высокоэнер-
гетической мельнице в течение 10 мин (сече-
ние, параллельное направлению прессования):

а — Al + 20 (об.) % Fe66Cr10Nb5B19, б — Al +
50 (об.) % Fe66Cr10Nb5B19

ла, вызванный большей диффузионной подвиж-
ностью атомов алюминия в продуктах реак-
ции в сравнении с подвижностью атомов же-
леза. В результате этих различий на грани-
це раздела фаз Al/интерметаллид со сторо-
ны алюминия формируется пористость [25, 26].
Проявление эффекта Киркендалла в системе

Al Fe66Cr10Nb5B19 продемонстрировано в ра-
боте [27]. Следовательно, при большой доле

железосодержащего компонента в композите

практически весь алюминий расходуется в ходе

химической реакции, а на его месте формиру-
ются поры.

Микроструктура спеченных композицион-
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Рис. 7. Упрочняющая частица сплава

Fe66Cr10Nb5B19 в структуре образца Al +
20 (об.) % Fe66Cr10Nb5B19 после электроис-
крового спекания

ных материалов характеризуется наличием

упрочняющих частиц двух типов: относитель-
но крупные частицы сплава Fe66Cr10Nb5B19
вытянутой формы и мелкие включения пол-
ностью или частично прореагировавшего ме-
таллического стекла, равномерно распределен-
ные в объеме алюминиевой матрицы. Круп-
ные частицы представляют собой не что иное,
как сплющенные диски (см. рис. 3), имеющие
преимущественную ориентировку в структу-
ре. Как видно из снимков микроструктуры на
рис. 6, дискообразные частицы в процессе спе-
кания в условиях осевого прессования склон-
ны ориентироваться таким образом, чтобы на-
правление прессования было перпендикуляр-
но плоскостям дисков. При более детальном

рассмотрении микроструктуры (рис. 7) можно
увидеть, что они окружены интерметаллидной
прослойкой. Большая часть мелких частиц яв-

Механические свойства спеченных композитов

Материал p, % σ0.2, МПа ε, % H, HV

Сжатие перпендикулярно направлению прессования

Al + 20 (об.) % Fe66Cr10Nb5B19 <1 740 ± 60 2.2 ± 0.2 250 ± 20

Al + 50 (об.) % Fe66Cr10Nb5B19 9 250 ± 100 0.8 ± 0.2 240 ± 50

Сжатие параллельно направлению прессования

Al + 20 (об.) % Fe66Cr10Nb5B19 <1 550 ± 5 14.2 ± 1.4 200 ± 20

Прим е ч а н и е. p — пористость материала, σ0.2 — предел текучести, ε — деформация, H — микро-
твердость композита.

ляется интерметаллидным соединением и име-
ет неправильную форму.

2.2.2. Определение механических свойств

Результаты механических испытаний спе-
ченных материалов отражены в таблице. На
рис. 8 представлены кривые сжатия в коор-
динатах истинное напряжение — истинная де-
формация, под которыми понимаются соответ-
ственно напряжения, скорректированные с уче-
том изменения площади поперечного сечения

образца при деформировании, и логарифми-
ческие деформации, учитывающие изменение
расчетной длины образца при деформирова-
нии. Различие механических свойств спечен-
ных материалов с разным содержанием упроч-
няющей фазы значительно и ассоциируется в

первую очередь с различием их пористости.
Высокая пористость материала, спеченного из
смеси Al + 50 (об.) % Fe66Cr10Nb5B19, является
причиной не только более низких средних зна-
чений измеренных характеристик, но и более
широких доверительных интервалов. В связи с
этим дальнейшее обсуждение свойств данного

материала в настоящей работе не проводится.
Значения предела текучести и микро-

твердости композита, спеченного из смеси

Al + 20 (об.) % Fe66Cr10Nb5B19, существенно
превосходят соответствующие характери-
стики неупрочненного алюминия, спеченного
электроискровым методом в идентичных

условиях, без предварительной обработки

в высокоэнергетической мельнице (σ0.2 =
100 МПа, H = 49 ± 1 HV) [28]. Предполагает-
ся, что пластическая деформация матрицы в

процессе механической активации порошковых

смесей, формирование дисперсных интерме-
таллических включений и перенос нагрузки с
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Рис. 8. Кривые сжатия спеченных композици-
онных материалов

матрицы на крупные частицы сплава

Fe66Cr10Nb5B19 являются основными причи-
нами повышения прочности сформированных

композитов.
В работе [29] путем комбинирования ме-

тодов предварительной механической актива-
ции порошковой смеси, состоящей из сплава
Al-2024 и 15 (мас.) % металлического стек-
ла состава Fe73Nb5Ge2P10C6B4, последующего
электроискрового спекания при 550 ◦C и дав-
лении 400 МПа в течение 30 мин и горячей экс-
трузии смогли получить высокоплотный ком-
позиционный материал с пределом текучести

403 МПа и деформацией при разрушении около
12 %. Соответствующие значения настоящего
композита в продольном направлении превы-
шают значения, полученные авторами работы
[29]. Данные различия могут быть связаны с

присутствием интерметаллидной фазы в слу-
чае материала Al + 20 (об.) % Fe66Cr10Nb5B19.
В структуре спеченного материала Al-2024 +
15 (мас.) % Fe73Nb5Ge2P10C6B4 не было об-
наружено интерметаллидов, а межфазные гра-
ницы имели четкую границу, свободную от

продуктов взаимодействия. В материале Al +
20 (об.) % Fe66Cr10Nb5B19 присутствует до-
статочно большое количество интерметалли-
да Fe4Al13, имеющего более высокую твер-
дость и модуль упругости в сравнении с алю-
минием [30]. Более того, интерметаллидные
оболочки вокруг упрочняющих частиц сплава

Fe66Cr10Nb5B19 способствуют формированию

прочных межфазных границ, что, в свою оче-
редь, также способствует повышению механи-
ческой прочности [18, 19].

Спеченный материал имеет ярко выра-

женную анизотропию механических свойств,
что связано с преимущественным ориентиро-
ванием крупных упрочняющих частиц (см.
рис. 6). В случае, когда основание упрочняю-
щих дисков расположено параллельно направ-
лению приложения нагрузки, композит обла-
дает высокими значениями прочности и низ-
кой пластичностью. Если же основания дисков
ориентированы перпендикулярно направлению

сжатия, материал имеет более низкую проч-
ность, однако гораздо более высокую пластич-
ность. В работе [31] показано, что ориенти-
ровка коротких волокон металлического стек-
ла в объеме композиционного материала игра-
ет важную роль в формировании его механи-
ческой прочности.Межфазные границы матри-
ца— волокно, ориентированные в направлении
распространения максимальных напряжений в

материале, способствуют повышению прочно-
сти композита. Чем больше площадь данных

границ, тем выше прирост прочности. В на-
стоящей работе упрочняющие частицы имеют

форму тонких дисков, площадь основания ко-
торых превосходит боковую площадь. В ре-
альной структуре рассматриваемого материа-
ла упрочняющие диски расположены не стро-
го перпендикулярно или параллельно направ-
лению сжатия, а имеют некоторое отклоне-
ние от этих расположений. Следовательно, при
преимущественном расположении дисков вдоль

направления сжатия бо́льшая их часть ори-
ентирована таким образом, что нормаль, вы-
ходящая из основания диска, перпендикуляр-
на или почти перпендикулярна к направлению

распространения максимальных напряжений.
При расположении дисков поперек приложения

нагрузки гораздо меньшее количество частиц

имеет благоприятную для упрочнения ориенти-
ровку, чем предположительно и вызвана анизо-
тропия данного материала.

ВЫВОДЫ

В данной работе для получения компо-
зиционных материалов на основе алюминия

с добавкой металлического стекла состава

Fe66Cr10Nb5B19 был применен подход, соче-
тающий предварительную механическую ак-
тивацию исходных порошков и последующее

электроискровое спекание полученных обрабо-
танных порошковых смесей. Механическая ак-
тивация исходных порошковых смесей соста-
ва Al + 20/50 (об.) % Fe66Cr10Nb5B19 в те-
чение 10 мин с добавкой небольшого количе-
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ства этанола привела к формированию ком-
позиционных порошковых смесей с равномер-
ным распределением упрочняющей фазы. В ре-
зультате электроискрового спекания компози-
ционных смесей при 540 ◦C без изотермиче-
ской выдержки между исходными фазами на-
блюдается реакция, сопровождающаяся обра-
зованием интерметаллида Fe4Al13. В структу-
ре спеченных материалов содержатся мелкие

интерметаллидные частицы и крупные части-
цы сплава Fe66Cr10Nb5B19 с преимуществен-
ной ориентировкой поперек направления прес-
сования. Наличие преимущественного располо-
жения упрочняющих частиц является причи-
ной анизотропии механических свойств полу-
ченных композитов: при поперечной ориенти-
ровке частиц сплава относительно направле-
ния приложения нагрузки предел текучести со-
ставляет σ0.2 = 550 МПа, деформация при раз-
рушении ε = 14.2 %, в то время как при про-
дольной ориентировке частиц данные характе-
ристики составляют 740 МПа и 2.2 % соответ-
ственно.
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