УДК 536.6

Расчет снижения роли радиационно-кондуктивного переноса тепла в процессе экранировки излучения толстостенными концентрическими сферами с температурно-зависимыми излучательными способностями

Ф. Джаббари, С. Саедодин

Университет Семнана, Семнан, Иран

E-mail: fj jabbari@semnan.ac.ir

Изучается сложный теплообмен между двумя толстостенными концентрическим сферами. Аналитический подход к его моделированию вызван растущим интересом к проблеме создания экранов для защиты от радиационного теплопереноса. Проведены вычисления для общей скорости теплообмена, температуры и коэффициента излучения поверхности для случая размещения одного или двух толстостенных тепловых экранов между двумя толстостенными сферами. Вычисления показали, что размещение одного экрана с низким коэффициентом излучения более эффективно для снижения теплообмена, чем два экрана с более высоким коэффициентом. Также предложены оптимальные комбинации экранов, выполненных из различных материалов.

Ключевые слова: радиационный теплообмен, проводимость, теплозащитный экран, толстостенные сферы, коэффициент излучения, аналитическое исследование.

Введение

Тепловая защита имеет множество практических применений — от металлурги до астрономии, поэтому управление радиационным теплопереносом остается важной задачей. Одним из способов снижения радиационного теплообмена является использование поверхностей с высоким коэффициентом отражения. Кроме того, теплообмен можно уменьшить путем размещения теплозащитных экранов с низким коэффициентом излучения [1].

Экраны выполняются в виде тонких параллельных высокоотражающих пластин и размещаются между поверхностями. Высокоэффективная теплоизоляция может состоять из многих слоев, разделенных слоями вакуума. Это обеспечивает последовательность радиационных и теплопроводных барьеров. В действительности экраны являются тепловым сопротивлением, размещенным на пути теплообмена для уменьшения скорости теплопереноса. Если эти экраны имеют значительную толщину, подобно рассматриваемым в настоящей статье, то в процессе теплообмена имеет место суммарное сопротивление теплопередачи. Особенно важным представляется использование приема многослойной теплоизоляции для низкотемпературных приложений, например, для изоляции криогенных резервуаров [2].

© Джаббари Ф., Саедодин С., 2016

Джаббари Ф., Саедодин С.

Излучательная способность для каждой стороны экранов может быть различной из-за разнице в температуре или свойствах поверхности [3]. В работе [4] изучались случаи радиационного теплопереноса между двумя концентрическими цилиндрами, а в работе [5] — между двумя концентрическими полуцилиндрами. Также исследовался механизм уменьшения теплопереноса при наличии цилиндрических теплоэкранов относительно коэффициента излучения, зависимого от температуры. В ряде работ изучалось ослабление теплопереноса между двумя концентричными полусферами [6, 7] и двумя концентричными сферами [8] при наличии сферических теплоэкранов, имеющих зависимый от температуры коэффициент излучения. Авторы этих работ проанализировали явления теплопереноса с использованием метода чистого излучения. В работе [9] исследовались эффекты излучения для конденсатора и компрессора холодильника, при этом стены конденсатора, компрессора и самого холодильника были покрыты алюминиевой фольгой, выбранной в качестве радиационного экрана. Авторы пришли к выводу, что листы алюминия уменьшают внутреннюю температуру на 2 К. В работах [10, 11] изучался радиационный и конвективный теплообмен для случая пакетированных теплоэкранов, применяемых в вакуумно-изоляционных панелях. В последнее время были опубликованы статьи в области совместного теплопроводно-конвективно-радиационного теплообмена с применением теплозащитных экранов [12, 13].

В настоящей работе приводится аналитический расчет радиационного теплообмена между двумя толстыми сферами, а также представлены вычисления для уменьшения теплообмена при наличии одного или двух теплозащитных экранов. В соответствии с этим проводилась оптимизация размещения двух теплозащитных экранов, выполненных из различных материалов. Для иллюстрации влияния температурозависимого коэффициента излучения на эффективность ослабления теплообмена рассматриваются два примера — с одним и двумя экранами.

Математическое моделирование

Рассмотрим две концентрические толстые сферы (рис. 1*a*), внеся следующие предположения для упрощения анализа задачи:

- все поверхности рассеивающие и серые;
- газ откачан из пространства между сферами;
- тепловым сопротивлением излучающих экранов и сфер пренебречь нельзя;

Рис. 1. Поперечное сечение системы из двух концентрических сфер. *а*—без теплозащитного экрана, *b*—с одним экраном, *с*—с двумя экранами.

 – для всех вариантов вычислений температуры холодной и горячей сферы поддерживаются на постоянном уровне;

- концентрические сферы и все экраны находятся в радиационном равновесии;

 внутренняя и внешняя поверхности экрана имеют различные излучательные способности из-за разных температур.

В концепции радиационного теплообмена тепловая энергия, излучаемая в единицу времени с единицы черной поверхности, согласно закону Стефана–Больцмана описывается уравнением

$$E_h = \sigma T^4. \tag{1}$$

Таким образом, скорость радиационного теплообмена между двумя пластинами может быть записана в виде

$$(Q_{\rm rad})_{\rm without-shield} = (E_{bs1} - E_{bs2})/R_{s1-s2}, \qquad (2)$$

$$E_{bs1} - E_{bs2} = \sigma (T_{s1}^{4} - T_{s2}^{4}).$$
⁽³⁾

В общем случае излучательная способность поверхности (ε) есть функция длины волны излучения и температуры поверхности, то есть $\varepsilon = \varepsilon(\lambda, T)$. Особый вид поверхности, известный как «серая рассеивающая поверхность», определяется как поверхность, для которой коэффициент излучения не зависит от длины волны и направления излучения, $\varepsilon = \varepsilon(T)$ [14]. В настоящей работе сделано предположение, что все излучающие поверхности «серые», то есть коэффициент излучения зависит только от температуры.

Тепловое сопротивление между поверхностями A_{s1} , A_{s2} , где имеет место радиационный теплоперенос, описывается уравнением

$$R_{s1-s2} = \frac{1 - \varepsilon_{s1}}{\varepsilon_{s1}A_{s1}} + \frac{1}{A_{s1}F_{s1-s2}} + \frac{1 - \varepsilon_{s2}}{\varepsilon_{s2}A_{s2}}.$$
 (4)

Тогда скорость теплообмена между двумя поверхностями запишется в виде

$$(Q_{\rm rad})_{\rm without-shield} = \left(E_{bs1} - E_{bs2}\right) \left/ \left(\frac{1 - \varepsilon_{s1}}{\varepsilon_{s1} A_{s1}} + \frac{1}{A_{s1} F_{s1-s2}} + \frac{1 - \varepsilon_{s2}}{\varepsilon_{s2} A_{s2}}\right).$$
(5)

Следовательно, можно вычислить радиационный теплоперенос между двумя пластинами. Для концентрических сфер имеем $F_{s1-s2} = 1$, а фактор формы является независимым от температуры или коэффициента излучения поверхности. Но кроме радиационного теплообмена имеет место теплопроводность по толщине поверхностей. В сферических координатах общее дифференциальное уравнение для теплопроводности принимает следующий вид (6):

$$\frac{1}{\alpha} \cdot \frac{\partial T}{\partial t} = \frac{1}{r^2} \cdot \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \cdot \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \cdot \frac{\partial^2 T}{\partial \phi^2} + \frac{u'''}{k}, \tag{6}$$

где u''' — скорость генерации тепла, например, за счет конверсии электрической энергии в тепловую по формуле RI^2 , тепла от топливных элементов ядерных реакторов или тепла от экзотермической химической реакции. Согласно условиям задачи, тепловой поток всегда является постоянным и теплообмен происходит только в радиальном направлении (*r*), в объеме нет источников тепла, поэтому уравнение (6) принимает вид:

$$\frac{1}{r^2} \cdot \frac{d}{dr} \left(r^2 \frac{dT}{dr} \right) = 0.$$
⁽⁷⁾

Таким образом, можно найти распределение температуры для каждой сферы:

$$T_1(r) = -C_1/r + C_2, (8)$$

$$T_2(r) = -C_3/r + C_4, (9)$$

где $T_1(r)$ — распределение температуры для внутренней сферы, $T_2(r)$ — распределение температуры для внешней сферы. По закону теплопроводности теплообмен между A_{s1} , A_1 и A_{s2} , A_2 запишется в виде

$$Q_{\text{cond},1} = -K_1 A(r) \left(\frac{dT_1(r)}{dr} \right) = -K_1 \cdot 4\pi \cdot C_1, \tag{10}$$

$$Q_{\text{cond},2} = -K_2 A(r) (dT_2(r)/dr) = -K_2 \cdot 4\pi \cdot C_3.$$
(11)

Для вычисления всех констант C_i следует использовать граничные условия, учитывая приведенные ранее предположения о том, что внутренняя и внешняя поверхности имеют высокую и низкую температуры, и теплообмен на границе каждой поверхности считается одинаковым. Эти физические факторы отражены в следующих уравнениях:

$$r = r_1 : -C_1 / r + C_2 = T_1, \tag{12}$$

$$r = r_{s1}$$
: $Q_{\text{cond},1} = (Q_{\text{rad}})_{\text{without-shield}}$, (13)

$$r = r_{s2}$$
: $Q_{\text{cond},2} = (Q_{\text{rad}})_{\text{without-shield}}$, (14)

$$r = r_2: -C_3 / r + C_4 = T_2.$$
(15)

При этом следует принять во внимание, что коэффициент излучения для поверхности и коэффициент теплопроводности являются функциями температуры. Уравнения (12)–(15) были получены из заданных граничных условий. Коэффициенты C_i , температура, излучательные способности и теплопроводности на пластине A_{s1} и A_{s2} являются неизвестными для этих уравнений. Поскольку последние два параметра зависят от температуры, то неизвестные параметры можно получить решением системы уравнений (12–15) с температурозависимой теплопроводностью и коэффициентом излучения, используя MATLAB (рис. 2, 3).

Аналогично процедуре решения уравнений для теплообмена без экранов, можно вычислить теплообмен для системы с тепловыми экранами. Следовательно, можно вычислить скорость теплообмена, процент уменьшения общего теплообмена, температуры и излучения для каждой поверхности в случае, когда между сферами установлены

Рис. 2. Нормальный коэффициент излучения как функция температуры [15]. *1* — окись алюминия, 2 — карбид кремния, 3 — вольфрам.

Рис. 3. Теплопроводность как функция температуры [16–18]. Обозначения см. на рис. 2.

один или два тепловых экрана. В настоящей статье проведены указанные вычисления для трех выбранных материалов — окиси алюминия, карбида кремния и вольфрама, что отображено на рис. 2.

Пример 1. Рассматриваются две концентрические сферы из окиси алюминия со стенками толщиной 3 мм (рис. 1*a*). Пластина A_1 имеет температуру 573,15 К и радиус 20 см, пластина A_2 имеет температуру 300,15 К и радиус 110,3 см. Если между ними разместить экран толщиной 3 мм и радиусом 45 см (рис. 1*b*), то можно вычислить процент снижения теплообмена, температуры и коэффициентов излучения для экрана и сферы по следующим соотношениям: (Q_{rad})_{without-shield} = 1912,149W; $T_{s1} = 572,495$ K, $\varepsilon_{s1} = 0,6786$; $T_{s2} = 300,1602$ K, $\varepsilon_{s2} = 0,7827$.

Для случая одного экрана из окиси алюминия можно найти численные значения указанных параметров: $(Q_{rad})_{with-one-shield} = 1521,4217W;$ $T_{s1} = 572,629 K,$ $\varepsilon_{s1} = 0,6786;$ $T_{s2} = 300,1581 K,$ $\varepsilon_{s2} = 0,7827;$ $T_{s3} = 390,4784 K,$ $\varepsilon_{s3} = 0,7472;$ $T_{s4} = 390,4158 K,$ $\varepsilon_{s4} = 0,7472.$ При этом процент снижения общего теплообмена составит $(Q_{rad})_{without-shield} - (Q_{rad})_{with-one-shield} \cdot 100 = 20,43 \%.$

 $(Q_{\rm rad})_{\rm without-shield}$

Аналогично, для экрана, изготовленного из карбида кремния, получим величины $(Q_{\rm rad})_{\rm with-one-shield} = 1640,872 \text{W}; T_{s\,1} = 572,5882 \text{ K}, \varepsilon_{s\,1} = 0,6786; T_{s\,2} = 300,1587 \text{ K}, \varepsilon_{s\,2} = 0,7827; T_{s\,3} = 385,1889 \text{ K}, \varepsilon_{s\,3} = 0,8898; T_{s\,4} = 385,1836 \text{ K}, \varepsilon_{s\,4} = 0,8898.$ Процент ослабления теплообмена из-за наличия экрана составит ((1912,1495–1640,872)/1912,1495)·100 = 14,19 %.

Для случая экрана из вольфрама получим: $(Q_{rad})_{with-one-shield} = 161,0444$ W; $T_{s1} = 573,0948$ K, $\varepsilon_{s1} = 0,6784$; $T_{s2} = 300,1509$ K, $\varepsilon_{s2} = 0,7827$; $T_{s3} = 439,1838$ K, $\varepsilon_{s3} = 0,038$; $T_{s4} = 439,1826$ K, $\varepsilon_{s4} = 0,038$. Процент ослабления теплообмена из-за наличия экрана составит ((1912,1495–161,0444)/1912,1495)·100 = 91,58 %.

Пример 2. Рассматриваются две концентрические сферы из примера 1. Для снижения теплообмена между внутренней и внешней сферой в определенных местах размещаются два экрана из одинакового материала толщиной 3 мм так, чтобы их радиусы равнялись 50 и 80 см (рис. 1*c*). Тогда ослабление теплообмена, температуры, коэффициентов излучения для экранов и сфер можно рассчитать по вышеприведенным формулам: $(Q_{\rm rad})_{\rm without-shield} = 1912,1495W; T_{s1} = 572,4957$ K, $\varepsilon_{s1} = 0,6786; T_{s2} = 300,1602$ K, $\varepsilon_{s2} = 0,7827$.

Для случая двух экранов из окиси алюминия получим $(Q_{rad})_{with-two-shield} = 1488,8745 \text{ W};$ $T_{s\,1} = 572,6401 \text{ K}, \varepsilon_{s\,1} = 0,6786; T_{s\,2} = 300,1579 \text{ K}, \varepsilon_{s\,2} = 0,7827; T_{s\,3} = 400,3555 \text{ K},$ $\varepsilon_{s\,2} = 0,7433; T_{s\,4} = 400,3044 \text{ K}, \varepsilon_{s\,4} = 0,7434; T_{s\,5} = 337,6459 \text{ K}, \varepsilon_{s\,5} = 0,7678; T_{s\,6} = 337,6292 \text{ K},$ $\varepsilon_{s\,6} = 0,7678.$ Процент ослабления теплообмена из-за наличия экранов составит $(Q_{rad})_{with-two-shield} - (Q_{rad})_{with-two-shield} \cdot 100 = 22.14 %$

 $(Q_{\rm rad})_{\rm without-shield}$

Аналогично, для двух экранов из карбида кремния получим $(Q_{rad})_{with-two-shield} = 1616,9105 W; T_{s1} = 572,5963 K, \varepsilon_{s1} = 0,6786; T_{s2} = T_{s2} = 300,1586 K, \varepsilon_{s2} = 0,7827; T_{s3} = 391,8317 K, \varepsilon_{s3} = 0,8898; T_{s4} = 391,8274 K, \varepsilon_{s6} = 0,8898; T_{s5} = 336,2831 K, \varepsilon_{s5} = 0,8892; T_{s6} = 336,2817 K, \varepsilon_{s6} = 0,8892. Процент ослабления теплообмена из-за наличия экранов составит ((1912,1495–1616,9105)/1912,1495)·100 = 15,44 %.$

Для случая двух экранов из вольфрама имеем $(Q_{rad})_{with-two-shield} = 150,3092W; T_{s1} = 573,0985 K, <math>\varepsilon_{s1} = 0,6784; T_{s2} = 300,1508 K, \varepsilon_{s2} = 0,7827; T_{s3} = 486,5871 K, \varepsilon_{s3} = 0,0448; T_{s4} = 486,5861 K, \varepsilon_{s4} = 0,0448; T_{s5} = 374,3371 K, \varepsilon_{s5} = 0,0286; T_{s6} = 374,3367 K, \varepsilon_{s6} = 0,0286.$ Процент ослабления теплообмена из-за наличия экранов равен ((1912,1495 – 150,3092)/1912,1495) $\cdot 100 = 92,14 \%$.

Пример 3: Рассмотрим случай двух концентричных сфер из примера 1. Если разместить два экрана с толщиной 3 мм и с радиусами 50 и 80 см для ослабления теплообмена между внутренней в внешней сферой (рис. 1*с*), то общее уменьшение теплообмена, температуры и коэффициентов излучения для установленных экранов и сфер будут вычисляться в том же порядке, что и для примера 2. Температура, коэффициенты излучения, чистый теплоперенос и процент ослабления теплообмена для описанных шести моделей приведены в таблице. Видно, что модель № 5 имеет лучшие параметры по уменьшению теплообмена между двумя концентрическими толстыми сферами (при наличии возможности применять экраны из различных материалов). Из приведенных в таблице данных можно сделать вывод, что лучшая комбинация для теплоэкранов из различных материалов достигается при размещении экрана с низкой излучательной способностью ближе к горячей поверхности.

Выводы

В настоящей работе изучалась скорость радиационного теплообмена между двумя концентрическими сферами с толстыми стенками. Были проведены расчеты для полного теплообмена, процентного снижения теплообмена, температуры, излучательной способности поверхности для случаев одного или двух толстостенных теплозащитных экранов, размещенных между внутренней и внешней сферами. Результаты анализа показали, что толстостенные экраны понижают теплообмен сильнее, чем тонкие экраны, для которых теплопроводность пренебрежимо мала по сравнению с радиационным теплообменом. Было обнаружено, что один экран из вольфрама с низкой излучательной способностью обеспечивает большее снижение теплообмена, чем два экрана, выполненных из окиси алюминия или из карбида кремния с более высокой излучательной способностью. Было показано, что если применять экраны, выполненные из одного материала, то лучше использовать материал с низкой излучательной способностью. При установке экранов, выполненных из различных материалов, для более эффективного снижения полного теплообмена следует размещать экран с низкой излучательной способностью ближе к сфере с высокой температурой. Также вычисления для экранов, выполненных из карбида кремния, показали, что в изученном интервале температур излучательная способность для поверхности экрана практически неизменна. Кроме того, излучательная способность для внешней поверхности внутренней сферы и для внутренней поверхности внешней сферы при любом числе теплозащитных экранов из любого материала остается постоянной.

Таблица Общее ослабление теплообмена, температуры, коэффициентов излучения для двух теплоэкранов, выполненных из различных материалов

	Снижение теплообмена, %		20,87		75,54		16,81		74,63		90,70		90,52	
Мощность, Вт		1513,138		467,8		1590,721		485,021		177,765		181,173		
A_{s2}	Коэф. излучения	0,7827		0,7827		0,7827		0,7827		0,7827		0,7827		
	Температура, К	300,1581		300,1525		300,1585		300,1526		300,151		300,151		
A_{s1}	Коэф. излучения	0,6786		0,6784		0,6786		0,6784		0,6784		0,6784		
	Температура, К	572,6318		572,9897		572,6053		572,9838		573,0891		573,0891		
Экран на позиции в радиусом 80 см	Коэф. излучения	0,8892	0,8892	0,0373	0,0373	0,767	0,767	0,0377	0,0377	0,7806	0,7806	0,8888	0,8888	
	Температура, К	334,2954	334,2941	434,3738	434,3726	339,8272	339,8092	436,6789	436,6778	305,3253	305,3235	304,7939	304,7937	
	Материал	A_{S5}	A_{s6}	A_{s5}	A_{s6}	A_{s5}	A_{s6}	A_{s5}	A_{s6}	A_{s5}	A_{s6}	A_{s5}	A_{s6}	
		Sic		м		Al ₂ O ₃		м		Al ₂ O ₃		Sic		
Экран на позиции с радиусом 50 см	Коэф. излучения	0,7453	0,7453	0,6927	0,6927	0,8899	0,8899	0,8902	0,8902	0,0372	0,0372	0,0372	0,0372	
	Температура, К	395,3154	395,2642	534,2037	534,1804	397,3943	397,39	536,1174	536,1153	433,636	433,6349	433,2903	433,2892	
	риал	A_{s3}	$A_{S}4$	A_{s3}	$A_{S}4$	A_{s3}	$A_{S}4$	A_{s3}	$A_{S}4$	A_{s3}	A_S4	A_{s3}	A_S4	
	Матеј	Al_2O_3		Al_2O_3		Sic		Sic		M		M		
ōN	№, чпэдоМ		1		5		3		4		5		9	

Теплофизика и аэромеханика, 2016, том 23, № 4

Список обозначений

<i>А</i> — площадь поверхности, м ² ,	W — Химический символ вольфрама,
<i>F</i> — фактор формы,	α — коэффициент теплопроводности, м ² /с,
<i>К</i> — тепловая проводимость, Вт/(м·К),	ε —излучательная способность,
Q — чистый теплообмен, Вт,	heta— полярный угол, рад,
<i>R</i> — радиус сферы, м,	λ — длина волны, м,
<i>t</i> — время, с,	σ — константа Стефана–Больцмана, Вт/(м ² ·K ⁴)
Т— абсолютная температура, К,	u'' — удельное теплообразование, Вт/м ³ .

Список литературы

- 1. Holman J.P. Heat transfer. 10th Edn. N.Y.: McGraw-Hill. 2009. 987 p.
- 2. Howell J.R., Siegel R., Menguc M.P. Thermal radiation heat transfer. 5th ed.. N.Y.: CRC Press, 2010. 997 p.
- 3. Incropera F.P., DeWitt D.P., Bergman T.L., Lavine A.S. Fundamentals of Heat and Mass Transfer. 6th Ed. NJ: John Wiley & Sons, 2007. 997 p.
- 4. Saedodin S., Torabi M., Maghsoudlou N., Moghimi Kandelousi J. Calculation of reduction heat transfer using cylindrical radiation shields // Int. Review of Mechanical Engng. 2010. Vol. 4, No. 7. P. 924–928.
- Saedodin S., Motaghedi Barforoush M.S., Torabi M. Reduction heat transfer between two concentric semicylinders using radiation shields with temperature-dependent emissivity // Frontiers in Heat and Mass Transfer. 2011. Vol. 2. P. 044001-1–044001-4.
- Saedodin S., Motaghedi Barforoush M.S., Torabi M. Calculation of reduction radiation heat transfer using hemisphere shields with temperature-dependent emissivity // J. of Applied Sci. 2011. Vol. 11, No. 12. P. 2238–2243.
- 7. Тораби М., Азис А., Саедодин С. Применение полусферических радиационных экранов со степенью черноты, зависящей от температуры, для снижения теплообмена между двумя концентрическими полусферами // Теплофизика и аэромеханика. 2012 Т. 19, № 4. С. 497–505.
- Saedodin S., Torabi M., Moghimi Kandelousi J., Maghsoudlou N. Application of net radiation transfer method for optimization and calculation of reduction heat transfer, using spherical radiation shields // World Applied Sci. J. 2010. Vol. 11, No. 4. P. 457–461.
- 9. Afonso C., Matos J. The effect of radiation shields around the air condenser and compressor of a refrigerator on the temperature distribution inside it // Int. J. of Refrigeration. 2006. Vol. 29. P. 1144–1151.
- Jang C., Kim J., Song T.-H. Combined heat transfer of radiation and conduction in stacked radiation shields for vacuum insulation panels // Energy and Buildings. 2011. Vol. 43, No. 12. P. 3343–3352.
- Jongmin Kim, Jang Choonghyo, Tae-Ho Song. Combined heat transfer in multi-layered radiation shields for vacuum insulation panels: Theoretical/numerical analyses and experiment // Applied Energy. 2012. Vol. 94. P. 295–302.
- Dehghan M., Rahmani Y., Ganji D.D., Saedodin S., Valipour M.S., Rashidi S. Convection-radiation heat transfer in solar heat exchangers filled with a porous medium: Homotopy perturbation method versus numerical analysis // Renewable Energy. 2015. Vol. 74. P. 448–455.
- Dehghan M., Mahmoudi Y., Valipour M.S., Saedodin S. Combined-conduction-convection-radiation heat transfer of slip flow inside a micro-channel filled with a porous material // Transport in Porous Media. 2015. Vol. 108. P. 413–436.
- 14. Modest M.F. Radiative Heat Transfer. 2nd Ed. N.Y.: Academic Press, 2003. 822 p.
- 15. Jabbari F., Aziz A., Saedodin S., Torabi M. Transient thermal analysis of a rectangular radiation heat shield with spatially dependent emissivities // Arabian J. for Sci. and Engng. 2013. Vol. 38, No. 12. P. 3495–3504.
- 16. Touloukian Y.S. Thermophysical Properties of High Temperature Solid Materials. 1967. Vol 4, pt 1, sect 1. P. 8–47.
- Abdou M.A., Hadid A.H., Raffray A.R., Tillack M.S., Tizuka T. Modelling, analysis and experiments for fusion nuclear technology // FNT Progress Report: Fusion Engng and Design 6, 1988. P. 3–64.
- 18. Blanket E. ITER Documentation Series. No. 29. Shield Design and Material Data Base. IAEA. Vienna, 1991.

Статья поступила в редакцию 16 марта 2015 г., после переработки — 14 апреля 2015 г.