УДК 550.43:552.576.1 DOI: 10.15372/KhUR2023440 EDN: OBHWRJ

Взаимосвязь биомаркерных параметров и природы накопления бурого угля

Л. П. НОСКОВА

Институт геологии и природопользования ДВО РАН, Благовещенск (Россия)

E-mail: noskova@ascnet.ru

(Поступила 18.07.22; после доработки 26.09.22)

Аннотация

Методами газовой хроматографии и хромато-масс-спектрометрии исследован состав и динамика трансформации насыщенных углеводородов-биомаркеров в угле Сергеевского месторождения. В зависимости от биомаркерных параметров в изученном разрезе выявлены пласты аллохтонного, автохтонного и смешанного происхождения, различающиеся природой и условиями накопления растительной биомассы. Аллохтонные угли, обогащенные битумоидами и генетически связанные с террагенным биоматериалом, формировались в окислительной обстановке. Переход к автохтонным и смешанным углям сопровождался повышением вклада аквагенных биомаркеров и неоднократным изменением фациальных условий осадконакопления. Автохтонные угли отличаются аномальным содержанием высших алканов и нестандартным распределением изопреноидных углеводородов.

Ключевые слова: аллохтонные и автохтонные угли, н-алканы, изопреноиды, стераны, терпаны

введение

Состав и свойства углей определяются природой исходного растительного материала, эпохой и условиями начальной стадии углеобразования, метаморфизмом органического вещества (OB). Для формирования угольных месторождений необходимы условия, способствующие накоплению на значительных площадях огромного количества биомассы и ее дальнейшему глубокому преобразованию. Преобладающая масса автохтонных углей откладывалась на месте произрастания растений. Наиболее благоприятными для развития наземно-водных растений-биопредшественников и накопления их остатков являются низинные болота, которые питаются грунтовыми водами, богатыми минеральными солями. Источник аллохтонного ОВ - перенесенные водными потоками на большие расстояния стволы деревьев и другой растительный материал, оседающий и накапливающийся на участках с замедленным течением (в заводях, широких устьях, дельтах) [1, 2]. Для познания диагенетической эволюции угольного вещества важнейшее значение имеет информация о биомаркерах - реликтовых органических молекулах, которые наследуют химическое строение первичного биологического материала, не претерпевая глобальной структурной перестройки в ходе углефикации. В растворенном виде они присутствуют в микропористой структуре угля и извлекаются методом экстракции в форме битумоидов. Иследование химической природы, качественного и количественного состава реликтовых соединений составляет основу геохимии твердых горючих ископаемых. Главными углеводородными биометками в составе горючих ископаемых служат н-алканы, изопреноидные углеводороды (УВ), циклические насыщенные УВ (стераны, терпаны).

Цель работы – изучение зависимости состава и вертикального распределения УВ-биомаркеров от природы накопления первичного органического материала Сергеевского месторождения бурого угля.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследованию подвергали уголь Сергеевского месторождения - один из нижне-среднемиоценовых бурых углей Амурской области (Тыгдинское, Сергеевское, Свободное и другие месторождения) [3]. Месторождение находится в южной части Амуро-Зейского осадочного бассейна. Угленосные пласты в миоцене приурочены к средней части бузулинской свиты. Верхний песчаный слой мощностью 15 м представлен песчаными, слегка глинистыми породами светло-серого цвета с прослоями ожелезнения. Исследуемый бурый уголь (мощность пластов 4.5 и 0.6 м) черного цвета, матовый, трещиноватый по вертикали и горизонтали, плотный, массивный, в верхней части пласта более рыхлый. Встречаются редкие включения углефицированных растительных остатков. Пласт вмещающих пород, залегающий между указанными угленосными пластами, представлен глинами от светлокоричневого до рыжего цвета, комковатыми, пластичными, с включениями углистого материала или крупнозернистого песка.

По глубине вертикального профиля через каждые 0.5 м были отобраны 10 образцов угля, измельченные в дальнейшем до размера частиц не более 250 мкм. В образцах угля, предварительно освобожденных от карбонатов, определяли содержание органического углерода с помощью экспресс-анализатора АН-7529 (Беларусь) [4]. Из исходного угля хлороформом извлекали битумоиды. Контроль за полнотой экстракции осуществляли сравнением внутреннего лабораторного стандарта и полученного экстракта под люминесцентной лампой. Избытком петролейного эфира (фракция 40-60 °C) из битумоидов осаждали асфальтены. На стеклянных колонках, заполненных силикагелем АСК, мальтеновую часть битумоидов разделяли на УВ и смолы. Фракционирование УВ на насыщенные и ароматические соединения осуществляли на колонках с силикагелем и оксидом алюминия. Для десорбции использовали последовательно петролейный эфир и смесь петролейного эфира с бензолом (10 %) [4].

Анализ индивидуального состава насыщенных УВ нормального и изопреноидного строения проводили с помощью газового хроматографа Agilent 6890N (США) с пламенно-ионизационным детектором на капиллярной колонке HP-5 ($30 \text{ м} \times 0.25 \text{ мм} \times 0.25 \text{ мкм}$), неподвижная фаза – 5 % дифенил- + 95 % диметилсилоксан. Режим программирования температуры: от 100 °С (плато 2 мин) со скоростью 10 °С/мин до 320 °С (плато 8 мин). Температура детектора составляла 350 °С, инжектора – 250 °С. Газ-носитель – гелий. Объем пробы 1 мкл [5].

Состав стерановых и терпановых УВ изучен с помощью газового хроматографа Hewlett Packard 5890 (США), снабженного высокоэффективным масс-селективным детектором Agilent MSD 5972A (США). Исследуемые образцы растворяли в пентане (5 мг/мл). Для регистрации и обработки информации использовали компьютерную систему HPG 1034. Фракционирование проб на индивидуальные УВ проводили на колонках HP-5 (30 м \times 0.25 мм \times 0.25 мкм), используя в качестве неподвижной фазы 5 % дифенил- + 95 % диметилсилоксан. Скорость потока газа-носителя (гелия) составляла 1 мл/мин. Температура инжектора - 320 °С. Программирование температуры: изотерма при 100 °С (плато 4 мин) с последующим нагревом до 290 °C со скоростью 4 °C/ мин и выдержкой в течение 30 мин. Ионизирующее напряжение 70 эВ, температура источника 250 °С. Идентификацию индивидуальных УВ осуществляли по библиотеке NIST-05 и по опубликованным литературным данным. Идентификацию стерановых УВ проводили по фрагментным ионам m/z 217; норгопанов, гопанов, гомогопанов, моретанов, трицикланов, тетрацикланов – по m/z 191.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Концентрация органического углерода в сергеевском угле изменяется в узких пределах (50–56 %) и только в нижней части профиля снижается до 42.1 % (табл. 1). Органическое вещество верхних горизонтов (1–5) характеризуется высоким битумоидным коэффициентом ($\beta > 15$ %) – индикатором аллохтонного типа OB. Аллохтонные угли имеют вторичную природу накопления континентальной растительности, перенесенной из первичных мест произрастания. Начиная с горизонта 6 (см. табл. 1), наблюдается переход к смешанному OB ($\beta = 7.7-8.9$ %), занимающему промежуточное положение между аллохтонными и автохтонными углями. Ал-

Горизонт/глубина	C _{opr} , %	β, %	Групповой сос		$y_{\rm Hac}/y_{\rm Bac}$			
залегания Углеводороды (Асфальтены	
от кровли, м			насыщенные	ароматические	Сумма	-		
1/2.5	52.9	15.6	9.6	5.0	14.6	39.7	45.7	1.9
2/3.0	50.9	15.3	9.4	4.9	14.3	39.3	46.4	1.9
3/3.5	51.7	15.6	9.4	5.1	14.5	38.8	46.7	1.8
4/4.0	52.4	15.2	9.5	5.2	14.7	40.5	44.8	1.8
5/4.5	50.8	15.6	9.2	4.9	14.1	42.2	43.7	1.9
6/5.0	53.5	8.7	8.7	5.0	13.7	51.2	35.1	1.7
7/5.5	55.7	8.4	8.1	5.3	13.4	52.9	33.7	1.5
8/6.0	54.6	4.2	6.6	4.8	11.4	54.8	33.8	1.4
9/6.5	49.9	7.7	7.5	5.1	12.6	50.5	36.9	1.5
10/9.2	42.1	8.9	9.2	8.2	17.4	60.4	22.2	1.1

ТАБЛИЦА 1

Концентрации органического углерода (С , орг) и характеристики битумоидов угля Сергеевского месторождения

Примечание. β – битумоидный коэффициент, %; УВ_{нас}/УВ_{ар} – соотношение насыщенных и ароматических углеводородов.

лохтонные и смешанные битумоиды могут быть паравтохтонными – мигрирующими в пределах толщи. Наименьшим битумоидным коэффициентом ($\beta = 4.2 \%$) обладает автохтонный уголь (горизонт 8), образовавшийся на месте произрастания исходных растений. Показатели автохтонного битумоида могут быть отнесены к вмещающим породам.

Что касается группового состава (см. табл. 1), то в автохтонном и смешанных битумоидах преобладает смоляная фракция. В битумоидах аллохтонного типа (горизонты 1-5), напротив, наблюдается накопление асфальтенов (до 46.7 %). Количество насыщенных УВ в битумоидах изменяется от 6.6 до 9.2 %, доля ароматических УВ составляет 4.8-8.2 %. Наименьшее содержание УВ выявлено в автохтонном битумоиде, что, вероятно, объясняется их частичной потерей при миграции в угленосной толще. Лидируют по содержанию насыщенных углеводородных фракций горизонты аллохтонного происхождения (1-5). Изменение типа ОВ в нижней части месторождения сопровождается постепенным уменьшением суммарной концентрации УВ (за исключением подошвы разреза) при сохранении доминирования насыщенных УВ над ароматическими.

Природными источниками реликтовых УВ жирного ряда (*н*-алканов) являются насыщенные кислоты нормального строения – компоненты липидов, восков, спор, пыльцы высших наземных растений [6]. Установлено, что в исследуемом разрезе УВ-биомаркеры класса алканов представлены гомологами $\mathcal{H}C_{14}^{-}\mathcal{H}C_{40}$ (рис. 1). От-

четливое преобладание нечетных УВ над четными (СРІ) (табл. 2) подтверждает тезис о континентальном генезисе и малой степени преобразования исследуемого угля. Лидирующей алкановой фракцией во всех горизонтах являются нечетные гомологи С29-С33 - биологические метки высших континентальных растений. В составе аллохтонного угля (горизонты 1-5) на долю этой фракции, представляющей единственный максимум на кривой распределения *н*-алканов (см. рис. 1, *a*), приходится более 56 %. Судя по критерию C_{27}/C_{17} (см. табл. 2), пиковым содержанием высокомолекулярных алканов при выраженном превосходстве среди них компонентов $C_{29}^{-}-C_{33}^{-}$ (58 %) обладает автохтонное OB (см. рис. 1, б). Второй максимум составляют нечетные гомологи С₂₃-С₂₇, отражающие вклад озерной растительности. Переход к смешанному типу ОВ в горизонтах 9 и 10 сопровождается постепенным сглаживанием максимумов на кривых распределения УВ (см. рис. 1, в). Это приводит к явному доминированию лишь одного из высших гомологов - С₂₉, и увеличению относительной доли *н*-алканов С₂₃-С₂₇. Данный факт и связанный с ним постепенный рост коэффициента Рад до 0.37, а также снижение коэффициента нечетности н-алканов (см. табл. 2) позволяют предположить [7], что формирование нижней части месторождения протекало в озерных условиях с привносом высшей наземной растительности.

Биологическими предшественниками изопреноидных биомаркеров (изопренанов) являются терпеноиды, стероиды, каратиноиды, содержа-

Рис. 1. Газожидкостная хроматограмма *n*-алканов аллохтонного (*a*), автохтонного углей (б) и угля смешанного состава (*в*).

щиеся в составе живых организмов [6]. Как правило, в составе твердых топлив ведущая роль среди изопренанов принадлежит преобразованным остаткам хлорофилла – пристану (Pr) и фитану (Ph), по соотношению которых определяют фациальную обстановку накопления ОВ. Особенностью распределения ациклических изопреноидов (*i*C_.), представленных в сергеевском угле стандартным рядом *i*C₁₃-*i*C₂₅, служит максимальное присутствие гомолога iC_{21} в OB автохтонного угля (см. табл. 2). Возможно, это связано с доминированием соединения iC_{21} в исходной биоте Сергеевского месторождения, а причиной перераспределения изопреноидных УВ являются процессы миграции. Исходя из преобладания пристана над фитаном (Pr/Ph > 1), аллохтонный пласт угля и прилегающие к нему горизонты смешанного состава (6 и 7), а также горизонт 10 формировались в окислительных (аэробных) условиях, соответсвующих фациальным условиям преобразования фитола растительного происхождения в пристан. В автохтонном угле и в приуроченном к нему горизонте 9 смешанного состава, напротив, фитан преобладает над пристаном (см. табл. 2). Это характеризует изменение условий угленакопления на восстановительные (анаэробные), аналогичные условиям генерации фитола в фитан из аквагенного биоматериала. Низкие значения отношений $Pr/\mu C_{17}$ и $Ph/\mu C_{18}$ указывают на устойчивость ОВ к процессам биодеградации [8].

Состав УВ-биометок, принадлежащих классу полициклических нафтенов, представлен в сергеевском угле стерановыми (тетрациклическими) и терпановыми (пентациклическими) УВ. Их первоисточниками являются природные моно-, ди-, тритерпены и стероиды фито-, зоопланктона и высших растений [6]. Соотношение стерановых УВ служит критерием происхождения и условий накопления угля [9, 10]. На хроматограммах циклических насыщенных биомаркеров исследуемого угля присутствуют высокие пики, относящиеся к незрелому ОВ и затрудняющие идентификацию традиционно используемых пиков. Поэтому в настоящей работе приводится интерпретация тех пиков стеранов и терпанов, где это было возможно. По всему разрезу (табл. 3) распределение стеранов C₂₇-C₃₀ характеризуется максимальной долей этилхолестанов С₂₀ (54.9-67.3 %) – индикаторов вклада высшей наземной растительности в исходную биомассу [11-13]. Из соотношений этилхолестана и холестана $(C_{_{29}}/C_{_{27}})$ следует, что наибольшее количество стеранов С₂₉ концентрируется в автохтонном OB. Вместе с тем, указанный образец, а также уголь смешанного происхождения (горизонт 9) обладают повышенными содержаниями стеранов C₃₀ по сравнению с $\mathrm{C}_{_{27}}$ и $\mathrm{C}_{_{28}}$ (см. табл. 3), что свиде-

ТАБЛИЦА 2

Основные характеристики ациклических углеводородов-биомаркеров

Горизонт	н-Алканы				Изопреноиды				
	Максимум	CPI ^a	$\mu C_{27}^{}/\mu C_{17}^{}$	Pwax ⁶	Paq ^в	Максимум	Pr/Ph	$Pr/\mu C_{17}$	$Ph/\mu C_{18}$
	в н-алканах					в изопреноидах			
1-2	C ₃₁	5.5	3.3	0.91	0.15	C ₁₉	1.3	0.7	0.6
3 - 5	C ₃₁	5.4	2.6	0.86	0.16	C ₁₉	1.2	0.6	0.7
6 - 7	C ₃₁	4.7	13	0.71	0.29	C ₁₉	1.2	0.5	0.4
8	C ₃₃	5.0	137	0.78	0.25	C_{21}	0.8	0.4	0.3
9	C ₃₃	3.6	17	0.74	0.31	C_{20}	0.9	0.4	0.3
10	C ₂₉	3.0	12	0.68	0.37	C ₁₉	1.4	0.3	0.2

^a CPI (Carbon Preference Index) = $2(\mu C_{23} + \mu C_{25} + \mu C_{27} + \mu C_{29})/[\mu C_{22} + 2(\mu C_{24} + \mu C_{26} + \mu C_{28}) + \mu C_{30}]$. ⁶ Pwax = $(\mu C_{27} + \mu C_{29} + \mu C_{31})/(\mu C_{23} + \mu C_{25} + \mu C_{27} + \mu C_{29} + \mu C_{31})$. ^B Paq = $(\mu C_{23} + \mu C_{25})/(\mu C_{23} + \mu C_{25} + \mu C_{29} + \mu C_{31})$.

ТАБЛИЦА 3

Распределение и соотношение стерановых углеводородов

Горизонт	Соде	ржан	ие, от	н. %	C29/C27	C ₂₉ /C ₂₈	C ₂₇		C ₂₉			C ₂₇ -C ₃₀	(Стераны +	(Стераны +
	C ₂₇	C ₂₈	C ₂₉	C ₃₀			K_1	K_2	K_1	K_{2}	$\beta\alpha/(\alpha\alpha + \beta\beta)$	$\beta\alpha/(\alpha\alpha + \beta\beta)$	прегнаны)/ прегнаны	прегнаны)/ терпаны
													1	1
1 - 5	-	-	-	-	-	-	0.6	11.4	-	-	-	-	-	-
6-7	17.3	12.1	61.1	9.5	3.5	5.0	0.5	4.3	0.4	1.0	0.1	0.1	16.1	0.03
8	10.3	7.5	67.3	15.0	6.6	9.0	0.5	2.8	0.3	0.9	0.0	0.1	51.4	0.04
9	14.6	8.1	67.2	10.1	4.6	8.3	0.4	5.6	0.4	0.4	0.1	0.1	14.8	0.01
10	20.4	17.0	54.9	7.6	2.7	3.2	0.5	2.9	0.4	1.5	0.1	0.2	14.4	0.03

Примечания. 1. Прочерк - подсчет ряда параметров невозможен из-за наложения дополнительных пиков в области выхода регулярного стерана C₂₉R. 2. $K_1 = 20S/(20S + 20R), K_2 = \beta\beta(20S + 20R)/\alpha\alpha 20R - стерановые коэффициенты зрело$ сти. 3. $\beta \alpha / (\alpha \alpha + \beta \beta)$ – диастераны/регулярные стераны.

ТАБЛИЦА 4

Распределение групп терпанов

Горизонт	Содержа	Ts/Tm				
	Гопаны	Гомогопаны	Моретаны	Трицикланы	Тетрацикланы	[–] в гопанах С ₂₇
1-5	13.9	59.8	23.1	0.1	3.1	0.15
6 - 7	9.7	58.9	24.9	0.1	6.4	0.11
8	6.3	61.3	26.2	0.1	6.1	0.55
9	7.1	60.3	20.4	0.1	12.1	0.83
10	15.6	45.0	34.2	0.4	4.8	0.09

тельствует о проявлении аквагенных признаков исходного биоматериала [14]. Низкие значения стерановых коэффициентов зрелости (К, и К,) и малая доля диастеранов (преобразованных стеранов) относительно регулярных (биологических) стеранов (см. табл. 3) являются показателями незрелого ОВ сергеевского угля [11].

Структура молекул терпановых УВ аналогична строению природных тритерпеноидов животного и растительного происхождения [6]. В составе угля изучаемого разреза идентифицированы основные представители ряда терпанов: гопаны, гомогопаны, моретаны, три- и тетрациклоалканы (табл. 4). Лидирующая позиция среди них принадлежит фракции гомогопановых УВ, доля гопанов и норгопанов составляет немногим более 15 %. Минимальное количество этих соединений (7.1 %) содержит автохтонное ОВ. Накопление гопанов на других участках месторождения может быть следствием их перераспределения в пределах толщи. Одним из геохимических индексов, рассчитанных по составу гопановых УВ, является отношение триснорнеогопана C_{27} (Ts) к трисноргопану C_{27} (Tm).

ТАБЛИЦА 5					
Распределение	моретанов	И	тетрацикланов,	отн.	%

Горизонт	Mope	таны			Тетр	Тетрацикланы				
	C ₂₉	C ₃₀	C ₃₁	$C_{32}S$	$C_{32}R$	C ₃₂	C ₂₄	C_{25}	C ₂₆	C ₂₇
1-5	9.5	60.9	26.3	0.7	2.6	3.3	98.0	0.7	0.7	0.6
8	15.1	44.3	32.7	0.8	7.1	7.9	91.8	2.3	2.7	3.2
9	16.2	47.8	31.7	0.5	3.8	4.3	97.0	1.2	1.0	0.7
10	31.5	7.6	51.0	6.9	2.9	9.9	93.9	4.0	2.1	0.0

ТАБЛИЦА 6

Распределение трицикланов

Горизонт	Максимум	Содеря	кание, о	тн. %	$2C_{19-20}/C_{23-26}$	C_{23-26}/C_{28-31}
	в трицикланах	C ₁₉₋₂₀	C_{23-26}	C_{28-31}	-	
1-5	C ₂₈	18.3	12.8	49.0	2.9	0.3
8	C ₂₉	2.4	5.7	89.5	0.8	0.1
9	C ₁₉	54.4	2.2	41.9	49.7	0.1
10	C ₃₀	13.1	14.8	62.0	1.8	0.2

Компонент Tm является биогенной структурой, а Ts образуется из Tm при диагенезе либо при термальных процессах [14]. Исходя из этого, низкие значения отношения Ts/Tm (см. табл. 4) служат признаком малой преобразованности OB исследуемого угля. Во фракции гопановых УВ C_{27} - C_{35} главенствуют гомогопаны C_{31} (73-89 %), затем следуют гопаны C_{29} (4.9-16.9 %) и C_{30} (0.8-10.5 %).

Достаточно высокие концентрации моретанов в составе терпанов-биомаркеров (табл. 5) также свидетельствуют о низкой зрелости ОВ, поскольку моретаны легче подвергаются биодеградации, чем гопаны [14, 15]. Горизонты аллохтонного и смешанного состава характеризуются одинаковым распределением моретанов: $C_{30} > C_{31} > C_{29} > C_{32}R > C_{32}S$. Наиболее богатое моретанами автохтонное ОВ имеет отличный от остальных горизонтов профиль распределения данных соединений: $C_{31} > C_{29} > C_{30} > C_{32}S > C_{32}R$. Происхождение трициклоалканов обязано ци-

Происхождение трициклоалканов обязано циклизации природных дитерпанов [16]. В сергеевском угле количество трицикланов не превышает 0.4 % (см. табл. 4), тем не менее в их составе представлены все члены гомологического ряда от C_{19} до C_{31} (табл. 6). Трицикланы характеризуются очень низкими концентрациями компонентов C_{22} и C_{27} (рис. 2), что позволяет связать происхождение этой группы веществ с циклизацией регулярных изопреноидов [17]. Более вы-

Рис. 2. Концентрация трициклоалканов в угле аллохтонного (1), автохтонного (2) и смешанного (3, 4) происхождения.

сокие концентрации имеют низкомолекулярные ($\rm C_{19}-C_{20})$ и высокомолекулярные ($\rm C_{28}-C_{31})$ фракции (см. табл. 6). Трициклановый индекс ($\rm 2C_{19-20}/C_{23-26})$ во всех горизонтах превышает единицу (см. табл. 6). Исключение составляет автохтонный уголь, отличающийся очень малым содержанием фракции $\rm C_{19-20}.$ В целом количественный и качественный состав трицикланов соответствует террагенному ОВ [18, 19].

На долю тетрацикланов приходится 3.1-12.1 % (см. табл. 4), во всех образцах зафиксированы пиковые концентрации соединений C₂₄ (до 98.0 %) (см. табл. 5), что также характерно для террагенного OB [20]. Суммарное содержание остальных тетрациклических УВ не превышает 4.0 %.

ЗАКЛЮЧЕНИЕ

Исследована природа и геохимическая трансформация УВ-биомаркеров в вертикальном профиле Сергеевского месторождения бурого угля. Установлены участки разреза, различающиеся природой и способом накопления материнского ОВ. Пласт аллохтонного угля сформирован из скопления привнесенной водными потоками древесной растительности. Сочетание таких биомаркерных показателей, как высокий коэффициент Pwax, максимальный вклад высших нечетных алканов (С₂₉, С₃₁, С₃₃), преобладание пристана над фитаном, свидетельствует о террагенной природе аллохтонного ОВ, накопление и геохимическое преобразование которого протекало в окислительной обстановке. К показателям низкой зрелости аллохтонного угля относятся: коэффициент нечетности CPI = 5.4, высокое содержание моретанов и малое - трицикланов, низкие показатели зрелости по стерановым и терпановым УВ. Формирование автохтонного пласта происходило на месте произрастания растений-биопредшественников в восстановительных условиях осадконакопления (преобладание фитана над пристаном). Основным исходным материалом автохтонного угля была высшая континентальная растительность (выраженное доминирование этилхолестанов в ряду стерановых УВ, преобладание стеранов над прегнанами, высокий показатель СРІ); установлен вклад аквагенного биоматериала (Pr/Ph = 0.8), повышенное содержание стеранов С₃₀). К особенностям автохтонного ОВ сергеевского угля следует отнести подавляющий вклад высокомолекулярных гомологов в состав н-алканов (высокие значения отношения $\mu C_{27}/\mu C_{17}$), нетипичный максимум (*i*C₂₁) в ряду ациклических изопреноидных УВ-биомаркеров, низкое содержание гопанов. Две группы горизонтов смешанного ОВ, сочетающего по составу УВ-биометок показатели автохтонного и аллохтонного угля (Paq, CPI, высокий вклад этилхолестанов), различаются между собой фациальными условиями накопления.

СПИСОК ЛИТЕРАТУРЫ

- 1 Тимофеев А. А. Генетический аспект методологии прогнозирования угленосности // Труды Х Всерос. угольного совещания "Ресурсный потенциал твердых горючих ископаемых на рубеже XXI века". Ростов н/Д.: ВНИГРИуголь, 2001. С. 64–68.
- 2 Трощенко В. В. Модель процесса аллохтонного угленакопления как основная для паралических угольных бассейнов // Вестн. Южного науч. центра РАН. 2006. Т. 2, № 3. С. 33–41.
- 3 Сорокин А. П., Конюшок А. А., Агеев О. А., Кузьминых В. М. Минералого-геохимические особенности самородного золота в продуктах сгорания углей Ерковецкого месторождения (Верхнее Приамурье) // Физико-технические проблемы разработки полезных ископаемых. 2019. № 4. С. 141–150.
- 4 Руководство по анализу битумов и рассеянного органического вещества горных пород / Под ред. Успенского В. А. Л.: Недра, 1966. 315 с.
- 5 Носкова Л. П., Радомская В. И., Павлова Л. М. Особенности химического сотава и распределения компонентов низинного торфа Амурской области // Химия твердого топлива. 2016. № 6. С. 3–10.
- 6 Петров А. А. Углеводороды нефти. М.: Наука, 1984. 264 с.
- 7 Ficken K. J., Li B., Swain D. L., Eglinton G. An *n*-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes // Org. Geochem. 2000. Vol. 31, No. 7–8. P. 745–749.
- 8 Яндарбиев Н. Ш., Козлова Е. В., Фадеева Н. П., Крылов О. В., Наумчев Ю. В. Геохимия углеводородов Терско-Каспийского прогиба // Георесурсы. 2017. Спецвыпуск. Ч. 2. С. 227-239.
- 9 Huang W. Y., Meinschein W. G. Sterols as ecological indicators // Geochim. Cosmochem. Acta 1979. Vol. 43. P. 739–745.
- 10 Вассоевич Н. Б., Гусева А. Н., Лейфман И. Е. Биогеохимия нефти // Геохимия. 1976. № 7. С. 1075–1083.
- 11 Петров Ал. А. Геохимическое значение стеранов / Научноприкладные аспекты геохимии нефти и газа. Под ред. В. И. Тихомирова, В. А. Чахмахчева. М.: ИГИРГИ, 1991. С. 21–30.
- 12 Volkman J. K. A review of sterol markers for marine and terrigenous organic matter // Org. Geochem. 1986. Vol. 9. P. 83-99.
- 13 Moldowan J. M., Seifert W. K., Gallegos E. J. Relationship between petroleum composition and depositional environments of petroleum sourse rocks // AAPG Bull. 1985. Vol. 69, No. 8. P. 1255-1268.
- 14 Peters K. E., Walters C. C., Moldowan J. M. The Biomarker Guide. Vols. 1 and 2. 2nd ed. Cambridge: Cambridge University Press, 2005. 1155 p.
- 15 Seifert W. K., Moldowan J. M. The effect of thermal stress on source-rock quality as measures by hopane stereochemistry / Advances in Organic Geochemistry Vol. 12. Oxford: Pergamon press, 1980. P. 229-237.

- 16 Gallegos E. G. Identification of new steranes, terpanes and branched paraffines in Green River Shale by combined capillary gas chromatography and mass spectrometry // Anal. Chem. 1971. Vol. 43. P. 1151-1160.
- 17 Каширцев В. А. Природные битумы северо-востока Сибирской платформы. Якутск: ЯФ СО АН СССР, 1988. 126 с.
- 18 Петров Ал. А. Биометки и геохимические условия образования нефтей России // Геология нефти и газа. 1994. № 6. С. 13-19.
- 19 Waples D. W., Machihara T. Application of sterane and triterpane biomarkers in petroleum exploration // Bull. Can. Petrol. Geol. 1990. Vol. 38, No. 3. P. 357-380.
- 20 Philp R. P., Gilbert T. D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material // Org. Geochem. 1986. Vol. 10, No. 1. P. 73-84.